
 
 
 
 
 
  
 
 

 
 
 
 
 

Metrically Regular Differential  
Generalized Equations 

 
Radek Cibulka, Asen L. Dontchev, Mikhail Krastanov,  

Vladimir M. Veliov 
 

 
 
 
 
 
 

Research Report 2016-07 
September, 2016 

 
 
 
 
 
 
 
 
 
 
Operations Research and Control Systems 
Institute of Statistics and Mathematical Methods in Economics 
Vienna University of Technology 

Research Unit ORCOS 
Wiedner Hauptstraße 8 / E105-4  
1040 Vienna, Austria  
E-mail: orcos@tuwien.ac.at 

SWM 
ORCOS 



Metrically Regular Differential Generalized Equations

R. Cibulka1, A. L. Dontchev2, M. Krastanov3 and V. M. Veliov4

Abstract. In this paper we consider a control system coupled with a generalized
equation, which we call Differential Generalized Equation (DGE). This model covers
a large territory in control and optimization, such as differential variational inequal-
ities, control systems with constraints, as well as necessary optimality conditions in
optimal control. We study metric regularity and strong metric regularity of mappings
associated with DGE by focusing in particular on the interplay between the pointwise
versions of these properties and their infinite-dimensional counterparts. Metric regular-
ity of a control system subject to inequality state-control constraints is characterized.
A sufficient condition for local controllability of a nonlinear system is obtained via met-
ric regularity. Sufficient conditions for strong metric regularity in function spaces are
presented in terms of uniform pointwise strong metric regularity. A characterization
of the Lipschitz continuity of the control part of the solution mapping as a function
of time is established. Finally, a path-following procedure for a discretized DGE is
proposed for which an error estimate is derived.
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1 Introduction

In the paper we consider the following problem: given a positive real T , find a Lipschitz
continuous function x acting from [0, T ] to Rm and a measurable and essentially bounded
function u acting from [0, T ] to Rn such that

ẋ(t) = g(x(t), u(t)),(1)

f(x(t), x(0), x(T ), u(t)) + F (u(t)) 3 0(2)

for almost every (a.e.) t ∈ [0, T ], where ẋ is the derivative of x with respect to t, g :
Rm×Rn → Rm and f : Rm×Rm×Rm×Rn → Rd are functions, and F : Rn →→ Rd is a set-
valued mapping. We assume throughout that the functions g and f are twice continuously
differentiable everywhere (this assumption could be relaxed in most of the statements in
the paper but we keep it as a standing assumption for simplicity). In analogy with the
terminology used in control theory, we call the variable x(t) state and the variable u(t)
control value. The independent variable t is thought of as time which varies in a finite time
interval [0, T ] for a fixed T > 0. A function t 7→ u(t) is said to be control and a solution
t 7→ x(t) of (1) for some control u is said to be state trajectory. At this point we will not
make any assumptions for the mapping F . A complete description of the problem should
also include the function spaces where the functions x and u reside; we will choose such
spaces a bit later.

The model (1)–(2) can be extended to a greater generality by, e.g., adding a set-valued
mapping to the right ride of (1), making F depend on x(t) etc., but even in the present

form it already covers a vast territory. When f =

(
−x(0)
h(x, u)

)
and F ≡

(
x0

−W

)
, where

x0 ∈ Rm is a fixed initial point and W is a closed set in Rd−m, (1)–(2) describes a control
system with pointwise state-control constraints:

(3)

{
ẋ(t) = g(x(t), u(t)), x(0) = x0,
h(x(t), u(t)) ∈ W for a.e. t ∈ [0, T ].

Showing the existence of solutions of this problem is known as solving the problem of fea-
sibility in control. There are various extensions of problem (3) involving, e.g., inequality
constraints, pure state constrains, mixed constraints, etc. In Section 2 we will have a closer
look at this problem when W = Rd−m

+ = {v ∈ Rd−m
∣∣ vi ≥ 0, i = 1, . . . , d−m}.

When f(x, x(0), x(T ), u) =

 −x(0)
−x(T )
−u

 and F ≡

 x0

xT
U

, where U is a closed set in

Rn and xT ∈ Rm with 2m+n = d, (1)–(2) describes a constrained control system with fixed
initial and final states:

(4)

{
ẋ(t) = g(x(t), u(t)), u(t) ∈ U for a.e. t ∈ [0, T ],
x(0) = x0, x(T ) = xT .

The system (4) is said to be controllable at the point xT for time T when there exists a
neighborhood Ω of xT such that for each point y ∈ Ω there exists a feasible control such
that the corresponding state trajectory starting from x0 at time t = 0 reaches the target y
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at time t = T . In Section 2 we obtain a necessary and sufficient condition for controllability
of system (4).

Recall that, given a closed convex set C in a linear normed space X, the normal cone
mapping acting from X to its topological dual X∗ is

NC(x) =

{
{y ∈ X∗ | 〈y, v − x〉 ≤ 0 for all v ∈ C} if x ∈ C,
∅ otherwise,

where 〈·, ·〉 is the duality pairing. In the particular case when F = NC , the normal cone
mapping to a convex and closed set C ⊂ Rn, in which case d = n, and f is independent of
x(t), x(0) and x(T ), the inclusion (2) separates from (1) and the dependence on t becomes
superfluous; then (2) reduces to a finite-dimensional variational inequality:

(5) f(u) +NC(u) 3 0.

More generally, if f is of the form

(
−x(0)
h(x, u)

)
and F (u) =

(
x0

NC(u)

)
, then the system (1)–

(2) takes the form of a Differential Variational Inequality (DVI), a name apparently coined
in [3] and used there for a differential inclusion with a special structure. The importance of
DVIs as a general model in optimization was broadly discussed in the paper [19] by Pang
and Stewart. We will comment on related works towards the end of this Introduction and
also when dealing with specific problems.

When C = Rn the DVI becomes a Differential Algebraic Equation (DAE). An important
class of DAEs are those of index one in which, usually under assumptions allowing one to
employ the implicit function theorem, the algebraic equation determines the variable u as a
function of x and then, after substitution in the differential equation, the DAE reduces to
an initial value problem. In this paper we will not discuss DAEs. We only mention that
the property of strong metric regularity which we study in Section 3 of the paper, is closely
related to the index one property.

Another particular case of (1)–(2) comes from the first-order optimality conditions for
optimal control problems, e.g., for the following problem with control constraints:

(6)
minimize

[
ϕ(y(T )) +

∫ T
0
L(y(t), u(t))dt

]
subject to
ẏ(t) = g(y(t), u(t)), y(0) = y0, u(t) ∈ U for a.e. t ∈ [0, T ],

where, as in the model (1)–(2), the control u is essentially bounded and measurable with
values in the closed and convex set U , the state trajectory y is Lipschitz continuous, and the
functions ϕ,L and g are twice continuously differentiable everywhere. Under mild assump-
tions a first-order necessary condition for a weak minimum for problem (6) (Pontryagin’s
maximum principle) is described in terms of the Hamiltonian H(y, p, u) = L(y, u)+pTg(y, u)
as a Hamiltonian system coupled with a variational inequality:

(7)


ẏ(t) = DpH(y(t), p(t), u(t)), y(0) = y0,
ṗ(t) = −DyH(y(t), p(t), u(t)), p(T ) = −Dϕ(y(T )),
0 ∈ DuH(y(t), p(t), u(t)) +NU(u(t)),
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where the function p with values p(t) ∈ Rm, t ∈ [0, T ], is the so-called adjoint variable. To
translate (7) into the form (1)–(2), set x = (y, p),

f(x, x(0), x(T ), u) =

 −y(0)
p(T ) +Dϕ(y(T ))
DuH(y, p, u)

 , F (u) =

 y0

0
NU(u)

 .

We consider in more detail this problem in Section 4.
In this paper we assume that the controls are in L∞([0, T ],Rn), the space of essentially

bounded and measurable functions on [0, T ] with values in Rn. The state trajectories be-
long to W 1,∞([0, T ],Rm), the space of Lipschitz continuous functions on [0, T ] with values
in Rm. When the initial state is zero, x(0) = 0, then it is convenient to use the space
W 1,∞

0 ([0, T ],Rm) = {x ∈ W 1,∞([0, T ],Rm) | x(0) = 0}. We use the notation ‖ · ‖ for the
Euclidean norm, ‖ · ‖∞ for the L∞ norm and ‖ · ‖C for the sup (Chebyshev) norm. In this
paper we also employ the space C([0, T ],Rn) of continuous functions on [0, T ] equipped with
the ‖ · ‖C norm and the space C1([0, T ],Rn) of continuously differentiable functions on [0, T ]
equipped with the norm ‖x‖C1 = ‖ẋ‖C + ‖x‖C . In the sequel we often use the shorthand
notation L∞ instead of L∞([0, T ],Rn), etc.

In a seminal paper [21] S. M. Robinson called the variational inequality (5) a generalized
equation, but in subsequent publications this name has been attached to the more general
inclusion

(8) f(u) + F (u) 3 0,

where F is not necessarily a normal cone mapping. The model (8) turned out to be par-
ticularly useful for various models in optimization and control. More importantly, quite a
few results originally stated for variational inequalities, including the celebrated Robinson’s
implicit function theorem [21], remain valid in the case when the normal cone mapping NC

in (5) is replaced by a more general mapping. Specifically, Robinson’s implicit function
theorem holds for any mapping F in (a parameterized form of) (8), see [7, Chapter 2].

By analogy with the name “differential variational inequality” used by Pang and Steward
[19] for a system of a differential equation coupled with a variational inequality, we call the
model (1)–(2) a Differential Generalized Equation (DGE). Note that the DGE (1)–(2) can
be written as a generalized equation in function spaces. Indeed, denoting z = (x, u) ∈
W 1,∞ × L∞ and

e(z) =

(
ẋ− g(x, u)
f(x, x(0), x(T ), u)

)
, E(z) =

(
0
F (u)

)
,

we can rewrite (1)–(2) as a generalized equation of the form

(9) e(z) + E(z) 3 0.

In this paper we focus on the mapping defining the model (1)–(2) exploring in particular on
the interplay between its pointwise, for each t ∈ [0, T ], regularity properties and its regularity
properties in function spaces.

Suppose that (1)–(2) is a differential variational inequality, i.e., F = NU for a closed and
convex set U ⊂ Rn. Then, in order to obtain a variational inequality in function spaces, say
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for (x, u) ∈ W 1,∞ × L∞, the function t 7→ f(x(t), x(0), x(T ), u(t)) should be an element of
the dual to L∞ which is a rather complicated space; it is the space of all finitely additive
finite signed measures defined on [0, T ] which are absolutely continuous when equipped with
the total variation norm. This space does not fit our purposes, e.g., because the operators
of Nemytskii type that come naturally in our analysis are not Fréchet differentiable there
in general, unless some strong additional assumptions are satisfied. As we see later, Fréchet
differentiability is a very important element of our analysis. The problem can be easily
resolved if we introduce the mapping

L∞ 3 u 7→ F (u) = {w ∈ L∞ | w(t) ∈ NU(u(t)) for a.e. t ∈ [0, T ]};

then (9) becomes a generalized equation stated in function spaces which may not be a
variational inequality.

We use standard notations and terminology, mostly from the book [7]. In the paper X
and Y are Banach spaces with norms ‖·‖ unless stated otherwise. The distance from a point
x to a set A is d(x,A) = infy∈A ‖x−y‖. The closed ball centered at x with radius r is denoted
by IBr(x), the closed unit ball is IB. The closed, respectively convex, hull of a set Ω is denoted
by cl Ω, respectively co Ω. A (generally set-valued) mapping F : X →→ Y is associated with
its graph gphF =

{
(x, y) ∈ X × Y

∣∣ y ∈ F(x)
}

, its domain domF =
{
x ∈ X

∣∣ F(x) 6= ∅
}

and its range rgeF =
{
y ∈ Y

∣∣ ∃x ∈ X with y ∈ F(x)
}

. The inverse of F is defined
as y 7→ F−1(y) =

{
x ∈ X

∣∣ y ∈ F(x)
}

. The space of all linear bounded (single-valued)
mappings acting from X to Y equipped with the standard operator norm is denoted by
L(X, Y ).

In this paper we study two regularity properties of the mapping appearing in the de-
scription of (1)–(2): the metric regularity and the strong metric regularity that play a major
role in studying the effects of perturbations and approximations in the problem considered.
Recall that a mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ when ȳ ∈ F(x̄),
gphF is locally closed at (x̄, ȳ), meaning that there exists a neighborhood W of (x̄, ȳ) such
that the set gphF ∩W is closed in W , and there is a constant τ ≥ 0 together with neigh-
borhoods U of x̄ and V of ȳ such that

d
(
x,F−1(y)

)
≤ τd

(
y,F(x)

)
for every (x, y) ∈ U × V.

A linear and bounded mapping A : X → Y is metrically regular at any point if and only
if it is surjective; this comes from the Banach open mapping principle. We also deal with
the property of strong metric regularity. A mapping F : X →→ Y is said to be strongly
metrically regular at x̄ for ȳ if (x̄, ȳ) ∈ gphF and the inverse F−1 has a Lipschitz continuous
single-valued graphical localization around ȳ for x̄, meaning that there are a constant τ ≥ 0
and neighborhoods U of x̄ and V of ȳ such that the mapping V 3 y 7→ F−1(y)∩U is single-
valued and Lipschitz continuous on U with the constant τ . It turns out that a mapping F is
strongly metrically regular at x̄ for ȳ if and only if it is metrically regular at x̄ for ȳ and the
inverse F−1 has a graphical localization around ȳ for x̄ which is nowhere multivalued, see
[7, Proposition 3G.1]. In the sequel we use the observation that if F is strongly metrically
regular at x̄ for ȳ with a constant τ ≥ 0 and neighborhoods IBa(x̄) and IBb(ȳ) for some
positive a and b then for every positive constants a′ ≤ a and b′ ≤ b such that τb′ ≤ a′ the
mapping F is strongly metrically regular with the constant τ and neighborhoods IBa′(x̄) and
IBb′(ȳ). Indeed, in this case any y ∈ IBb′(ȳ) will be in the domain of F−1(·) ∩ IBa′(x̄).
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Metric regularity properties of mappings associated with variational inequalities have
been well studied in the literature. It turns out that for finite-dimensional variational in-
equalities over polyhedral convex sets, which is the case of complementarity problems for
example, metric regularity automatically implies local uniqueness, hence is equivalent to
strong metric regularity. Moreover, an algebraic criterion for (strong) metric regularity is
available, the so-called critical face condition, which is broadly covered in [7, Section 4.8].

An outline of the paper follows. In Section 2 the property of metric regularity of a
mapping associated with a control system subject to inequality state-control constraints is
characterized. We also give in that section a sufficient condition for local controllability of
a nonlinear control system via metric regularity of a certain mapping associated with the
system. Section 3 is devoted to a particular case of the DGE (1)–(2) where the initial state
x(0) is fixed and the final state x(T ) is free. For the mapping associated with that problem
we obtain conditions for strong metric regularity in function spaces based on pointwise strong
metric regularity. Related regularity properties of the control as a function of time t are also
analyzed. Then strong metric regularity in optimal control is discussed in Section 4. In the
final Section 5 we present a path-following procedure for a discretized DGE for which we
derive an error estimate.

At the end of this introduction we comment on related works. First, note that the
name “differential variational inequalities” has been used, along with other names such as
evolutionary variational inequalities, projected dynamical systems, sweeping processes, to
describes various kinds of differential inclusions, see [5] for a comparison of these models.
There is a bulk of literature dealing with DVIs along the lines of the basic theory of differ-
ential equations dealing with existence, uniqueness, asymptotic behavior, stability, etc, see
the recent papers [13], [15], [16], the monograph [23], and the references therein. A local
stability property of the solution of a differential complementary problem with analytic data
under strong metric regularity is established in [18]. In contrast to the existing literature
on the topic, in this paper we introduce the more general model of differential generalized
equations with the goal to study in depth the interplay between metric regularity properties
of associated mapping defined pointwisely (in time) in finite dimensions and also in function
spaces. Most notably, the DGE model covers optimal control problems which cannot be
described as variational inequalities, at least in a way convenient for constructive/numerical
treatment. On the other hand, we are aware of the fact that there are a number of prob-
lems, e.g., problems with state constraints, that remain to be dealt with in the framework
presented.

Time-stepping procedures for solving DVIs have been considered already in [19], see also
the more recent papers [6] and [22] dealing with various discretization schemes. In the last
section of this paper we apply an Euler-Newton path following procedure, which is different
from the time-stepping schemes considered in [19], [6] and [22], to a more general DGE, for
which we derive an error estimate.
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2 Metric Regularity

In this section we consider the DGE

ẋ(t) = g(x(t), u(t)), x(0) = x0,(10)

f(x(t), u(t)) + F (u(t)) 3 0 for a.e. t ∈ [0, T ],(11)

where, as for (1)–(2), x ∈ W 1,∞([0, T ],Rm) and u ∈ L∞([0, T ],Rn), f and g are twice smooth
and F is a set-valued mapping. We study the property of metric regularity of the following
mapping associated with (10)–(11) defined as acting from W 1,∞ × L∞ to the subsets of
L∞ × Rm × L∞ (we use here the shorthand notation for the spaces remembering that the
values of the functions in L∞ belong to Euclidean spaces with different dimensions):

(12) (x, u) 7→M(x, u) :=

 ẋ− g(x, u)
−x(0)
f(x, u)

+

 0
x0

F (u)

 .

Given a reference solution (x̄, ū) of (10)–(11), define ḡ(t) = g(x̄(t), ū(t)), f̄(t) = f(x̄(t), ū(t)),
A(t) = Dxg(x̄(t), ū(t)), B(t) = Dug(x̄(t), ū(t)), C(t) = Dxf(x̄(t), ū(t)), E(t) = Duf(x̄(t), ū(t)).
The assumptions on the functions g and f allow us to differentiate in W 1,∞×L∞ obtaining
the mapping

W 1,∞ × L∞ 3 (x, u) 7→

 ẋ− ḡ − A(x− x̄)−B(u− ū)
−x(0)
f̄ + C(x− x̄) + E(u− ū)

+

 0
x0

F (u)

 .

Substituting z = x−x̄ we obtained the following simplified description of the latter mapping:

(13) W 1,∞
0 × L∞ 3 (z, u) 7→ M(z, u) :=

 ż − Az −B(u− ū)
−z(0)
f̄ + Cz + E(u− ū)

+

 0
0
F (u)

 .

We recall two basic results that will be used further on. The first is the (extended)
Lyusternik-Graves theorem, see [7, Corollary 5F.5] stated there in finite dimensions but
its extension to Banach spaces requires a minor adjustment of notation only, see also [7,
Theorem 5E.6] regarding stability (persistence) of the property of metric regularity with
respect to linearization. From this theorem we immediately obtain the following result:

Theorem 2.1. The mapping M defined in (12) is metrically regular at (x̄, ū) for 0 if and
only if the mapping M defined in (13) is metrically regular at (0, ū) for 0.

The second result is the Robinson–Ursescu theorem stated, e.g., in [7, Theorem 5B.4],
which gives a characterization of metric regularity of mappings with convex and closed
graphs. Namely, given a mapping F : X →→ Y with closed convex graph and ȳ ∈ F(x̄), F is
metrically regular at x̄ for ȳ if and only if ȳ ∈ int rgeF .

The following theorem specializes Theorem 2.1 taking into account the linear differential
operator appearing in the definition of the mapping M. Let Φ be the fundamental matrix
solution of the linear equation ẋ = A(t)x, that is, d

dt
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I.
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Theorem 2.2. Consider the mapping K acting from L∞ to L∞ and defined for a.e. t ∈ [0, T ]
as

(14) (Ku)(t) := f̄(t) + C(t)

∫ t

0

Φ(t, τ)(B(τ)(u(τ)− ū(τ))dτ + E(t)(u(t)− ū(t)) + F (u(t)).

Then the mapping M is metrically regular at (x̄, ū) for 0 if and only if K is metrically regular
at ū for 0.

Proof. By Theorem 2.1, metric regularity of M at (x̄, ū) for 0 is equivalent to metric
regularity of the partial linearization M given in (13) at (0, ū) for 0. Using the funda-
mental matrix solution for the linear system, given r ∈ L∞ and a ∈ Rm, one has that
ż(t)−A(t)z(t) = r(t), z(0) = a if and only if z(t) = Φ(t, 0)a+

∫ t
0

Φ(t, τ)r(τ)dτ . This implies
that having (p, a, q) ∈M(z, u) is the same as having v(t) ∈ (Ku)(t) for

v(t) = q(t) + C(t)

(
Φ(t, 0)a−

∫ t

0

Φ(t, τ)p(τ)dτ

)
,

that is, we can replace the differential expression inM with the integral one and then drop
the variable z. Noting that local closedness of gphM is equivalent to that of K and that
‖v‖∞ is bounded by a quantity proportional to ‖(p, a, q)‖, we complete the proof.

A further specialization of the result in Theorem 2.1 is obtained when the mapping F
has a closed and convex graph. To simplify the presentation, we restrict our attention to
the case of inequality state-control constraints and the initial state fixed to zero, x(0) = 0.
Then the mapping F is a constant mapping equal to the set of all functions in L∞ with
values in Rd

+, which we denote by L∞+ . That is, we assume that (x̄, ū) ∈ W 1,∞
0 × L∞ and

study the following mapping associated with the feasibility problem (3) in the notation of
(10)-(11):

(15) W 1,∞
0 × L∞ 3 (x, u) 7→

(
ẋ− g(x, u)
f(x, u)

)
+

(
0
L∞+

)
.

Theorem 2.3. The mapping in (15) is metrically regular at (x̄, ū) for 0 if and only if there
exist a constant α > 0, and a function v ∈ L∞ such that, for a.e. t ∈ [0, T ] and for all
i = 1, 2, . . . , d,

(16) [f̄(t) + C(t)

∫ t

0

Φ(t, τ)B(τ)v(τ)dτ + E(t)v(t)]i ≤ −α.

Proof. By applying the Lyusternik-Graves theorem as in Theorem 2.1, metric regularity of
the mapping in (15) at (x̄, ū) for 0 is equivalent to metric regularity at (0, ū) for 0 of the
linearized mapping

(17) W 1,∞
0 × L∞ 3 (z, u) 7→

(
ż − Az −B(u− ū)
f̄ + Cz + E(u− ū)

)
+

(
0
L∞+

)
⊂ L∞.

The mapping (17) has closed and convex graph, hence we can apply Robinson-Ursescu the-
orem, which in this particular case says that its metric regularity at (0, ū) for 0 is equivalent
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to the existence of δ > 0 such that for any (r, q) ∈ L∞ with ‖(r, q)‖∞ ≤ δ the following
problem has a solution: find (z, u) ∈ W 1,∞

0 × L∞ such that

(18)
ż(t) = A(t)z(t) +B(t)(u(t)− ū(t)) + r(t),
f̄(t) + C(t)z(t) + E(t)(u(t)− ū(t)) + q(t) ≤ 0, for a.e. t ∈ [0, T ].

Taking r = 0, q = (α, . . . , α) with α > 0 such that ‖q‖∞ ≤ δ, and then v = u − ū, this
property of (18) implies condition (16) in the statement of the theorem.

Conversely, let v satisfy (16) for some α > 0, let y = (r, q) be given and let z be the
solution of the differential equation in (18) corresponding to the control u = v + ū and
z(0) = 0. Note that z = Q(Bv+ r) where Q is a bounded linear mapping from L∞ to W 1,∞

defined as (Qp)(t) =
∫ t

0
Φ(t, τ)p(τ)dτ for t ∈ [0, T ]. Hence, slightly abusing notation, for

ᾱ = (α, . . . , α) ∈ Rd,

f̄ + CQ(Bv + r) + Ev + q ≤ f̄ + CQ(Bv) + Ev + CQ(r) + q ≤ −ᾱ + CQ(r) + q ≤ 0

for (r, q) with a sufficiently small norm. This completes the proof.

An analogous argument can be applied to study the controllability problem (4) where we
set x(0) = 0 for simplicity. Consider the control system

(19) ẋ(t) = g(x(t), u(t)), x(0) = 0,

supplied with feasible controls u from the set

U = {u ∈ L∞([0, T ],Rn) | u(t) ∈ U for a.e. t ∈ [0, T ]},

where U is a convex and compact set in Rn. Given a target point xT ∈ Rm we add to the
constraints the condition to reach the target at time T : x(T ) = xT . To that problem we
associate the mapping

(20) W 1,∞
0 × L∞ 3 (x, u) 7→ D(x, u) :=

 ẋ− g(x, u)
−x(T )
−u

+

 0
xT
U

 ⊂ L∞ × Rm × L∞.

Theorem 2.4. The mapping D defined in (20) is metrically regular at (x̄, ū) for 0 if and
only if

(21) 0 ∈ int

∫ T

0

Φ(T, t)B(t)(U − ū(t))dt,

where Φ is the fundamental matrix solution of ẋ = Ax and the integral is in the sense of
Aumann.

Proof. Proceeding as in Theorem 2.1 we obtain that the mapping D is metrically regular at
(x̄, ū) for 0 as a mapping acting from W 1,∞

0 × L∞ to the subsets of L∞ × Rm × L∞ if and
only if its shifted linearization

(22) (z, u) 7→ D(z, u) :=

 ż − Az −B(u− ū)
−z(T )
−u

+

 0
0
U

 ⊂ L∞ × Rm × L∞
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is metrically regular at (0, ū) for 0 in the same spaces. As in Theorem 2.3, we apply Robinson-
Ursescu theorem according to which metric regularity of D at (0, ū) for 0 is equivalent to the
existence of δ > 0 such that for any (r, q) ∈ L∞ and y ∈ Rm with ‖r‖∞ + ‖q‖∞ + ‖y‖ ≤ δ
the following problem has a solution: find (z, u) ∈ W 1,∞

0 × L∞ such that

(23)
ż(t) = A(t)z(t) +B(t)(u(t)− ū(t)) + r(t),
z(T ) = y,
u(t) + q(t) ∈ U for a.e. t ∈ [0, T ].

If (23) has a solution for all such (r, y, q), then, in particular, taking r = 0 and q = 0 and using
the fundamental matrix solution Φ this leads to the property that for every y ∈ Rm with a
sufficiently small norm there exists u ∈ U such that if z(t) =

∫ t
0

Φ(t, τ)B(τ)(u(τ)− ū(τ))dτ
then z(T ) = y. This implies (21).

Conversely, let (21) hold. For any (r, y, q) ∈ L∞ × Rm × L∞ with ‖(r, y, q)‖ sufficiently
small, (21) implies the existence of w ∈ U such that∫ T

0

Φ(T, τ)B(τ)(w(τ)− ū(τ))dτ = y +

∫ T

0

Φ(T, τ)[B(τ)q(τ)− r(τ)]dτ.

Then system (23) is satisfied with u = w−q and z(t) =
∫ t

0
Φ(t, τ)[B(τ)(u(τ)−ū(τ))+r(τ)]dτ .

This completes the proof.

Recall that the reachable set RT at time T of system (19) is defined as

RT = {x(T ) | there exists u ∈ U such that x is a solution of (19) for u} .

Also recall that the control system (19) is said to be locally controllable at a point xT ∈ Rm

whenever xT ∈ intRT . Thus, condition (21) is the same as requiring local controllability
at 0 of the shifted linearized system ż(t) = A(t)z(t) + B(t)(u(t) − ū(t)), z(0) = 0, with
controls from the set U . This in turns implies, via the theorems of Lyusternik-Graves and
Robinson-Ursescu, metric regularity of the mapping (20). The latter property yields that for
each y in a neighborhood of xT there exists a feasible control u such that the corresponding
solution x of (19) satisfies x(T ) = y, that is, the nonlinear system is locally controllable.
This simple observation leads to various controllability conditions (cf., for example, [2], [14],
and [24]). The converse statement is false for a general nonlinear system: local controllability
is a weaker property than metric regularity unless the system is linear.

3 Strong metric regularity

In this section we continue to study problem (10)–(11) with the aim to give conditions
under which the associated mapping M defined in (12) is strongly metrically regular. In the
considerations so far, the reference solution (x̄, ū) of (10)–(11) was regarded as an element of
the space W 1,∞ × L∞, thus it is sufficient to require equations (10)–(11) be satisfied almost
everywhere. In the remaining part of the paper we consider ū as a function from [0, T ] to Rn,
which will be assumed measurable and bounded. In addition, we assume that the reference
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pair (x̄, ū) satisfies (10)–(11) for each t ∈ [0, T ]. This choice of a particular representative
of ū ∈ L∞ is needed because the conditions for strong metric regularity of the mapping M
and the additional results obtained in this and the next sections are based on assumptions
that are to be satisfied for each t ∈ [0, T ]. Clearly, considering a reference pair (x̄, ū) with
bounded ū and for which (10)–(11) hold everywhere is not a restriction by itself. Indeed,
every ū ∈ L∞ has a bounded representative. If F has a closed graph, then ū can always be
redefined on a set of measure zero so that (11) holds for each t. Then ˙̄x can be redefined on
a set of measure zero (this leaves x̄ unchanged) to satisfy (10) everywhere. What brings a
restriction, is that the main assumption below (condition (24)) is in a pointwise form and
has to be satisfied for each t.

To start, we state the following result which echoes Theorem 2.1 but now for strong
regularity, and follows from Robinson’s implicit function theorem, see [7, Theorems 5F.4]:

Theorem 3.1. The mapping M defined in (12) is strongly metrically regular at (x̄, ū) for 0
if and only if the mapping M defined in (13) is strongly metrically regular at (0, ū) for 0.

We utilize in further lines the following result, which is a part of [7, Theorem 5G.3]1:

Theorem 3.2. Let a, b, and κ be positive scalars such that F is strongly metrically regular
at x̄ for ȳ with neighborhoods IBa(x̄) and IBb(ȳ) and constant κ. Let µ > 0 be such that
κµ < 1 and let κ′ > κ/(1− κµ). Then for every positive α and β such that

α ≤ a/2, 2µα + 2β ≤ b and 2κ′β ≤ α

and for every function g : X → Y satisfying

‖g(x̄)‖ ≤ β and ‖g(x)− g(x′)‖ ≤ µ‖x− x′‖ for every x, x′ ∈ IB2α(x̄),

the mapping y 7→ (g + F )−1(y) ∩ IBα(x̄) is a Lipschitz continuous function on IBβ(ȳ) with
Lipschitz constant κ′.

We will use Theorem 3.2 to show that the strong metric regularity of the linearization
of (11) at each point of cl gph ū implies uniform strong metric regularity. For this we utilize
the following condition, which will play an important role in most of the further results:

(24)
for every z := (t, u) ∈ cl gph ū the mapping

Rn 3 v 7→ Wz(v) := f(x̄(t), u) +Duf(x̄(t), u)(v − u) + F (v)
is strongly metrically regular at u for 0.

Theorem 3.3. Suppose that condition (24) is satisfied. Then there are positive constants a,
b, and κ such that for each z = (t, u) ∈ cl gph ū the mapping

IBb(0) 3 y 7→ W−1
z (y) ∩ IBa(u)

is a Lipschitz continuous function with Lipschitz constant κ.

1See Errata and Addenda at https://sites.google.com/site/adontchev/
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Proof. Let Ω := cl gph ū. Since Ω is a compact subset of R × Rn (equipped with the box
topology), its canonical projection Ωu onto Rn is compact as well. This and the continuity
of x̄ imply the compactness of the set Λ := co x̄([0, T ]) × co Ωu. By the continuous differ-
entiability of f there exists M > 0 such that ‖Dxf(x, u)‖ ≤ M for each (x, u) ∈ Λ. By
the twice continuous differentiability of the function f , the mapping (x, u) 7→ Duf(x, u) is
locally Lipschitz continuous, and therefore Lipschitz on compact subsets of Rm×Rn; denote
by K > 0 its Lipschitz constant on Λ. Finally, let L > 0 be the Lipschitz constant of x̄ on
[0, T ].

Fix an arbitrary z̄ = (t̄, ū) ∈ Ω and let az̄, bz̄ and κz̄ be positive constants such that the
mapping

(25) IBbz̄(0) 3 y 7→ W−1
z̄ (y) ∩ IBaz̄(ū)

is a Lipschitz continuous function with Lipschitz constant κz̄. Let αz̄ := az̄/2 and pick
ρz̄ ∈ (0, αz̄/2) such that

(26) 4ρz̄(Kαz̄ +ML) < bz̄, 8MLκz̄ρz̄ < αz̄(1− 2Kκz̄ρz̄), and Kρz̄ < 2ML.

Finally, let βz̄ := 2MLρz̄ and µz̄ := 2Kρz̄. The second inequality in (26) implies that
κz̄µz̄ < 1.

Pick any z = (t, u) ∈
(
intIBρz̄(t̄)× intIBρz̄(ū)

)
∩ Ω. Define gz,z̄ : Rn → Rd as

gz,z̄(v) := f(x̄(t), u)− f(x̄(t̄), ū)−Duf(x̄(t), u)u+Duf(x̄(t̄), ū)ū

+
(
Duf(x̄(t), u)−Duf(x̄(t̄), ū)

)
v, v ∈ Rn.

Then Wz =Wz̄ + gz,z̄. Moreover, for any v1, v2 ∈ Rn we have

‖gz,z̄(v1)− gz,z̄(v2)‖ = ‖(Duf(x̄(t), u)−Duf(x̄(t̄), ū))(v1 − v2)‖ ≤ K(ρz̄ + ρz̄)‖v1 − v2‖
= µz̄‖v1 − v2‖.

Basic calculus gives us

gz,z̄(ū) = f(x̄(t), u)− f(x̄(t̄), ū) +Duf(x̄(t), u)(ū− u)

= f(x̄(t), u)− f(x̄(t), ū) +Duf(x̄(t), u)(ū− u) + f(x̄(t), ū)− f(x̄(t̄), ū)

= −
∫ 1

0

d

ds
f(x̄(t), u+ s(ū− u))ds+Duf(x̄(t), u)(ū− u)

+

∫ 1

0

d

ds
f(x̄(t̄) + s(x̄(t)− x̄(t̄)), ū)ds

=

∫ 1

0

[Duf(x̄(t), u)−Duf(x̄(t), u+ s(ū− u))] (ū− u)ds

+

∫ 1

0

Dxf(x̄(t̄) + s(x̄(t)− x̄(t̄)), ū)(x̄(t)− x̄(t̄))ds.

Hence, taking into account the last inequality in (26) we obtain

‖gz,z̄(ū)‖ < 1

2
Kρ2

z̄ +MLρz̄ <
(
ML+ML

)
ρz̄ = βz̄.
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Let κ′z̄ := 2κz̄/(1 − κz̄µz̄) > κz̄/(1 − κz̄µz̄). Applying Theorem 3.2 we conclude that the
mapping

(27) IBβz̄(0) 3 y 7→ W−1
z (y) ∩ IBαz̄(ū)

is a Lipschitz continuous function with Lipschitz constant κ′z̄. The second inequality in (26)
and the choice of ρz̄ imply that IBκ′z̄βz̄

(u) ⊂ IBαz̄/2(u) ⊂ IBαz̄(ū). Since for z ∈ Ω, we have
0 ∈ Wz(u), and for every y ∈ IBβz̄(0) it holds that

‖W−1
z (y) ∩ IBαz̄(ū)− u‖ ≤ κ′z̄‖y‖ ≤ κ′z̄βz̄,

we conclude that for y ∈ IBβz̄(0) the set W−1
z (y) ∩ IBκ′z̄βz̄

(u) is nonempty. Then for each
z = (t, u) ∈

(
intIBρz̄(t̄)× intIBρz̄(ū)

)
∩ Ω the mapping

(28) IBβz̄(0) 3 y 7→ W−1
z (y) ∩ IBαz̄/2(u)

is a Lipschitz continuous function with Lipschitz constant κ′z̄, that is, the size of neighbor-
hoods and the Lipschitz constant are independent of z in a neighborhood of z̄.

From the open covering ∪z̄=(t̄,ū)∈Ω

(
[intIBρz̄(t̄) × intIBρz̄(ū)] ∩ Ω

)
of Ω choose a finite

subcovering Oi := [intIBρz̄i
(t̄i) × intIBρz̄i

(ūi)] ∩ Ω, i = 1, 2, . . . , k. Let a = min{αz̄i/2 |
i = 1, . . . , k}, κ = max{κ′z̄i | i = 1, . . . , k}, and b = min{a/κ,min{βz̄i | i = 1, . . . , k}}.
For any z̄ = (t̄, ū) ∈ Ω there is i ∈ {1, . . . , k} such that z̄ ∈ Oi. Hence the mapping
IBb(0) 3 y 7→ W−1

z̄ (y) ∩ IBa(ū) is a Lipschitz continuous function with Lipschitz constant κ.
The proof is complete.

The following two results concern uniform strong metric regularity of two mappings
related to inclusion (11) along a solution trajectory of (10)–(11). For the linearization of
(11) along (x̄(t), ū(t)) we immediately obtain:

Corollary 3.4. Let condition (24) hold. Then the mapping

(29) Rn 3 v 7→ Gt(v) := f̄(t) + E(t)(v − ū(t)) + F (v)

is strongly metrically regular at ū(t) for 0 uniformly in t ∈ [0, T ], that is, there exist positive
constants a, b and κ such that for each t ∈ [0, T ] the mapping IBb(0) 3 y 7→ G−1

t (y)∩IBa(ū(t))
is a Lipschitz continuous function with Lipschitz constant κ.

Proof. It is sufficient to observe that condition (24) involves the closure of the graph of ū
while the strong metric regularity of Gt is defined for the graph of ū.

Theorem 3.5. Let condition (24) hold. Then the mapping

(30) Rn 3 v 7→ Gt(v) := f(x̄(t), v) + F (v)

is strongly metrically regular at ū(t) for 0 uniformly in t ∈ [0, T ].
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Proof. Corollary 3.4 yields that there exist positive constants a, b and κ such that for each
t ∈ [0, T ] the mapping IBb(0) 3 y 7→ G−1

t (y) ∩ IBa(ū(t)) is a Lipschitz continuous function
with Lipschitz constant κ. Since cl gph ū is a compact set, the function u 7→ Duf(x̄(t), u)
is Lipschitz continuous on IBa(ū(t)) uniformly in t ∈ [0, T ]; let L > 0 be the corresponding
Lipschitz constant.

Choose α > 0 such that

α ≤ a

2
, 2Lακ < 1, and 4Lα2 < b.

Fix any κ′ > κ/(1− 2Lακ) and find β > 0 such that

4Lα2 + 2β < b and 2κ′β < α.

Fix any t ∈ [0, T ] and define the function

Rn 3 v 7→ gt(v):=f(x̄(t), v)− f̄(t)− E(t)(v − ū(t)).

Then gt(ū(t)) = 0 and for any v, v′ ∈ IB2α(ū(t)) we have

‖gt(v)− gt(v′)‖ = ‖f(x̄(t), v)− f(x̄(t), v′)− E(t)(v − v′)‖

= ‖
∫ 1

0

(
Duf(x̄(t), v′ + s(v − v′))−Duf(x̄(t), ū(t))

)
(v − v′)ds‖

≤ L sup
s∈[0,1]

‖v′ + s(v − v′)− ū(t)‖‖v − v′‖ ≤ 2Lα‖v − v′‖.

We apply then Theorem 3.2 (with µ := 2Lα) obtaining that the mapping

IBβ(0) 3 y 7→ (gt + Gt)−1(y) ∩ IBα(ū(t)) = G−1
t (y) ∩ IBα(ū(t))

is a Lipschitz continuous function on IBβ(0) with Lipschitz constant κ′. It remains to note
that α, β and κ′ do not depend on t.

The uniform in t ∈ [0, T ] strong metric regularity at ū(t) for 0 of the mapping (30) implies
that the inclusion 0 ∈ Gt(u) determines a Lipschitz continuous function which is isolated
from other solutions. The isolatedness doesn’t have to be true, however, for the reference
control ū. To make things precise, we need the following definition.

Definition 3.6. Given a mapping T : [0, T ]× Rn → Rd, a function u : [0, T ] → Rn is said
to be an isolated solution of the inclusion

0 ∈ T (t, v) for all t ∈ [0, T ],

whenever there is an open set O ⊂ Rn+1 such that

(31) {(t, v) | t ∈ [0, T ] and 0 ∈ T (t, v)} ∩ O = gphu.

Our next result shows that under pointwise strong metric regularity of the mapping (30)
at ū(t) for 0 the isolatedness of ū is equivalent to Lipschitz continuity of ū as a function of t.
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Theorem 3.7. Suppose that for each t ∈ [0, T ] the mapping Gt in (30) is strongly metrically
regular at ū(t) for 0. Then the following assertions are equivalent:

(i) ū is an isolated solution of Gt(v) 3 0 for all t ∈ [0, T ];
(ii) ū is continuous on [0, T ];
(iii) ū is Lipschitz continuous on [0, T ].

Proof. Let us first show that (i) implies (ii). Choose an open set O ⊂ Rn+1 such that

(32) {(t, v) | t ∈ [0, T ] and 0 ∈ Gt(v)} ∩ O = gph ū.

Let t ∈ [0, T ] and let at, bt and λt be positive constants such that the mapping IBbt(0) 3
y 7→ G−1

t (y)∩ IBat(ū(t)) is a Lipschitz continuous function with Lipschitz constant λt. Since
x̄ is Lipschitz continuous, we have that the functions τ 7→ f(x̄(τ), v) and τ 7→ Duf(x̄(τ), v)
are Lipschitz continuous on [0, T ] uniformly in v in the compact set IBat(ū(t)); let Lt > 0
be a Lipschitz constant for both of them. Note that, due to the boundedness of ū and the
fact that at can always be assumed uniformly bounded (say ≤ 1), the Lipschitz constant
Lt = L can be chosen independent of t. Since this doesn’t change the proof, we keep Lt with
subscript t.

Pick αt ∈ (0, at/2) and then ρt ∈ (0, 1) such that (τ, v) ∈ O for every τ ∈ [t− ρt, t + ρt]
and v ∈ IBαt(ū(t)), and also

(33) λtLtρt < 1, Ltρtat + 2Ltρt ≤ bt, and 4λtLtρt ≤ αt(1− λtLtρt).

Let τ ∈ [t− ρt, t+ ρt] ∩ [0, T ] and define the mapping gτ,t : Rn → Rd as

gτ,t(v) := f(x̄(τ), v)− f(x̄(t), v), v ∈ Rn.

The function s 7→ f(x̄(s), ū(t)) is Lipschitz continuous on [0, T ], hence we have

(34) ‖gτ,t(ū(t))‖ ≤ Lt|τ − t| ≤ Ltρt.

Since the function s 7→ Duf(x̄(s), w) is Lipschitz continuous on [0, T ] uniformly in w from
IBat(ū(t)), for any v, v′ ∈ IBat(ū(t)) we have

‖gτ,t(v)− gτ,t(v′)‖ = ‖f(x̄(τ), v)− f(x̄(τ), v′)− f(x̄(t), v) + f(x̄(t), v′)‖

≤
∫ 1

0

‖Duf(x̄(τ), v′ + s(v − v′))−Duf(x̄(t), v′ + s(v − v′))‖ds ‖v′ − v‖

≤ Ltρt ‖v′ − v‖.

Let λ′t := 2λt/(1 − λtLtρt) and βt := Ltρt. Taking into account (33), we use Theorem 3.2
with (a, b, α, β, κ, κ′, µ) replaced by (at, bt, αt, βt, λt, λ

′
t, βt) obtaining that the mapping

IBβt(0) 3 y 7→ (gτ,t +Gt)
−1(y) ∩ IBαt(ū(t)) = G−1

τ (y) ∩ IBαt(ū(t))

is a Lipschitz continuous function on IBβt(0) with Lipschitz constant λ′t, where αt, βt and
λ′t defined in the preceding lines do not depend on τ . In particular, there exists exactly one
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point w ∈ IBαt(ū(t)) such that 0 ∈ gτ,t(w) + Gt(w)= Gτ (w). But then (τ, w) ∈ O which is
possible only if w = ū(τ), by (32). From (34) it follows that gτ,t(ū(t)) ∈ IBβt(0). Thus

ū(t) = (gτ,t +Gt)
−1(gτ,t(ū(t))) ∩ IBαt(ū(t)).

Since ū(τ) = (gτ,t +Gt)
−1(0) ∩ IBαt(ū(t)), using (34), we conclude that

‖ū(t)− ū(τ)‖ ≤ λ′t‖gτ,t(ū(t))‖ ≤ λ′tLt|t− τ |.

Summarizing, we proved that, given t ∈ [0, T ], the function ū is continuous (even calm) at
t. As t ∈ [0, T ] was arbitrary, (ii) is proved. Note that ū is actually uniformly continuous on
[0, T ].

To prove that (ii) implies (i), note that if ū is continuous then its graph is a compact
set. Given t ∈ [0, T ], according to Robinson’s implicit function theorem [7, Theorems 5F.4]
the mapping Gt is strongly metrically regular at ū(t) for 0 if and only if so is Gt. Hence
condition (24) holds with W(t,ū(t)) = Gt, which in turn, by Theorem 3.5, implies (i).

Clearly, (iii) implies (ii). To show the converse, we use an argument somewhat parallel
to the preceding step but with some important differences. Assume that t, at, bt, λt, and Lt
are as at the beginning of the proof. Pick αt ∈ (0, at/2) and then ρt ∈ (0, 1) such that

(35) 2λtLtρt < 1, 2Ltρtat + 4Ltρt ≤ bt, and 8λtLtρt ≤ αt(1− 2λtLtρt);

and also that

ū(τ) ∈ IBαt(ū(θ)) for each τ, θ ∈ [t− ρt, t+ ρt] ∩ [0, T ],

which is possible thanks to the uniform continuity of ū on [0, T ].
Let τ and θ belong to [t− ρt, t+ ρt] ∩ [0, T ] and define the mapping gτ,θ : Rn → Rd as

gτ,θ(v) := f(x̄(τ), v)− f(x̄(θ), v), v ∈ Rn.

Since ū(θ) ∈ IBαt(ū(t)) ⊂ IBat(ū(t)), the function s 7→ f(x̄(s), ū(θ)) is Lipschitz continuous
on [0, T ] with constant Lt, which implies that

(36) ‖gτ,θ(ū(θ))‖ ≤ Lt|τ − θ| ≤ 2Ltρt.

Since the function s 7→ Duf(x̄(s), w) is Lipschitz continuous on [0, T ] uniformly in w from
IBat(ū(t)), for any v, v′ ∈ IBat(ū(t)) we have

‖gτ,θ(v)− gτ,θ(v′)‖ = ‖f(x̄(τ), v)− f(x̄(τ), v′)− f(x̄(θ), v) + f(x̄(θ), v′)‖

≤
∫ 1

0

‖Duf(x̄(τ), v′ + s(v − v′))−Duf(x̄(θ), v′ + s(v − v′))‖ds ‖v′ − v‖

≤ 2Ltρt ‖v′ − v‖.

Let λ′t := 2λt/(1−2λtLtρt) and βt := 2Ltρt. Taking into account (35), we apply Theorem 3.2
with (a, b, α, β, κ, κ′, µ) replaced by (at, bt, αt, βt, λt, λ

′
t, βt) obtaining that the mapping

IBβt(0) 3 y 7→ (gτ,θ +Gθ)
−1(y) ∩ IBαt(ū(θ)) = G−1

τ (y) ∩ IBαt(ū(θ))
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is a Lipschitz continuous function on IBβt(0) with Lipschitz constant λ′t, where αt, βt and
λ′t defined in the preceding lines do not depend on τ and θ. Since ū(τ) ∈ IBαt(ū(θ)), we
have ū(τ) = G−1

τ (0) ∩ IBαt(ū(θ)). From (36) it follows that gτ,θ(ū(θ)) ∈ IBβt(0). Thus
ū(θ) = G−1

τ (gτ,θ(ū(θ))) ∩ IBαt(ū(θ)). Using (36), we conclude that

(37) ‖ū(θ)− ū(τ)‖ ≤ λ′t‖gτ,θ(ū(θ))‖ ≤ λ′tLt|θ − τ |.

Summarizing, we proved that, given t ∈ [0, T ], the function ū is locally Lipschitz continuous
around t. Since [0, T ] is compact, we obtain condition (iii).

Remark 3.8. Observe that in the last three theorems x̄ does not need to be a solution of
(10). It may be any Lipschitz continuous function from [0, T ] to Rm for which condition (24)
holds.

For a given positive constant c define the set

Sc := {(z, t, q) ∈ Rm+1+n | t ∈ [0, T ], ‖z‖ ≤ c, ‖q‖ ≤ c}.

Lemma 3.9. Suppose that condition (24) holds and let the constants a, b, and κ be as in
Corollary 3.4. Then for every c > 0 such that c(‖C‖C + 1) ≤ b the mapping

Sc 3 (z, t, q) 7→ u(z, t, q) := {u ∈ IBa(ū(t)) | q ∈ f̄(t) + C(t)z + E(t)(u− ū(t)) + F (u)}

is a function which is bounded and measurable in t for each (z, q) and Lipschitz continuous
with respect to (z, q) uniformly in t with Lipschitz constant λ := κ(‖C‖C + 1).

Proof. Choose c as required. Clearly, for each (z, t, q) ∈ Sc we have q − C(t)z ∈ IBb(0), and
hence, by definition,

u(z, t, q) = G−1
t (q − C(t)z) ∩ IBa(ū(t)).

By Robinson’s implicit function theorem [7, Theorem 2B.5] the function (y, t) 7→ G−1
t (y) is

Lipschitz continuous on [0, T ]× IBb(0). Therefore the function [0, T ] 3 t 7→ u(z, t, q) is mea-
surable and bounded for each {(z, q) | (z, t, q) ∈ Sc} as a composition of a Lipschitz function
with a measurable and bounded function; furthermore, for every (z1, t, q1), (z2, t, q2) ∈ Sc we
get

‖u(z1, t, q1)− u(z2, t, q2)‖ ≤ κ(‖q1 − q2‖+ ‖C(t)(z1 − z2)‖) ≤ λ(‖z1 − z2‖+ ‖q1 − q2‖).

Thus, u has the desired property.

Theorem 3.10. Consider the mapping M defined in (12) and suppose that condition (24)
is satisfied. Then M is strongly metrically regular at (x̄, ū) for 0. If, in addition, one of the
equivalent statements (i)–(iii) in Theorem 3.7 holds, then the mapping M , now considered
as acting from C1 ×C to the subsets of C ×Rm ×C, is strongly metrically regular at (x̄, ū)
for 0.
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Proof. Let the constants a, b and κ be as in Corollary 3.4, let λ be as in Lemma 3.9, and let

(38) ν0 := max{‖A‖C , ‖B‖C , ‖C‖C , ‖E‖C} and c ≤ b/(ν0 + 1).

From Lemma 3.9, for any (z, t, q) ∈ Sc the inclusion

(39) q ∈ f̄(t) + C(t)z + E(t)(u− ū(t)) + F (u)

has a unique solution u(z, t, q) ∈ IBa(ū(t)); moreover, the function Sc 3 (z, t, q) 7→ u(z, t, q)
is measurable in t for each (z, q) and Lipschitz continuous in (z, q) with Lipschitz constant
λ. Observe that u(0, t, 0) = ū(t) for all t ∈ [0, T ].

From Theorem 3.1 we know that the mapping M defined in (12) is strongly metrically
regular at (x̄, ū) for 0 if and only if the mapping M defined in (13) is strongly metrically
regular at (0, ū) for 0. Choose δ > 0 such that

(40) e(1+λ)ν0T ((ν0λ+ 1)T + 1)δ < c

and also q ∈ L∞([0, T ],Rd), y ∈ Rm and r ∈ L∞([0, T ],Rm) with ‖q‖∞ ≤ δ, ‖y‖ ≤ δ, ‖r‖∞ ≤
δ. Consider the initial value problem

(41) ż(t) = A(t)z(t) +B(t)(u(z(t), t, q(t))− ū(t)) + r(t) for a.e. t ∈ [0, T ], z(0) = y.

Since the right side of this differential equation is a Carathèodory function which is Lipschitz
continuous in z, and also the initial condition z(0) = y ∈ int IBc(0), by a standard argument
there is a maximal interval [0, τ ] ⊂ [0, T ] in which there exists a solution z of (41) on [0, τ ]
with values in IBc(0) and if τ < T then ‖z(τ)‖ = c. Let τ < T . But then for t ∈ [0, τ ] we
have

‖z(t)‖ ≤ ‖y‖+

∫ t

0

(
ν0‖z(s)‖+ ν0λ(δ + ‖z(s)‖) + δ

)
ds.

Hence, by applying the Grönwall lemma and using (40), we get

‖z(t)‖ ≤ e(1+λ)ν0T ((ν0λ+ 1)T + 1)δ < c,

which contradicts the assumption that τ < T . Hence τ = T and there exists a solution z
of problem (41) on the entire interval [0, T ] such that z(t) ∈ int IBc(0) for each t ∈ [0, T ].
Then for u(t) := u(z(t), t, q(t)), t ∈ [0, T ] we obtain that (u, z) := (u(t), z(t)) satisfies (39)
for almost every t ∈ [0, T ]. In conclusion, for each (r, q) : [0, T ] → Rm+d and y ∈ Rm with
‖r‖∞‖ ≤ δ, ‖q‖∞ ≤ δ and ‖y‖ ≤ δ there exists a unique solution (u, z) ∈ L∞ ×W 1,∞ of the
perturbed system

(42)
ż(t) = A(t)z(t) +B(t)(u(t)− ū(t)) + r(t), z(0) = y,
0 ∈ f̄(t) + C(t)z(t) + E(t)(u(t)− ū(t)) + q(t) + F (u(t)),

for a.e. t ∈ [0, T ], such that ‖u− ū‖∞ ≤ a and ‖z‖C ≤ c.
In the last part of the proof we show Lipschitz continuity of the solution (u, z) ∈ L∞ ×

W 1,∞ of the perturbed system (42) with respect to (r, y, q) ∈ L∞ × Rm × L∞, ‖r‖∞ ≤ δ,
‖y‖ ≤ δ, ‖q‖∞ ≤ δ. From now on through the end of the proof γ > 0 is a generic constant
which may change in different relations. Choose (ri, qi) ∈ L∞([0, T ],Rm+d) and yi ∈ Rm
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such that ‖ri‖∞ ≤ δ, ‖qi‖∞ ≤ δ, ‖yi‖ ≤ δ, and let (zi, ui), be the solutions of (42) associated
with (ri, yi, qi), i = 1, 2. Due to (38), for i = 1, 2 we have

−qi(t)− C(t)zi(t) ∈ IBb(0) for a.e. t ∈ [0, T ]

and hence
ui(t) = G−1

t (−qi(t)− C(t)zi(t)) ∩ IBa(ū(t)) for a.e. t ∈ [0, T ].

Therefore

(43) ‖u1(t)− u2(t)‖ ≤ κν0‖z1(t)− z2(t)‖+ κ‖q1(t)−q2(t)‖ for a.e. t ∈ [0, T ].

Plugging (43) into the integral form of the differential equation in (42), we get

‖z1(t)− z2(t)‖ ≤ ‖y1 − y2‖+

∫ t

0

(ν0‖z1(τ)− z2(τ)‖+ ν0‖u1(τ)− u2(τ)‖+ ‖r1(τ)− r2(τ)‖)dτ

≤ ‖y1 − y2‖+

∫ t

0

ν0(1 + κν0)‖z1(τ)− z2(τ)‖+ κν0‖q1(τ)−q2(τ)‖

+‖r1(τ)− r2(τ)‖)dτ for every t ∈ [0, T ].

The Grönwall lemma yields that

(44) ‖z1(t)− z2(t)‖ ≤ γ(‖y1 − y2‖+ ‖q1 − q2‖∞ + ‖r1 − r2‖∞) for every t ∈ [0, T ].

Then (44) substituted in (43) results in

(45) ‖u1 − u2‖∞ ≤ γ(‖y1 − y2‖+ ‖q1 − q2‖∞ + ‖r1 − r2‖∞).

Substituting (44) and (45) in the state equation gives us

‖ż1 − ż2‖∞ ≤ γ(‖y1 − y2‖+ ‖q1 − q2‖∞ + ‖r1 − r2‖∞).

This proves the first part of the theorem.
As for the second part, since in this case ū is Lipschitz continuous on [0, T ], it is sufficient

to repeat the above argument changing the L∞ norm to the C norm, obtaining

(46) ‖z1 − z2‖C ≤ γ(‖y1 − y2‖+ ‖q1 − q2‖C + ‖r1 − r2‖C).

Then, from (43) which is valid for all t ∈ [0, T ], we have

(47) ‖u1 − u2‖C ≤ γ(‖y1 − y2‖+ ‖q1 − q2‖C + ‖r1 − r2‖C).

Finally, utilizing (46) and (47) in the differential equation we obtain

‖ż1 − ż2‖C ≤ γ(‖y1 − y2‖+ ‖q1 − q2‖C + ‖r1 − r2‖C).

This ends the proof.
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Remark 3.11. Note that, by Robinson’s theorem, strong metric regularity in L∞ of the
mapping M implies Lipschitz dependence in L∞ of the control u with respect to perturba-
tions, which yields restrictions on the behavior of u as a function of time. Suppose that
the problem in hand is perturbed; then as a consequence of the strong metric regularity,
the control for the perturbed problem must be close to ū in L∞ which means that it has to
have jumps at the same instants of time as ū. If we assume a bit more, namely the local
isolatedness of ū, then the function ū becomes Lipschitz continuous. In the paper [10] we
considered a variational inequality of the form (2) without the state variable x and used a
condition which is stronger than (24), namely that each point of the graph of the associated
solution mapping is a point of strong metric regularity. In this case it turned out that there
are finitely many Lipschitz continuous functions whose graphs do not intersect each other
such that for each value of the parameter the set of values of the solution mapping is the
union of the values of these functions. Here we assume less, focusing on a particular solution
ū but still the strong metric regularity imposes restrictions on the way the solution depends
on perturbations.

4 Regularity in optimal control

Consider the optimal control problem (6) and the associated optimality system (7) with a
reference solution (ȳ, p̄, ū). We assume for simplicity that y0 = 0 and ϕ ≡ 0. In further lines
we use the notation A(t) = DpyH̄(t), B(t) = DpuH̄(t), Q(t) = DyyH̄(t), S(t) = DuyH̄(t),
R(t) = DuuH̄(t) for the corresponding derivatives of the Hamiltonian H, where the bar
means that the function is evaluated at (ȳ(t), p̄(t), ū(t)).

We start with a result regarding the Lipschitz continuity of the optimal control ū with
respect to time t, which is a consequence of Theorem 3.7 and also [7, Theorem 2C.2].

Theorem 4.1. Let ū be an optimal control for problem (6) which is measurable and bounded
on [0, T ] and also an isolated solution of the variational inequality

(48) 0 ∈ Ht(v) := DuH(ȳ(t), p̄(t), v) +NU(v),

where ȳ and p̄ are the associated optimal state and adjoint variables. Assume that for each
t ∈ [0, T ] the mapping Ht is strongly metrically regular at ū(t) for 0. Then the optimal
control ū is Lipschitz continuous in t on [0, T ].

In addition, let n = 1 and suppose that

(49) S(t)ḡ(t)−BT (t)DyH̄(t) 6= 0 for every t ∈ [0, T ].

Then the converse statement holds as well: if ū is Lipschitz continuous in [0, T ] then for
each t ∈ [0, T ] the mapping Ht is strongly metrically regular at ū(t) for 0.

Proof. The first part of the statement readily follows from Theorem 3.7 (see also Remark 3.8).
As for the second part, let ū be Lipschitz continuous on [0, T ]. Then for each t ∈ [0, T ], by
using the assumption that ū is an isolated solution, the mapping t 7→ {v | 0 ∈ Ht(v)} has a
single-valued localization around t for ū(t). This in turn implies strong metric regularity of
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the mapping Ht at ū(t) for 0 is provided that the so-called ample parameterization condition
is satisfied, see [7, Theorem 2C.2]. In the specific case of (7) this condition has the form:

(50) rank
[
S(t) ˙̄y(t) +BT (t) ˙̄p(t)

]
= n for every t ∈ [0, T ].

Since n = 1 and on the left side we have a single vector, condition (50) is equivalent to
condition (49).

Consider next the mapping appearing in the optimality system (7):

(51) W 1,∞
0 ×W 1,∞

T ×L∞ 3 (y, p, u) 7→ P (y, p, u) :=

 ẏ − g(y, u)
ṗ+DyH(y, p, u)
DuH(y, p, u)

+

 0
0
NU(u)

 .

where W 1,∞
T = {p ∈ W 1,∞ | p(T ) = 0}. The associated linearized mapping has the form

W 1,∞
0 ×W 1,∞

T × L∞ 3 (z, q, u) 7→ P(z, q, u) := ż − Az −B(u− ū)
q̇ +Qz + AT q + ST (u− ū)
Sz +BT q +R(u− ū)

+

 0
0
NU(u)

 .

As a final result of this section we adopt [8, Theorem 5] to present a sufficient condition for
strong metric regularity of the mapping P or, equivalently, the mapping P . In the statement
below L2 is the usual Lebesque space of measurable and square integrable functions while
W 1,2 is the space of functions x with both x and the derivative ẋ in L2.

Theorem 4.2. Suppose that ȳ ∈ W 1,∞
0 , p̄ ∈ W 1,∞

T , ū ∈ L∞ and consider the mapping P
defined in (51) acting from W 1,∞

0 × W 1,∞
T × L∞ to the subsets of L∞. Suppose that the

following condition is satisfied: there exists α > 0 such that

(52)

∫ T

0

(y(t)TQ(t)y(t) + u(t)TR(t)u(t) + 2y(t)TS(t)u(t))dt ≥ α

∫ T

0

‖u(t)‖2dt

whenever y ∈ W 1,2, y(0) = 0, u ∈ L2, ẏ = Ay+Bu, u = v−w for some v, w ∈ L2 with values
v(t), w(t) ∈ U for a.e. t ∈ [0, T ]. Then the mapping P in (51) is strongly metrically regular
at (ȳ, p̄, ū) for 0.

Proof. According to [8, Theorem 5], condition (52) implies that the linearized mapping P
is strongly metrically regular at (0, 0, ū) for 0. Then, by applying Robinson’s theorem as in
Theorem 3.1 we obtain the conclusion.

Note that the Remark 3.11 applies also here; having strong metric regularity in L∞

imposes restrictions on the way the optimal control behaves as a function of time. Also note
that the coercivity condition (52) implies pointwise coercivity, namely uTR(t)u ≥ α‖u‖2 for
all u ∈ U−U and a.e. t ∈ [0, T ]. But then, if we assume that the components of R, B, S are
continuous functions, we will end up with the reference control ū being Lipschitz continuous
on [0, T ].
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There is a wealth of literature on Lipschitz stability in optimal control, where strong
metric regularity plays a major role. Alt [1] was the first to employ strong metric regularity
in nonlinear optimal control; his results were broadly extended in [8]. In a series of papers,
see e.g. [17], Malanowski studied various optimal control problems including problems with
inequality state and control constraints. A characterization of strong metric regularity for
an optimal control problem with inequality control constraints is obtained in [11]. For recent
results in this direction, see [4], [12], [20] and the references therein.

5 Discrete approximations and path-following

In this section we study a time-stepping procedure for solving the DGE considered in Sec-
tion 3, namely

ẋ(t) = g(x(t), u(t)), x(0) = 0,(53)

f(x(t), u(t)) + F (u(t)) 3 0 for all t ∈ [0, T ].(54)

Let N be a natural number and let the interval [0, T ] be divided into N subintervals [tk, tk+1],
with t0 = 0, tN = T , and with equal stepsize h = T/N , that is, tk+1 = tk + h, k =
0, 1, . . . , N − 1. Consider the following iteration: starting from some (x0, u0), given (xk, uk)
at time tk obtain the next iterate (xk+1, uk+1) associated with time tk+1 as a solution of the
system

xk+1 = xk + hg(xk, uk),(55)

f(xk+1, uk) +Duf(xk+1, uk)(uk+1 − uk) + F (uk+1) 3 0,(56)

for k = 0, 1, . . . , N − 1. Note that (55) determines xk+1 by an Euler step from (xk, uk)
for the differential equation (53). Having xk+1, the control iterate uk+1 is obtained as a
solution of the linear generalized equation (56) which is a Newton-type step for the discretized
generalized equation (54). The iteration (55)–(56) resembles an Euler-Newton path-following
(time-stepping) procedure aiming at obtaining a sequence {(xk, uk)}Nk=0 which represents a
discrete approximation of a solution to the original DGE (53)–(54). The following theorem
gives conditions under which the iteration (55)–(56) produces an approximate solution which
is at distance O(h) from the reference solution (x̄, ū).

Theorem 5.1. Consider the DGE (53)–(54) with a reference solution (x̄, ū) at which condi-
tion (24) holds together with one of the equivalent statements (i)–(iii) in Theorem 11. Then
there exist a natural number N0 and positive reals d̄, α and c̄ such that for each N ≥ N0, if
the starting point is chosen to satisfy

(57) x0 = 0 and ‖u0 − ū(0)‖ ≤ d̄h,

then the iteration (55)–(56) generates a sequence {(xk, uk)}Nk=0 such that

(xk, uk) ∈ IBα((x̄(tk), ū(tk))), k = 1, . . . , N ;

in addition, there is no other sequence in IBα((x̄(tk), ū(tk))) generated by the method. More-
over, the following error estimates hold:

(58) max
0≤k≤N

‖uk − ū(tk)‖ ≤ d̄(c̄+ 1)h and max
0≤k≤N

‖xk − x̄(tk)‖ ≤ c̄h.
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Proof. According to Theorem 9 the mapping v 7→ Gt(v) = f(x̄(t), v) + F (v) is strongly
metrically regular at ū(t) for 0 uniformly in t ∈ [0, T ]; that is, there exist positive reals
a, b and κ such that for each t ∈ [0, T ] the mapping IBb(0) 7→ G−1

t (y) ∩ IBa(ū(t)) is a
Lipschitz continuous function with Lipschitz constant κ. Furthermore, from the assumed
twice continuous differentiability of g and f there exists ν1 > 0 such that for every t ∈ [0, T ],
every x ∈ IBa(x̄(t)), and every u ∈ IBa(ū(t)) we have

(59) ‖f(x, u)− f(x̄(t), ū(t))‖ ≤ ν1(‖x− x̄(t)‖+ ‖u− ū(t)‖),

(60) ‖g(x, u)− g(x̄(t), ū(t))‖ ≤ ν1(‖x− x̄(t)‖+ ‖u− ū(t)‖);

and also that, for every t ∈ [0, T ], every x, x′ ∈ IBa(x̄(t)) and every u, u′ ∈ IBa(ū(t)),

(61) ‖Duf(x, u)−Duf(x′, u′)‖ ≤ ν1(‖x− x′‖+ ‖u− u′‖).

By Theorem 11, the function t → (x̄(t), ū(t)) is Lipschitz continuous on [0, T ], hence there
exists ν2 > 0 such that

‖x̄(s)− x̄(t)‖+ ‖ū(s)− ū(t)‖ ≤ ν2|t− s| for all t, s ∈ [0, T ].

Let

(62) κ′ := 4κ, µ := 1/(2κ), and ν := max{1, ν1, ν2, κ
′},

and then set

(63) α := min{1, a/2, 1/(16κν), 4bκ/5} and β := 2α2ν.

In the next step of the proof we prove the following claim:

(64)

Given t ∈ [0, T ], x ∈ IBα2(x̄(t)), and u ∈ IBα(ū(t))
there is a unique ũ ∈ IBα(ū(t)) such that
f(x, u) +Duf(x, u)(ũ− u) + F (ũ) 3 0

and ‖ũ− ū(t)‖ ≤ ν2(‖u− ū(t)‖2 + ‖x− x̄(t)‖).

Fix t, x and u as required and consider the function

Rn 3 v 7→ Ψ(v) = Ψt,x,u(v) := f(x, u) +Duf(x, u)(v − u)− f(x̄(t), v) ∈ Rd.

We utilize Theorem 3.2 with (x̄, ȳ, F, g) replaced by (ū(t), 0, Gt,Ψ). By (62), κµ < 1 and
κ′ > 2κ = κ/(1− µκ). From (62) and (63) we get

α ≤ a/2, 2κ′β = (16κνα)α ≤ α,

and

2µα + 2β =
α

κ
+ (4αν)α ≤ α

κ
+

α

4κ
=

5α

4κ
≤ b.

To apply Theorem 3.2 we need to show that

(65) ‖Ψ(ū(t))‖ < β and ‖Ψ(v)−Ψ(v′)‖ ≤ µ‖v − v′‖ whenever v, v′ ∈ IB2α(ū(t)).
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Noting that x ∈ IBα2(x̄(t)) ⊂ IBa(x̄(t)) and u + s(ū(t)− u) ∈ IBα(ū(t)) ⊂ IBa(ū(t)) for any
s ∈ [0, 1], using (59) and (61) we obtain
(66)
‖Ψ(ū(t))‖ = ‖f(x, u) +Duf(x, u)(ū(t)− u)− f(x̄(t), ū(t))‖

≤ ‖f(x, u)− f(x, ū(t)) +Duf(x, u)(ū(t)− u)‖
+‖f(x, ū(t))− f(x̄(t), ū(t))‖

≤
∫ 1

0
‖[Duf(x, u)−Duf(x, u+ s(ū(t)− u))](ū(t)− u)‖ds+ ν‖x− x̄(t)‖

≤ ν‖ū(t)− u‖2
∫ 1

0
sds + ν‖x− x̄(t)‖.

Consequently, ‖Ψ(ū(t))‖ ≤ 1
2
να2 + να2 < 2να2 = β, which is the first inequality in (65).

Pick any v, v′ ∈ IB2α(ū(t)) ⊂ IBa(ū(t)). Then v′ + s(v − v′) ∈ IB2α(ū(t)) for every s ∈ [0, 1]
and sups∈[0,1] ‖u− [v′ + s(v − v′)]‖ ≤ 3α. Therefore, from (61),

‖Ψ(v)−Ψ(v′)‖ = ‖Duf(x, u)(v − v′)− [f(x̄(t), v)− f(x̄(t), v′)]‖

≤
∫ 1

0

‖[Duf(x, u)−Duf(x̄(t), v′ + s(v − v′))](v − v′)‖ds

≤ ν(‖x− x̄(t)‖+ sup
s∈[0,1]

‖u− v′ − s(v − v′)‖) ‖v − v′‖

≤ ν(α2 + 3α) ‖v − v′‖ ≤ 4αν‖v − v′‖.

Since 4αν ≤ 1/(4κ) < µ by (63), the second inequality in (65) follows. Then Theorem 3.2
implies that the mapping

(67) IBβ(0) 3 y 7→ (f(x̄(t), ·) + Ψ + F )−1(y) ∩ IBα(ū(t))

is a Lipschitz continuous function with Lipschitz constant κ′ on IBβ(0). In particular, there
is a unique solution ũ in IBα(ū(t)) of

f(x̄(t), v) + Ψ(v) + F (v) 3 0.

Taking into account that ū(t) is the unique solution in IBα(ū(t)) of

f(x̄(t), v) + Ψ(v) + F (v) 3 Ψ(ū(t)),

and the first inequality in (65), we conclude that

‖ũ− ū(t)‖ ≤ κ′‖Ψ(ū(t))‖.

Using (66) and the fact that κ′ ≤ ν, we complete the proof of (64).
Set

(68) d̄ := ν2, λ := max{ν(1 + d̄), ν(ν + d̄)}, and c̄ := TλeλT .

Next, choose an integer N0 > T so that

(69) T c̄ ≤ α2N0 and T
(
d̄(2 + c̄)

)2 ≤ αN0.
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Let N ≥ N0 and let h := T/N . Then we have h < 1 and from (69),

(70) c̄h ≤ α2 and
(
d̄(2 + c̄)

)2
h ≤ α.

Let ci := λiheλih, i = 0, 1, . . . , N . We will show that the iteration (55)–(56) is sure to
generate points {(xk, uk)}Nk=0 that satisfy the following inequalities:

(71) ‖xi − x̄(ti)‖ ≤ cih and ‖ui − ū(ti)‖ ≤ d̄(1 + ci)h for i = 0, 1, . . . , N.

Let (x0, u0) satisfy (57); since c0 = 0, (71) hold for i = 0. Now assume that for some
k < N the point (xk, uk) satisfies (71) for i = k. We will find a point (xk+1, uk+1) generated
by (55)–(56) such that inequalities (71) hold for i = k + 1. Define xk+1 by (55). Clearly,
c̄ = max0≤i≤N ci. By (70) and (63), we have xk ∈ IBa(x̄(tk)) and uk ∈ IBa(ū(tk)). Since
ν ≥ 1, the second inequality in (70) implies that

νh ≤ ν4h = d̄2h <
(
d̄(2 + c̄)

)2
h ≤ α ≤ a/2.

Therefore x̄(s) ∈ IBa(x̄(tk)) and ū(s) ∈ IBa(ū(tk)) for all s ∈ [tk, tk+1]. Then, using (60),

‖xk+1 − x̄(tk+1)‖ =

∥∥∥∥xk + hg(xk, uk)− x̄(tk)−
∫ tk+1

tk

g(x̄(s), ū(s))ds

∥∥∥∥
≤ ‖xk − x̄(tk)‖+

∥∥∥∥∫ tk+1

tk

(g(x̄(s), ū(s))− g(xk, uk))ds

∥∥∥∥
≤ ckh+

∫ tk+1

tk

(‖g(x̄(s), ū(s))− g(x̄(tk), ū(tk))‖+ ‖g(x̄(tk), ū(tk))− g(xk, uk)‖) ds

≤ ckh+

∫ tk+1

tk

ν(‖x̄(s)− x̄(tk)‖+ ‖ū(s)− ū(tk)‖+ ‖x̄(tk)− xk‖+ ‖ū(tk)− uk‖)ds

≤ ckh+ ν

∫ tk+1

tk

(2ν(s− tk) + ckh+ d̄h(ck + 1))ds

= ckh+ νh2(ck + d̄(ck + 1)) + ν2h2 = ckh(1 + ν(1 + d̄)h) + h2ν(d̄+ ν)

≤ ckh(1 + λh) + h2λ = h2λkekhλ(1 + λh) + h2λ

≤ h2λke(k+1)hλ + h2λe(k+1)hλ = h2λ(k + 1)e(k+1)hλ = ck+1h.

In particular, from the first inequality in (70), we get

‖xk+1 − x̄(tk+1)‖ ≤ c̄h ≤ α2.

Since ν ≥ 1, we also have

(72)
‖uk − ū(tk+1)‖ ≤ ‖uk − ū(tk)‖+ ‖ū(tk)− ū(tk+1)‖ ≤ d̄(1 + ck)h+ νh

< d̄(2 + c̄)h < (d̄(2 + c̄))2h ≤ α.

Using (64) with (t, x, u) := (tk+1, xk+1, uk) we obtain that there is uk+1 which is unique in
IBα(ū(tk+1)) and satisfies (56). Combining the estimate from (64), (72), and the second
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inequality in (70), we get that

‖uk+1 − ū(tk+1)‖ ≤ ν2(‖uk − ū(tk+1)‖2 + ‖xk+1 − x̄(tk+1)‖)
≤ ν2

(
(d̄(1 + ck)h+ νh)2 + ck+1h

)
= ν2h

(
ck+1 + (d̄(1 + ck) + ν)2h

)
< ν2h

(
ck+1 + (d̄(2 + c̄))2h

)
≤ ν2h(ck+1 + α) ≤ d̄h(ck+1 + 1).

The induction step is complete and so is the proof.

The obtained error estimate of order O(h) is sharp in the sense that the optimal control ū
is at most a Lipschitz continuous function of time in the presence of constraints. If however, ū
has better smoothness properties, in line with the analysis in [9], by applying a Runge-Kutta
scheme to the differential equation (53) and an adjusted Newton iteration to the generalized
equation (54) would lead to a higher-order accuracy. This topic is left for future research.
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