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Problems for Linear Systems∗
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Abstract

The paper presents a discretization scheme for Mayer’s type optimal control problems of
linear systems. The scheme is based on second order Volterra-Fliess approximations, and
on an augmentation of the control variable in a control set of higher dimension. Compared
with the existing results, it has the advantage of providing a higher order accuracy without
a substantial increase of computations. Error estimations (depending on the controllability
index of the system at the solution) are proved by using a recent result about stability of the
optimal solution with respect to disturbances. Numerical results are provided, which show
the sharpness of the error estimations.
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MSC Classification: 49M25, 65L99.

1 Introduction

This paper presents a new discretization scheme and a related error analysis for the following
optimal control problem:

min g(x(T )) (1)

subject to the linear control system

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0, (2)

u(t) ∈ U, (3)

where x ∈ Rn, U = [−1, 1]m, T and x0 are fixed and considered as known. The set U of
admissible controls consists of all measurable functions u : [0, T ]→ U .

In most of the existing literature, the error analysis of discretization methods for ODE
optimal control problems is based on certain coercivity properties of the Hamiltonian associated
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with the problem, and enough smoothness of the optimal control (see e.g. [7, 6, 13, 8, 5] among
many). In contrast, the present paper contributes to the still developing area of numerical
approximations of problems in which coercivity fails and the optimal controls are typically
discontinuous.

Although the optimal control theory for linear systems was broadly developed in the middle
of the last century, the investigation of regularity properties of the solutions of problem (1)–(3)
and the error analysis of approximation schemes progressed substantially during the last 10–
15 years. It is still a challenging issue due to the typical discontinuity of the optimal controls.
Concerning the “regular” dependence on disturbances of the solutions of problems that are linear
with respect to the control, we refer to [9, 20], and also to [10, 11] and the bibliography therein
for extensions to more general affine control problems. The analysis in the present paper is based
on [20], where the “regularity” is understood as the so-called “Hölder bi-metric regularity”.

A widely used numerical approach to problem (1)–(3) involves solving a discretized problem
(usually obtained using the Euler scheme) with the aim of approximately identifying the switch-
ing structure of the optimal control. Then, a low-dimensional optimization problem with the
switching points used as variables may be solved to locate the switching points more precisely
[16, 17, 18]. For this reason, it is important to ensure a high accuracy of the discrete approxi-
mation with low computational costs. The higher order approximation proposed in the present
paper may make the second stage of the above approach even redundant.

In the next paragraphs we review the literature related to discrete approximations of prob-
lems that are linear with respect to the control.

A second order Runge-Kutta scheme (namely, the Heun scheme) is used in [24] to discretize
problem (1)–(3), but the error estimate in that paper is not of a better order than the ones
subsequently obtained for the Euler scheme. For the analysis of the convergence of the Euler
scheme we refer, among others, to [1, 4, 21]. The expected first order error estimate is obtained
under the condition that, roughly speaking, switching function associated with the optimal
solution has only simple zeros. This condition is relaxed in [14], where the error estimate
depends on the multiplicity of the zeros of the switching function, defined indirectly by the so-
called controllability index, σ, which is a natural number (see the next section for a definition);
the case of simple zeros of the switching function corresponds to σ = 1. The error estimate
derived in [14] is O(h1/σ), where h is the discretization step. This estimate is sharp.

We mention that the result in [14] applies to Mayer’s problem (1)–(3), but its extension
to problems involving integral linear-quadratic objective functionals (linear in the control) is
requires to overcome considerable difficulties and is done in [21] (see also the analysis of the
implicit Euler scheme in [3] for σ = 1 and [2] where σ is any natural number). To the authors’
knowledge, the known estimation for the explicit Euler scheme in presence of a bilinear term
involving the state and the control in the objective integrand is O(h1/(σ+1)).

For extensions, concerning the application of Euler’s scheme to affine control systems (linear
with respect to the control variable), we refer to the recent paper [11].

In this paper we present a discretization scheme for problem (1)–(3), which is based on the
Volterra-Fliess expansion of the solution of equation (2), rather than on Runge-Kutta schemes.
The idea is based on [23] (see also [15, pp.203-206]) and the apparently independent similar
result in [12]. Here we appropriately adapt and implement in the context of problem (1)–
(3) this idea, which brings into consideration a discrete-time optimization problem involving
additional control variables. The error analysis of this discretization scheme is quite involved
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and essentially uses a result from [20]. We will show that the solution of the discrete problem can
be used to constructively define an admissible control in problem (1)–(3) which approximates
the optimal one with accuracy O(h2/σ) (recall that σ is the controllability index at the solution
and h is the discretization step). Thus, the order of accuracy doubles in comparison with the
known estimates, while the computational effort is comparable with that for solving the discrete
problem obtained by the Euler scheme. As explained later, the case σ = 1 is in a sense generic,
thus our scheme has generically second order accuracy. We also stress that the error estimate
is obtained in the metric in the space of control functions that seems most meaningful for the
considered problem: the measure of the set on which the approximate control differs from the
optimal one. Numerical experiments confirm theoretically obtained rate of convergence.

In addition, we analyze how the accuracy of our numerical scheme changes when the dis-
cretized problem is solved with a certain error ε. We will show that the overall error estimate

involves both the discretization step h and the solution error ε and has the form O
(
(ε+ h2)1/σ

)
.

The paper is organized as follows. In the next section we formulate the assumptions and
provide some preliminary results adapting [20]. In Section 3 we present the discretization scheme
and formulate the main result – the error estimate. The proof is given in Section 4. Section 5
investigates the effect that inexact solving of the discretized problem has on the overall accuracy.
In Section 6 we outline possible numerical implementations of the proposed discretization and
present results obtained for test examples. Possible extensions are discussed in Section 7.

2 Preliminaries

In this section, some preliminary material is reviewed adapting results from [20]. We begin with
some assumptions.

Assumption (A1): For some natural number σ̄, the matrix functions A : [0, T ] → Rn×n and
B : [0, T ]→ Rn×m are σ̄ times, respectively σ̄ + 1 times, continuously differentiable. Moreover,
g : Rn → R is convex and differentiable with a locally Lipschitz derivative.

On this assumption, the reachable set, R, of (2)–(3) is a convex and compact subset of Rn,
hence problem (1)–(3) has at least one solution (x̂, û).

Define the sequence of matrices

B0(t) = B(t), Bi+1(t) = −A(t)Bi(t) + Ḃi(t), i = 0, . . . , σ̄ − 1, (4)

where the dot above a symbol denotes differentiation with respect to t.

Assumption (A2): rank
[
Bj

0(t), . . . , Bj
σ̄(t)

]
= n for every j = 1, . . . ,m and every t ∈ [0, T ], where

Bj
i (t) is the j-th column of Bi(t). Moreover, ∇g(x) 6= 0 for every x ∈ R (∇g denotes the gradient

of g).

The rank condition in the above assumption is the well-known general position hypotheses [19]
(see Section 7 about a possible relaxation of (A2)). The second part of assumption (A2) makes
the problem meaningful, since it rules out the occurrence of infinitely many solutions.
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The Pontryagin maximum principle (here written in the form of “minimum” principle) claims
that any optimal pair (x̂, û), together with a corresponding absolutely continuous function p̂ :
[0, T ]→ Rn, satisfies the following (generalized) equations:

0 = ẋ(t)−A(t)x(t)−B(t)u(t), x(0) = x0, (5)

0 = ṗ(t) +A>(t) p(t), (6)

0 = p(T )−∇g(x(T )), (7)

0 ∈ B>(t) p(t) +NU (u(t)), (8)

where NU (u) is the normal cone to U at u:

NU (u) =

{
∅ if u 6∈ U,

{l ∈ Rm : 〈l, v − u〉 ≤ 0 ∀ v ∈ U} if u ∈ U .

(Notice that (8) is equivalent to u(t) ∈ Argmin
v∈U

〈B>(t) p(t), v〉.)

The following lemma is well-known.

Lemma 1 Let the matrix-valued functions A and B be measurable and essentially bounded, and
let g be differentiable and convex. Then (x̂, û) is a solution of problem (1)–(3) if and only if
the triple (x̂, p̂, û) (with an absolutely continuous p̂) is a solution of system (5)–(8). If (A1)
and (A2) hold, then the solution (x̂, û) of (1)–(3) is unique, hence so is the solution of (5)–(8).
Moreover, û(t) is a vertex of U for a.e. t ∈ [0, T ].

Let (x̂, û) be a solution of problem (1)–(3).

Definition 1 The controllability index of the solution (x̂, û) of problem (1)–(3) is the minimal
number σ such that for every t ∈ [0, T ] and for every j = 1, . . . ,m at least one of the numbers〈
p̂(t), Bj

i (t)
〉

, i = 0, . . . , σ, is not equal to zero. Here, p̂ is the solution of the equations (6), (7)

with x(T ) = x̂(T ).

Assumptions (A1) and (A2) imply that the controllability index σ ≤ σ̄ does exist.

Remark 1 Notice that, according to (7) and (6), p̂ is uniquely determined by ∇g(x̂(T )), which
belongs to −NR(x̂(T )). Moreover, under (A2) any solution p of (6) with p(T ) ∈ −NR(x̂(T ))
produces the same controllability index σ in the spirit of Definition 1. Thus σ depends only on
the location of x̂(T ) on ∂R. The relation of σ with the index of convexity of R at x̂(T ) ∈ ∂R is
clarified in [22].

The generalized equations (5)–(7) can be written in the form 0 ∈ F (x, p, u), where

F (x, p, u) :=


ẋ−Ax−B u
ṗ+A> p

p(T )−∇g(x(T ))
B> p+NU (u)

 . (9)
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The set NU (u) in (9) is defined point-wise as {ρ ∈ L∞ : ρ(t) ∈ NU (u(t)) ∀ t ∈ [0, T ]}. Notice
that, strictly speaking, NU (u) is not the normal cone to the convex set U , since the latter is a
subset of the dual space to L∞. Apparently, NU (u) is only a subset of “true” normal cone.

Thus, under (A1) and (A2) the inclusion 0 ∈ F (x, p, u) is equivalent to our original problem
(1)–(3). Namely, it has a unique solution (x̂, p̂, û) and (x̂, û) is the unique solution of problem
(1)–(3).

The norms in L1(0, T ) and L∞(0, T ) are denoted by ‖ · ‖1 and ‖ · ‖∞, respectively. The notation
W 1,s = W 1,s([0, T ]; Rn) (with s = 1 or s =∞) is used for the space of all absolutely continuous
functions x : [0, T ]→ Rn with the derivative ẋ belonging to Ls(0, T ). The norm in this space is
‖x‖1,s := ‖x‖∞ + ‖ẋ‖s.

The set of admissible controls U is viewed as a subset of L∞(0, T ) equipped with the metric

d#(u1, u2) = meas {t ∈ [0, T ] : u1(t) 6= u2(t)}.

This metric is shift-invariant and we use the shorthand notation d#(u1, u2) = d#(u1 − u2, 0) =:
d#(u1 − u2). The triple (x, p, u) is considered as an element of the (affine) space

X = W 1,1
x0 ×W

1,∞ × U ,

where W 1,1
x0 = {x ∈W 1,1 : x(0) = x0}.

Correspondingly, the image space of F will be Y = L1 × L∞ ×Rn × L∞ with the norm

‖y‖ = ‖(ξ, π, ν, ρ)‖ := ‖ξ‖1 + ‖π‖∞ + |ν|+ ‖ρ‖∞.

The following is a simplified version of [20, Theorem 2].

Theorem 1 Let assumptions (A1) and (A2) be fulfilled, let (x̂, p̂, û) be a solution of the gener-
alized equation 0 ∈ F (x, p, u) (with F given in (9)) and let σ be its controllability index. Then
for every number b > 0 there exists a number c such that for every y = (ξ, π, ρ, ν) ∈ Y with
‖y‖ ≤ b and for every solution (x, p, u) ∈ X of the inclusion y ∈ F (x, p, u) it holds that

‖x− x̂‖1,1 + ‖p− p̂‖1,∞ + ‖u− û‖1 ≤ c ‖y‖
1
σ . (10)

In the proof of our main result we shall need the following known result, [22, Corollary 2.1].
The numbers m, T and σ are fixed as above.

Lemma 2 Let L and γ be positive reals, and let P σ(L, γ) be the set of all functions l : [0, T ]→
Rm which are σ-times differentiable, the σ-th derivative l(σ) is Lipschitz continuous with Lips-
chitz constant L, each of the functions l(0) = l, l(1), ..., l(σ) is uniformly bounded over [0, T ] by
L, and

∑σ
i=0 |l(i)(t)| ≥ γ for every t ∈ [0, T ]. Then there exists a constant d such that∫

∆
|l(t)| dt ≥ d (meas ∆)σ+1

for every l ∈ P σ(L, γ) and every measurable set ∆ ⊂ [0, T ].
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3 Approximation scheme and error estimate

The idea of the approximation scheme introduced below originates from [23] and is based on
utilization of the Volterra-Fliess series for the solution of (2). Namely, if x(θ) = xθ and u is an
admissible control on [θ, θ+h), where θ ≥ 0, h > 0, θ+h ≤ T , then the solution x of (2) satisfies
for t ∈ [θ, θ + h]

x(t) = xθ +

∫ t

θ
[A(s)xθ +B(s)u(s)] ds

+

∫ t

θ

∫ s

θ
[A(s)A(τ)xθ +A(s)B(τ)u(τ)] dτ ds+O(t;h3),

where hereafter O(t; s) will denote a function (different at different places) such that O(t; s)/s
is bounded when t, s ∈ [0, T ]. Inserting the first order Taylor expansion of A and B in the first
integral, replacing the arguments of A and B with θ in the second integral, and changing the
order of integration, we obtain that

x(t) =

[
I + (t− θ)A+

(t− θ)2

2
(A2 +A′)

]
xθ + (B + (t− θ)AB)

∫ t

θ
u(s) ds

+(−AB +B′)

∫ t

θ
(s− θ)u(s) ds+O(t;h3), (11)

where A = A(θ), and similarly for B, A′ and B′. Substituting s = θ + ht and z(t) = u(θ + ht)
in the integrals, we obtain the representation

x(θ + h) =

[
I + hA+

h2

2
(A2 +A′)

]
xθ

+h(B + hAB)w1 + h2(−AB +B′)w2 +O(t;h3), (12)

where

w1 =

∫ 1

0
z(s) ds w2 =

∫ 1

0
sz(s) ds.

Notice that when u runs over the set of all admissible controls on [θ, θ + h] the corresponding
vectors (w1, w2) ∈ R2n form a convex and compact set of the form Wm :=

∏m
1 W (meaning that

each component of the pair of vectors (w1, w2) belongs to W ), where W ⊂ R2 is the Aumann
integral

W :=

∫ 1

0

(
1
s

)
[−1, 1] ds. (13)

Thus, we obtain that the set of transitions from xθ that the control system (2) defines on [θ, θ+h]
coincides, modulo O(h3), with the set of transitions defined by the discrete system (12) using
the vectors in Wm as control parameters. The approximation scheme below implements this
observation, and the main goal of this paper is to prove that this implementation is advantageous
in the context of optimal control.

Before presenting the discrete approximation scheme, we mention that it is a standard exer-
cise to represent the above Aumann integral as

W =
{

(α, β) ∈ R2 : α ∈ [−1, 1], β ∈ [ϕ1(α), ϕ2(α)]
}
, (14)
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where

ϕ1(α) :=
1

4
(−1 + 2α+ α2), ϕ2(α) :=

1

4
(1 + 2α− α2). (15)

In fact, this will be implied by the proof of the theorem below, but for the need of the formulation
of the discretization scheme and the error estimate one can take (14) as a definition of W .

The approximating discrete problem reads as follows: given N , h := T/N , tk := kh, we
consider

min g(xN ) (16)

subject to the discrete linear control system

xk+1 = xk + h(Akxk +Bkuk + hCkvk), x0 – given, (17)

(uk, vk) ∈Wm, k = 0, . . . , N − 1,

where

Ak = A(tk) +
h

2
(A(tk)

2 +A′(tk)),

Bk = B(tk) + hA(tk)B(tk), Ck = −A(tk)B(tk) +B′(tk),

The Karush-Kuhn-Tukker theorem gives the following necessary conditions (discrete maximum
principle) for the optimality of (x0, . . . , xN ), (w0, . . . , wN−1), with wk := (uk, vk) ∈W r: there is
an (adjoint) sequence (p0, . . . pN ) such that

0 = −xk+1 + xk + h(Akxk +Bkuk + hCkvk), k = 0, . . . , N − 1, (18)

0 = −pk + pk+1 + hA>k pk+1, k = N − 1, . . . , 0, (19)

0 = −pN +∇g(xN ), (20)

0 ∈ (Bk, hCk)
>pk+1 +NWm(wk). (21)

Now we consider an arbitrary triplet ({xk}, {pk}, {wk}) that satisfies the above four equations.
Next, we explain how we can define an appropriate “embedding” of the sequence {wk} into the
set U of admissible controls.

Construction of a continuous-time control.
Define the mapping Fk : W → L∞(tk, tk + 1) in the following way. Take (α, β) ∈W .

(i) If α ∈ {−1, 1} define Fk(α, β)(t) = α, for t ∈ [tk, tk+1).
(ii) If α ∈ (−1, 1) and β ∈ {ϕ1(α), ϕ2(α)} define ζ = sgn(α− 2β), τ = (1 + ζα)/2, and

Fk(α, β)(t) =

{
ζ for t ∈ [tk, tk + hτ),
−ζ for t ∈ [tk + hτ, tk+1).

(iii) If α ∈ (−1, 1) and β ∈ (ϕ1(α), ϕ2(α)), define Fk(α, β)(t) = 0 on [tk, tk+1).

Then define an admissible control u of the original problem as

uj(t) = Fk(ujk, v
j
k)(t), t ∈ [tk, tk+1), k = 0, . . . , N − 1, j = 1, . . . ,m, (22)

where uj(t), ujk and vjk are the j-th components of u(t), uk and vk, respectively.
The next theorem is the main result of the paper, which provides an error estimate of the

approximation scheme presented above.
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Theorem 2 Let assumptions (A1), (A2) be fulfilled and let (x̂, û) be the unique solution of prob-
lem (1)–(3) and p̂ be the corresponding adjoint function (so that (x̂, p̂, û) satisfies the Pontryagin
system (5)–(8)). Let σ be the controllability index of this solution.

Then there exists a number c such that for any natural number N and the corresponding
h = T/N the following statement is true. For any triple {(xk, pk, (uk, vk))} solving the discrete-
time system (18)–(21), the function u defined in (22) belongs to U and

max
k=0,...,N

(|xk − x̂(tk)|+ |pk − p̂(tk)|) + d#(u− û) ≤ c h2/σ. (23)

The proof will be given in the next section. Below we make some comments. As mentioned in the
introduction, the case σ = 1 is generic. More precisely, due to the assumption that ∇g(x) 6= 0
for every x ∈ R, we have that x̂(T ) belongs to the boundary, ∂R, of the convex and compact set
R. In [22] it was proved for stationary systems that on the controllability assumption in (A2)
the set of points in ∂R (which is an (n − 1)-dimensional continuous parametric manifold) for
which the controllability index σ (see Remark 1) is bigger than one forms an (n−2)-dimensional
continuous manifold Γ (it is even empty if n ≤ 2 and A and B are stationary). Thus the case
σ = 1 is “typical”. In this case the error estimation (23) is of second order. However, if x̂(T )
happens to belong to Γ, the order of the estimation drops down to 2/σ. In the next section
it will be shown by numerical experiments that this error estimation is still sharp, at least for
σ = 1, 2, 3, 4. We also mention that even if x̂(T ) ∈ ∂R \ Γ, the constant c in (23) may become
arbitrarily large if x̂(T ) is sufficiently close to Γ. This motivates our goal to study also the
“non-generic” case σ > 1. Notice that the number σ̄ (which is calculable) in assumption (A2)
provides an upper bound for σ, so that the estimation (23) has always a finite order. This order
is doubled (from 1/σ to 2/σ) compared with the approximations obtained by the Euler scheme
(see [14, 21]).

4 Proof of Theorem 2

We begin with some preliminaries. First, it is easy to calculate an explicit representation of the
normal cone NW (α, β), namely,

NW (α, β) =


∅ if (α, β) 6∈W

{α(ν, µ− ν)> : µ ≥ 0, ν ≥ 0} if α ∈ {−1, 1}
{µ (ζ + α,−2ζ)> : µ ≥ 0} if α ∈ (−1, 1) ∧ β ∈ {ϕ1(α), ϕ2(α)}

{0} if α ∈ (−1, 1) ∧ β ∈ (ϕ1(α), ϕ2(α))

where ζ = sgn(α− 2β), as in case (ii) of the construction of a continuous time control.
Second, we shall prove that the construction of the control u in the previous section implies

in the cases (i) and (ii) the equalities∫ tk+1

tk

u(s) ds = huk,

∫ tk+1

tk

(s− tk)u(s) ds = h2vk. (24)

In the case (i) we have ujk = α ∈ {−1, 1}, hence (according to (14) and (15)) vjk = α/2, and
uj(t) ≡ α on [tk, tk+1). Then∫ tk+1

tk

uj(s) ds =

∫ tk+1

tk

α ds = hα = hujk,

∫ tk+1

tk

(s− tk)uj(s) ds =
h2

2
α = h2vjk.
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In the case (ii) we have ujk = α, vjk = β = ϕi(α), where i equals 1 or 2, depending on whether
ζ = sgn(α− 2β) equals 1 or −1. Indeed, if β = ϕ1(α), then

ζ = sgn(α+ 2ϕ1(α)) = sgn(1− α2) = 1.

if β = ϕ2(α), then
ζ = sgn(α+ 2ϕ2(α)) = sgn(−1 + α2) = −1.

In both cases we obtain from (15) that

vjk =
1

4

(
ζ +

1

2
α+ ζα2

)
.

According to the definition of uj(t) on [tk, tk+1), we have∫ tk+1

tk

uj(s) ds =

∫ tk+hτ

tk

ζ ds−
∫ tk+1

tk+hτ
ζ ds = hζ(2τ − 1)

= hζ

(
2

1 + ζα

2
− 1

)
= hα = hujk, (25)

∫ tk+1

tk

(s− tk)uj(s) ds =

∫ tk+hτ

tk

(s− tk)ζ ds−
∫ tk+1

tk+hτ
(s− tk)ζ ds

=
2τ2 − 1

2
ζh2 =

[(
1 + ζα

2

)2

− 1

2

]
ζh2

=
1

4

(
ζ +

1

2
α+ ζα2

)
h2 = h2vjk.

Now we shall modify the control u in intervals [tk, tk+1) where at least one of its components
is defined as in point (iii) of the construction of u. For each such k and component j, we define

ũj(t) =


0 for t ∈ [tk, tk + hθ),
ζ for t ∈ [tk + hθ, tk + hτ),
−ζ for t ∈ [tk + hτ, tk+1),

(26)

where ζ = sgn(ujk − 2vjk) and 0 < θ < τ < 1 are chosen in such a way, that the equalities (24)
are fulfilled for ũ. For intervals [tk, tk+1) for which all components of u are defined as in points
(i) and (ii) we set ũ(t) = u(t). Existence and uniqueness of numbers θ and τ as above can be
proven as follows. For a fixed θ ∈ [0, 1] we have{(∫ 1

θ
u(s) ds,

∫ 1

θ
su(s) ds

)>
: u – measurable, u(t) ∈ [−1, 1]

}
(27)

=

∫ 1

θ

(
1
s

)
[−1, 1] ds =: Wθ.

By change of the variable s with t = (s− θ)/(1− θ) we obtain the relation

Wθ =

(
1− θ 0

0 (1− θ)2

)
W.
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Thus the boundary of Wθ continuously shrinks from ∂W to 0 when θ changes from 0 to 1. Since
(ujk, v

j
k) ∈ intW , there will be some θ > 0 such that (ujk, v

j
k) ∈ ∂Wθ. Then the choice of τ > θ

can be made exactly as in point (ii) of the construction of u, which results in (26).

The proof below is based on Theorem 1. Having embedded the sequence {(uk, vk)} in the set
U as ũ, we need to embed also the sequences {xk} and {pk} into the spaces W 1,1

x0 and W 1,1,
respectively. Using the hint given by the representation in (11) we define, for t ∈ [tk, tk+1),

x(t) :=

(
I + (t− tk)A(tk) +

(t− tk)2

2
(A(tk)

2 +A′(tk))

)
xk (28)

+(B(tk) + (t− tk)A(tk)B(tk))

∫ t

tk

ũ(s) ds+ Ck

∫ t

tk

(s− tk)ũ(s) ds.

Similarly, we define

p(t) :=

[
I + (tk+1 − t)A(tk)

> +
(tk+1 − t)2

2
A2(tk)

> +
h2 − (t− tk)2

2
A′(tk)

>
]
pk+1. (29)

We observe from (28), the definitions of Ak, Bk and Ck, and (24) that

lim
t→tk+1

x(t) = (I + hAk)xk +Bk

∫ tk+1

tk

u(s) ds+ Ck

∫ tk+1

tk

(s− tk)u(s) ds

= (I + hAk)xk + hBkuk + h2Ckvk = xk+1.

Thus x is continuous at tk+1, hence it is absolutely continuous. Since x(0) = x0, we obtain that
x ∈W 1,1

x0 . Similarly we obtain that p ∈W 1,1. Thus, (x, p, ũ) ∈ X .

In order to apply Theorem 1, we shall estimate the residual y = (ξ, π, ν, ρ) that (x, p, ũ) gives in
(5)–(8).

1. Residual in (5).
From (28) we have

ẋ(t) = [A(tk) + (t− tk)(A(tk)
2 +A′(tk))]xk +A(tk)B(tk)

∫ t

tk

ũ(s) ds

+[B(tk) + (t− tk)A(tk)B(tk)]ũ(t) + (t− tk)Ckũ(t)

= [A(t) + (t− tk)A(tk)
2 +O(t;h2)]xk +A(t)B(t)

∫ t

tk

ũ(s) ds+O(t;h2)

+[B(tk) + (t− tk)(A(tk)B(tk) + Ck)]ũ(t)

= A(t)

[
(I + (t− tk)A(tk))xk +B(t)

∫ t

tk

ũ(s) ds

]
+ [B(tk) + (t− tk)B′(tk)]ũ(t) +O(t;h2)

= A(t)(x(t) +O(t;h2)) +B(t)ũ(t) +O(t;h2),

where O(t;h2)/h2 (which may be different at different places) is uniformly bounded in t ∈ [0, T ]
and h ∈ [0, T ]. Thus, ‖ξ‖1 = O(h2).

2. Residual in (6) and (7).

10



Since pN (·) interpolates the sequence {pk}, we have pN (T ) = pN . Due to (20) and xN (T ) =
xN , we have that (xN , pN ) satisfy (7) exactly, that is, ν = 0.

To estimate the residual in (6), we differentiate the expression in (29). This gives

ṗN (t) = −
[
A(tk)

> + (tk+1 − t)A2(tk)
> + (t− tk)A′(tk)>

]
pk+1

= −A(t)>
[
I + (tk+1 − t)A(tk)

>
]
pk+1 +O(h2)

= −A(t)>pN (t) +O(t;h2).

Thus, ‖π‖∞ = O(h2).

3. Residual in (8).
First of all we shall prove for every k = 0, . . . , N − 1 the inclusion〈

pk+1, B
j
k + (t− tk)Cjk

〉
∈ −N[−1,1](ũ

j(t)), t ∈ [tk, tk+1), j = 1, . . . ,m. (30)

We consider separately the three cases in the definition of the mapping Fk.
Consider first the case (i), where ujk = α ∈ {−1, 1}. In this case ũ(t) = u(t) = α on [tk, tk+1).

According to (21) and the representation of NW , there exists µ ≥ 0 and ν ≥ 0 such that

〈pk+1, B
j
k〉 = αν, h〈pk+1, C

j
k〉 = α(µ− ν).

Hence,

〈pk+1, B
j
k〉+ (t− tk)〈pk+1, C

j
k〉 = α

[
ν +

µ− ν
h

(t− tk)
]

= α

[
µ
t− tk
h

+ ν

(
1− t− tk

h

)]
∈ NU (ũ(t)),

where the last inclusion holds since the expression in the brackets is non-negative. Thus (30) is
fulfilled.

Now, consider the case (ii) in the definition of the mapping Fk. Here ujk = α ∈ (−1, 1),

vjk = β ∈ {ϕ1(α), ϕ2(α)}, and

ũ(t) = u(t) =

{
ζ for t ∈ [tk, tk + hτ),
−ζ for t ∈ [tk + hτ, tk+1),

where ζ = sgn(α− 2β), τ = (1 + ζα)/2. According to (21) and the representation of NW , there
exists µ ≥ 0 such that

〈pk+1, B
j
k〉 = −µ(ζ + α), h〈pk+1, C

j
k〉 = 2µζ.

Then

〈pk+1, B
j
k〉+ (t− tk)〈pk+1, C

j
k〉 = µ

(
−ζ − α+ 2ζ

t− tk
h

)
.

Now, let t ∈ [tk, tk + hτ). Having in mind that τ = (1 + ζα)/2, we obtain that

2ζ
t− tk
h
≤ 2τ = 1 + ζα,

11



hence

ζ
(
〈pk+1, B

j
k〉+ (t− tk)〈pk+1, C

j
k〉
)

= ζµ

(
−ζ − α2ζ

t− tk
h

)
≤ µ (−1− αζ + 1 + α) = 0.

Since for t ∈ [tk, tk + hτ) the definition of uj(·) in (22) gives uj(t) = ζ, thus also ũj(t) = ζ,
the last inequality is equivalent to (30). For t ∈ [tk + hτ, tk+1) we have uj(t) = −ζ and (30) is
obtained by a similar calculation as above.

Now, consider the case (iii), where ujk ∈ (−1, 1) and vjk ∈ (ϕ1(ujk), ϕ2(ujk)). ThenNW (ujk, v
j
k) =

{0}, hence
〈pk+1, B

j
k〉 = 0, h〈pk+1, C

j
k〉 = 0. (31)

This immediately implies (30).
Thus (30) is proved in all cases. Then taking into account that

NU (u) = Πm
j=1N[−1,1](u

j),

we obtain
(pk+1)>(Bk + (t− tk)Ck) ∈ −N[−1,1](ũ(t)), t ∈ [tk, tk+1), (32)

On the other hand we represent for t ∈ [tk, tk+1)

p(t)>B(t) = (pk+1)>[I + (tk+1 − t)A(tk) +O(t;h2)] [B(tk) + (t− tk)B′(tk) +O(t;h2)]

= (pk+1)>(B(tk) + (tk+1 − t)A(tk)B(tk) + (t− tk)B′(tk)) +O(t;h2)

= (pk+1)>(B(tk) + hA(tk)B(tk) + (tk − t)A(tk)B(tk) + (t− tk)B′(tk)) +O(t;h2)

= (pk+1)>(Bk + (t− tk)Ck) +O(t;h2). (33)

Combining the above equality with (32), we obtain that

B>(t) p(t) +O(t;h2) ∈ −NU (ũ(t)), (34)

hence ‖ρ‖∞ = O(h2). Summarizing, we have obtained that ‖y‖ ≤ c1h
2, where c1 is independent

of N . Since c1h
2 ≤ c1T

2 := b, Theorem 1 implies existence of c such that for every natural N

‖x− x̂‖1,1 + ‖p− p̂‖1,∞ + ‖ũ− û‖1 ≤ c ‖y‖1/σ.

We know that x(tk) = xk and p(tk) = pk, hence

max
k=0,...,N

(|xk − x̂(tk)|+ |pk − p̂(tk)|) + ‖ũ− û‖1 ≤ c2 h
2/σ. (35)

Now we focus on the last term in the right-hand side. First, we have that û(t) ∈ {−1, 1} and
ũ(t) ∈ {−1, 0, 1}. This easily implies

d#(ũ− û) ≤
√
Tm ‖ũ− û‖1. (36)

Second, we notice that ũ(t) 6= u(t) for some t only if t belongs to some interval [tk, tk+1] where
some of the components of u, say uj , is constructed as in point (iii). In this case we have (31)
and from (33) we obtain existence of a constant c3 such that

|p(t)>Bj(t)| ≤ c3h
2.
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Denote l(t) = p(t)>Bj(t), ∆ = {t ∈ [0, T ] : |l(t)| ≤ c2h
2}. From the definition of Bi and

(6) we see that l(i)(t) = 〈p(t), Bj
i (t)〉. Then (A2) implies the existence of γ > 0 such that∑σ

i=0 |l(i)(t)| ≥ γ for every t ∈ [0, T ], thus l ∈ P σ(L, γ) for an appropriate L. Using Lemma 2
we obtain

d (meas ∆)σ+1 ≤
∫

∆
|l(t)| dt ≤ c3h

2 meas ∆,

hence

meas ∆ ≤
(
c2h

2

d

)1/σ

= c4h
2
σ .

Thus
d#(u− û) ≤ d#(ũ− û) +mc4h

2
σ .

Combining this with (35) and (36) we finish the proof.

5 Error estimate in case of inexact solutions of problem (18)–
(21)

In Section 3 we assume that the discrete-time system (18)–(21) is exactly solved. Having the
solution, we may obtain an approximation of the solution of the original problem for which
the estimation in Theorem 2 holds. In practice, finding a solution of this system requires
(excluding the case of a linear function g) application of an iterative procedure, resulting in
an approximate solution ({x̃k}, {p̃k}, {w̃k}). We measure the inexactness of this approximate
solution by the residual (ξ, π, ν, ρ) that ({x̃k}, {p̃k}, {w̃k}) produces in the left-hand side of
(18)–(21). Here each of the components of (ξ, π, ν, ρ) has corresponding dimension; for example,
ξ = (ξ0, . . . , ξN−1) ∈ RN×n, etc. Denote

ε := ‖ξ‖l1 + ‖π‖l∞ + |ν|+ ‖ρ‖l∞ = h
N−1∑
k=0

|ξk| + max
k=0,...,N−1

|πk| + |ν| + max
k=0,...,N−1

|ρk|.

Using the approximate solution ({x̃k}, {p̃k}, {w̃k}) of system (18)–(21), one can define
an approximation, ũ(·), of the optimal control û in the same way as described in the part
“Construction of a continuous-time control” of Section 3. Having in mind the proof of Theorem 2,
it is to expect that it remains true with ({xk}, {pk}) replaced with ({x̃k}, {p̃k}) and u replaced
with ũ, and with the following modification of the error estimation (23):

max
k=0,...,N

(|x̃k − x̂(tk)|+ |p̃k − p̂(tk)|) + d#(ũ− û) ≤ c (ε+ h2)1/σ. (37)

It is straightforward to prove this estimation if ξ = π = 0, since the relations (20) and (21) are
pointwise. Thus the residual ρ can be just added to the left-hand side of (34). Similarly for
(20). If there are inaccuracies in (18) and (19), the situation becomes more complicated, since
the embedding of ({x̃k}, {p̃k}) into W 1,1

x0 ×W
1,1 so that the residual in (5) and (6) is of order

ε+ h2 becomes problematic. However, this is not a principle trouble, as argued below.
Given the sequence {w̃k}, one can recalculate the solution of (18)–(20) for w̃k, obtaining new

sequences ({x̄k}, {p̄k}). Observe, that this calculation can be done exactly (neglecting round-off
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computational errors). Then the triplet ({x̄k}, {p̄k}, {w̃k}) satisfies relations (18)–(21) with a
residual (0, 0, 0, ρ̄), where

|ρ̄k| ≤ |ρk|+ |(Bk, hCk)>(p̄k+1 − p̃k+1)| ≤ |ρk|+ c0 |p̄k+1 − p̃k+1|,

with an appropriate constant c0. In a standard way one can estimate |x̄k − x̃k| ≤ c1‖ξ‖l1 , with
some constant c1. Then an estimation |p̄N − p̃N | ≤ c2(|ν| + ‖ξ‖l1) follows from (7), hence also
|p̄k − p̃k| ≤ c3(‖π‖l∞ + |ν|+ ‖ξ‖l1) for some constants c2 and c3.

Summarizing the above and using (37), now with ({x̄k}, {p̄k}, {w̃k}) and residual (0, 0, 0, ρ̄),
we obtain that

max
k=0,...,N

(|x̄k − x̂(tk)|+ |p̄k − p̂(tk)|) + d#(ũ− û) ≤ c (ε+ h2)1/σ (38)

with an appropriate constant c. Thus, in order to keep the overall error of order 2/σ, one has
to solve the discrete system (18)–(21) with accuracy (in terms of residual) h2.

6 Implementation of the approach and numerical experiments

In the implementation of the approximation scheme presented in Section 3 one needs to approxi-
mately solve the discrete-time problem (18)–(21) (see the previous section about error analysis).
This can be done in many ways, out of which we mention the shutting method (where mini-
mization of the residual in (20) is sought iteratively) and the direct approach, which is based
on the observation that system (18)–(21) represents a necessary optimality condition for the
discrete-time problem

min g(xN )

subject to equation (18) and the control constraints wk = (uk, vk) ∈Wm. This is a mathematical
programming problem to which various algorithms can be applied. We implement the gradient
projection method in the control space, since the gradient of the objective function can be easily
calculated using the adjoint equation (19) with the end-point condition (20) at each iteration.

We mention that solving problem (18)–(21) is not substantially more complicated than solv-
ing the one obtained by the Euler discretization (cf. [4, 14]), especially if the matrices Ak, Bk
and Ck are pre-calculated. Solving the variational inequality (21) with respect to wk is not
problematic, since it splits to m independent variational inequalities, each of them of the form
(ξ1, ξ2) ∈ NW (w). The solution w = (α, β) is given by the simple formula

(α, β) =


(−1,−1/2) if ξ1 ≤ 0 and ξ1 + ξ2 ≤ 0,
(1, 1/2) if ξ1 > 0 and ξ1 + ξ2 ≥ 0,
(−1− 2ξ1/ξ2, ϕ1(α)) if ξ1 > 0 and ξ1 + ξ2 < 0,
(1 + 2ξ1/ξ2, ϕ2(α)) if ξ1 ≤ 0 and ξ1 + ξ2 > 0.

The inexactness of the iterative procedure for solving system (18)–(21) influences the overall
error estimate as described in Section 5. In order to focus on the main result of this paper,
Theorem 2, in the examples below we consider linear functions g, where system (18)–(21) can
be exactly solved (modulo round-off computational errors).
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Example 1 (Control of a harmonic oscillator)
Consider the following problem on the interval [0, 3π]:

minimize x2(3π)
subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + u(t),
x(0) = 0,
u(t) ∈ [−1, 1].

The exact optimal control in this problem is known:

û(t) =

{
1 if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ,
−1 if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π] .

Here assumption (A2) is fulfilled with σ = 1, therefore Theorem 2 claims accuracy estimation
proportional to h2. In the three rows of Table 1 we present for various values of N : (i) the
absolute error of the numerically obtained control uN , eN := d](uN − û); (ii) the ratio eN/h

2,
which is claimed to be bounded; (iii) the ration eN/e2N , which is expected to be around 4
(although this is not formally implied by Theorem 2). The numerical results completely support
the theoretical prediction.

N 50 100 200 400 800 1600 3200 10000
eN 0.0780 0.0204 0.0052 0.0013 3.26 · 10−4 8.16 · 10−5 2.04 · 10−5 2.09 · 10−6

eN
h2 195.00 204.00 208.00 208.00 208.44 208.87 209.09 209.23
eN
e2N

3.8235 3.9231 4.000 3.9914 3.992 3.996 3.998

Table 1: Here eN is the error eN = d](uN−û) of the numerically obtained control uN in Example
1 for various values of N . The quantities eN/h

2 and eN/e2N are given, which, according to
Theorem 2, are expected to be bounded and approximately equal to 4, respectively.

Example 2 (A non-stationary harmonic oscillator)
The second example numerically checks Theorem 2 in the non-stationary case. Consider the

following problem on the time interval [0, 1]:

minimize x1(1)
subject to ẋ1(t) = a t x2(t) + tu(t),

ẋ2(t) = t u(t),
x(0) = 0,
u(t) ∈ [−1, 1],

where a = 32/(π2− 16). The constant a is chosen in such a way that the optimal control in this
problem is

û(t) =

{
1 if t ∈ [0, π/4) ,
−1 if t ∈ (π/4, 1] .

Here assumption (A2) is also fulfilled with σ = 1. The structure of Table 2 is as in the previous
example and the results are also consistent with Theorem 2.
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N 50 100 200 400 800 1600 3200

eN 3.3 · 10−4 7.7 · 10−5 1.8 · 10−5 4.9 · 10−6 1.3 · 10−6 2.6 · 10−7 8.2 · 10−8

eN
h2

0.8352 0.7713 0.7223 0.7896 0.8482 0.6703 0.8420
eN
e2N

4.3316 4.3030 3.6596 3.7245 5.0403 5.0190 3.200

Table 2: The structure of this table for Example 2 is the same as that of Table 1.

Example 3 (Cases with index σ > 1)
Here we present experiments with a family of problems with various controllability indexes

σ, given in [21]. Below, the time-interval is [0, 1], the dimension of the state is n = σ + 1 and
the dynamics depends on parameters sj :

minimize x1(1)
subject to ẋj(t) = sjxj+1(t) + u(t), j = 1, . . . , σ,

ẋσ+1(t) = u(t),
x(0) = 0,
u(t) ∈ [−1, 1].

For any natural number σ the values of the parameters sj are chosen in such a way that the
solution is

û(t) =

{
1 if t ∈ [0, 1/2) ,
−1 if t ∈ (1/2, 1] ,

if σ is odd, and û(t) ≡ −1 if σ is even. Moreover, the controllability index of the solution is σ.
This is achieved by choosing sj := −2(σ − j + 1), j = 1, . . . , σ (see [21]).

Our numerical experiments for σ = 2, 3, 4 are presented on Table 3. As asserted by Theo-
rem 2, the values eN/h

2/σ are bounded (as above eN = d](uN − û)).

N 50 100 200 400 800 1600 3200

σ = 2 eN 0.0300 0.0150 0.0075 0.0038 6.250 · 10−4 3.12 · 10−4 1.56 · 10−4

eN
h2/2

1.5000 1.5000 1.5000 1.5000 0.5000 0.5000 0.5000

σ = 3 eN 0.0607 0.0396 0.0242 0.0150 0.0093 0.0058 0.0037
eN
h2/3

0.8244 0.8538 0.8265 0.8143 0.8010 0.7976 0.7988

σ = 4 eN 0.0823 0.0525 0.0327 0.0210 0.0136 0.0086 0.0055
eN
h2/4

0.5818 0.5250 0.4625 0.4206 0.3836 0.3466 0.3119

Table 3: The errors eN := d](uN−û) and the ratios eN/h
2/σ for controllability indexes σ = 2, 3, 4

and various values of N .

7 Concluding remark

First, we point out that assumption (A2) may be too restrictive in the multi-control case, since
it requires the “controllability” for each of the control components separately. This, however,
is not necessary for the finiteness of the controllability index of a given triple (x, u, p) satisfying
the necessary optimality conditions (5)–(8), which is the property actually used in the proofs.
We assume (A2) in order to utilize the results in [20]; extending the error estimate in the present
paper for relaxed versions of (A2) would require further analysis in line with [20].

16



The applicability of our discretization scheme to problems with an integral term in the
objective functional is a subject of future research. It will also need elaboration of results in
[20].

In this paper, the feasible set U is box-like: a product of intervals. However, the Aumann
integral in (13) is constructively representable for some more general sets U (in that case the
integral is, in general, a non-decomposable subset of R2m). Our approach can be extended also
to such cases, but this requires a proper definition of the “continuous-time control” in Section 3.

Formally, the discretization approach presented in this paper can be extended to affine
(linear with respect to the control) problems, as in [23]. However, the theoretical ground in the
spirit of [20] for establishing sharp error estimates is still missing in the non-linear case and its
development is an important subject of further research.

Acknowledgment: The authors wish to thank Asen Dontchev for the valuable suggestions
concerning the exposition.
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