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Abstract. The objective of the paper is to study how wholesale price and revenue sharing contracts 

affect operations and marketing decisions in a supply chain under different dynamic informational 

structures. We suggest a differential game model of a supply chain consisting of a manufacturer and a 

single retailer that agree on the contract parameters at the outset of the game. The model includes key 

operational and marketing activities related to a single product in the supply chain. The manufacturer 

sets a production rate and the rate of advertising efforts while the retailer chooses a purchase rate and 

the consumer price. The state of the game is summarized in the firms’ backlogs and the manufacturer’s 

advertising goodwill. Depending on whether the supply chain members have and share state 

information, they may either make decisions contingent on the current state of the game (feedback 

Nash strategy), or precommit to a plan of action during the whole game (open-loop Nash strategy). 

Given a contract type, the impact of the availability of information regarding the state of the game on 

the firms’ decisions and payoffs is investigated. It is shown that double marginalization can be better 

mitigated if the supply chain members adopt a contingent strategy under a wholesale price contract 

and a commitment strategy under a revenue sharing contract. 

Keywords. Supply chain management, Wholesale price contract, Revenue sharing contract, 

Information structure, Operations, Marketing. 

1. Introduction 

Operations management and marketing are critical functions for not only individual 

manufacturing firms but also, with increased global competition, entire supply chains. Also, 

the two functions are strategically interlinked, since marketing’s role is to create and manage 

demand, and operations is responsible for efficiently meeting the demand. Conflicts between 

marketing and operations management arise, since the two functions have differing 

objectives, marketing to enhance demand, and operations to minimize manufacturing and 

inventory/backlog costs, so management of the interface between the areas is critical. The 

importance of effective management of the interface has been recognized for some time 

(Malholtra and Sharma, 2002), and a review of models of the interface is provided by Tang 

(2010). 

An important research area of operations management and marketing literature dealing with 

supply chains/marketing channels is the study of inefficiencies caused by lack of 

coordination. A classic example is the double marginalization problem that occurs when a 

retailer pays a supplier a fixed transfer price per unit ordered. The mark-ups applied by both 
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chain members lead to lower ordering quantities, higher consumer prices, and smaller overall 

profits than if decisions were centralized (Spengler, 1950). To avoid this inefficiency, 

decision making in the supply chain must be coordinated. This often entails using an 

appropriate contract to regulate the flow of payments between members of the supply chain.  

The coordination problem has been addressed in a sizable body of literature in operations 

management as well as marketing. This literature has, however, tended to disregard the 

interactions between the two functional areas: “Operations management has a wealth of 

literature that deals with the inventory aspects of the supply chain, but ignores marketing 

expenses… At the same time, the marketing literature tends to deal with customer acquisition 

costs in the form of advertising […], but ignores operational issues” (Simchi-Levi et al., 

2004, p. 612).  

The current research focuses on two types of contracts, the wholesale price contract (WPC) 

and the revenue sharing contract (RSC). A RSC lowers the transfer price to the retailer’s 

benefit. The retailer then pays the supplier a part of its revenue. The relative merits of the two 

contracts in static settings are well known (e.g., Cachon and Lariviere, 2005). Mortimer 

(2008) provides an empirical study of WPC and RSC in the video rental industry. Revenue 

sharing contracts have been used in other industries, for example, in telecommunication 

services (Qin, 2008; Chakravarty and Werner, 2011) and cell phone manufacturing (Linh and 

Hong, 2009).  

An operations management approach to coordination with WPC and RSC has often employed 

a static setup (see, e.g., Lariviere, 1999; Cachon, 2003). Less is known, however, about how 

the two contracts work in a supply chain involving operational and marketing functional areas 

with repeated interaction. Thus, a primary aim of the paper is to study the relative merits of 

the two contracts in a game setting where a retailer and its supplier first agree on a contractual 

scheme and then make operations and marketing decisions over time in the supply chain. 

In this setting, firms’ strategy depends on the extent to which chain members have, and share, 

state information (Başar and Olsder, 1999; Dockner et al., 2000). If a chain member has no 

such information, it cannot condition its actions on the state vector, and the firm’s actions can 

be based only on time. Although decisions are dynamically optimized, strategic interaction 

takes place at the initial instant of time only; each player makes a commitment to execute a 

predetermined plan of action. This is known as an open-loop strategy. Such strategy applies in 

inventory management when there exists information delays (Bensoussan et al., 2007), 

inaccurate records (DeHoratius and Raman, 2008), or hidden information. A good example of 

the latter is when a retailer is unwilling to reveal consumer sales data to its supplier. 
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Conversely, if chain members have, and share, state information, a firm’s actions can also be 

based on the current state. This is known as a feedback strategy. Strategic interaction takes 

place throughout the game because players make decisions that are contingent upon the 

current state and time. In a supply chain, this situation is plausible whenever mutual trust is 

prevalent. 

Both open-loop and feedback strategies have been applied in the supply chain (e.g., Gaimon, 

1998; Kogan and Tapiero, 2007) and marketing channel (e.g., Jørgensen and Zaccour, 2004) 

literature dealing with intertemporal decisions.  

A major aim of the paper is to compare the performance of different informational structures 

under a wholesale price and a revenue sharing contract, respectively. For example, given a 

contract, a comparison will reveal the relative merits of commitment and contingent strategies 

and quantify how availability of information on the current state of key operational and 

marketing variables affects supply chain members’ decisions and payoffs.  

The paper focuses on production and sales of a single product/brand and suggests a dynamic 

model that includes key operational and marketing activities in the supply chain. The 

operations-marketing model that we use in the current research is a variant of the model in El 

Ouardighi et al. (2008) and Jørgensen (2011) (see also Jørgensen, 1986; Eliashberg and 

Steinberg, 1987) and an advertising goodwill model; see, e.g., Jørgensen and Zaccour (2004). 

None of these papers, however, was concerned with the availability of state information in a 

supply chain.  

The setup is one in which a single manufacturer sets her production rate and the national 

advertising rate for her product. Manufacturer advertising supposedly builds up a stock of 

consumer goodwill. There is a single retailer who sets the purchase rate and the consumer 

price. The state of the system is represented by the stock of consumer goodwill as well as the 

manufacturer's and retailer's respective backlogs of the product.  

The following research issues are addressed: 

-  How are operations and marketing decisions in the supply chain, under a WPC and an RSC, 

respectively, affected by the availability of state information? 

- Depending on the availability of state information, how do the two kinds of contracts 

compare in the long run? 

-  How do the two kinds of strategies mitigate channel inefficiency (double marginalization) 

under each contract? 

-  How are supply chain members’ payoffs affected by the type of strategy and contract? 
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The main contribution of the current research lies in the fact that we look simultaneously at 

two important aspects of supply chain management: the choice of a contract that specifies 

how payments flow in the supply chain, and the role of information for the design of 

operations and marketing strategies in the supply chain. We show that with a wholesale price 

contract, feedback strategies mitigate the double marginalization problem because an increase 

in price does not deter growth of demand. Conversely, with a revenue sharing contract, open-

loop strategies provide results that are closest to those of a cooperative strategy.  

The paper proceeds as follows. Section 2 develops a differential game model where a 

manufacturer and a retailer agree on a supply chain contract at the outset. Sections 3 and 4 

study the operations and marketing decisions in the supply chain under the two contracts in 

the context of open-loop and feedback Nash equilibria. Section 5 compares the contracts and 

the strategies. Section 6 concludes the paper. 

2. Differential game model 

A manufacturer’s product is ordered by an exclusive retailer who resells the product to final 

consumers. Each chain member controls two decisions: one in marketing and one in 

operations. The manufacturer determines its production rate and investment in advertising 

goodwill, whereas the retailer controls its procurement rate and the consumer price. 

Time t  is continuous and the game starts at time zero. State variables are the manufacturer’s 

and retailer’s backlogs as well as the manufacturer’s advertising goodwill. Backlogging 

means that there is a delay in the delivery of some of the product quantity the retailer ordered 

from the manufacturer, as well as from retailer to customers, with associated costs to the 

manufacturer and retailer. Backlogging reflects an on-time fulfillment rate of less than 100%, 

which is not unusual in practice. Feichtinger and Hartl (1985), and Erickson (2011, 2012) 

show that backlogging may be profitable in the long run because production and purchase 

costs can be deferred. Sapra et al. (2010) argue that backlogging can be optimal because it 

adds to the allure and sense of exclusivity of a product and stimulate its demand.  

The manufacturer’s backlog at time t is denoted by ( )X t  and evolves over time according to  

( ) ( ) ( )X t v t u t  ,     0(0) 0X X     (1) 

where ( ) 0u t   is the manufacturer’s production rate and ( ) 0v t   is the retailer’s purchase 

rate. We assume that the manufacturer has a safety stock that can be used to fill backlogged 

products if there is backlogging (see, e.g., Maimon et al., 1998). The reason is that whenever 

the production rate is lower than the purchasing rate, the difference has to be filled, though 

with delay, thanks to the safety stock.  
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The retailer’s backlog is ( )Y t  and evolves according to 

( ) ( ) ( )Y t S t v t  ,     0(0) 0Y Y      (2) 

where ( )S t  is the consumer demand rate.  

Consumer demand is affected negatively by the retail price ( )p t  and positively by advertising 

goodwill ( )G t  in a simple linear fashion 

( ) ( ) ( )S t p t G t             (3) 

where , 0    and constant. The market potential is time-dependent and equals ( )G t  .  

The manufacturer’s goodwill evolves according to the Nerlove and Arrow (1962) model 

( ) ( ) ( )G t w t G t  ,    0(0) 0G G      (4) 

where ( ) 0w t   is the manufacturer’s national advertising effort and 0   a constant decay rate.  

If advertising goodwill is omitted in the demand function, equations (1) - (4) reduce to a 

variant of the model developed by Jørgensen (1986), Eliashberg and Steinberg (1987), Desai 

(1992, 1996), Kogan (2012) and others. If supply chain members adopt a zero-stock policy, 

they produce and order to meet retailer and consumer demand, respectively, at any time and 

equations (1)-(4) reduce to the model studied in Jørgensen and Zaccour (2004).  

Our next task is to define a payoff functional for each firm. Operations management literature 

usually assumes short planning horizons to evaluate the performance of operational strategies 

(Kogan and Tapiero, 2007). Marketing literature has often adopted an infinite planning 

horizon, partly to disclose long-run effects of marketing strategies, and partly for 

mathematical convenience (Erickson, 2003; Jørgensen and Zaccour, 2004). This paper 

assumes an infinite planning horizon, that is  0,t  , which enables us to study the long-run 

stability of game equilibria. The use of an infinite horizon is also motivated by the inclusion 

of advertising goodwill in the model. Building a stock of goodwill takes time and assuming a 

finite (and possibly short) horizon might leave out interesting aspects of goodwill evolution.  

We assume that an agreement on (i) the type of contract and (ii) its parameter(s) has been 

reached before playing the game. Here supply chain members can choose among a WPC or an 

RSC. The WPC has one parameter, the transfer price , while the RSC has two parameters, 

the transfer price and the share,  of the retailer’s revenue that the manufacturer gets from the 

retailer. The parameters  and  are exogenously determined and remain constant over time. 

 The transfer price 0  is paid by the retailer to the manufacturer for each unit purchased 

and we denote by WPC  and RSC  the transfer prices that apply under a WPC and an 



 6 

RSC, respectively. We require a transfer price to be positive and RSC
 

be lower 

than WPC , that is, the retailer would agree to an RSC only if the manufacturer lowers the 

transfer price that applies in the WPC: quid pro quo.  

 The second parameter is the manufacturer’s share  of the retailer’s revenue and we require 

this share to be nonnegative and less than one. The WPC is a special case of an RSC with 

 and a larger transfer price The rationale for an RSC is to decrease the retailer’s unit 

procurement cost in order to induce the retailer to buy more units. 

It remains to formulate the objective functions of the two firms. As to the manufacturer’s 

costs, we suppose that the manufacturing cost increases with the production rate according to 

the quadratic function 2( ) 2au t , 0a  and constant. The manufacturer incurs a cost of 

advertising effort, expressed by the quadratic function 2( ) 2bw t , 0b  and constant. Finally, 

the manufacturer’s cost of backlogging is 2( ) 2cX t , 0c  and constant. Note that if the 

backlogging turns to inventory, i.e., 0X , the manufacturer then incurs an inventory cost. 

Finally, if the manufacturer uses a safety stock, its cost is sunk and be disregarded.  

Assume that both firms employ a constant discounting rate, denoted by 0r  . Then the 

manufacturer’s objective is 

2 2 2

( ), ( ) 0 0

Max ( ) ( ) ( ) ( ) 2 ( ) 2 ( ) 2 dM rt

u t w t
e p t S t v t au t bw t cX t t 






        
 (5) 

The retailer’s gross revenue is ( ) ( )p t S t  under a WPC, and ( ) ( ) ( )RSCp t S t v t , 1   ,  

under an RSC. The retailer’s ordering/processing cost is increasing and is convex in the 

purchase rate: 2( ) 2dv t , 0d and constant. Finally, the retailer’s backlogging cost is 

2( ) 2eY t , 0e and constant.  

The retailer’s objective is 

 2 2

( ), ( ) 0 0

Max ( ) ( ) ( ) ( ) 2 ( ) 2 dR rt

v t p t
e p t S t v t dv t eY t t 






       
   (6) 

We note that all costs for the manufacturer and retailer, production, advertising, retailer 

ordering, and backlog, are modeled as being quadratic. This is to be consistent with existing 

literatures, which typically assume strictly convex costs for advertising (Jørgensen and 

Zaccour, 2004; Erickson, 2003), production (Jørgensen et al., 1999), ordering (Jørgensen, 

1986), and backlog (Feichtinger and Hartl, 1985; Erickson, 2011).  
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To avoid being entangled in mathematical subtleties we confine our interest to equilibrium 

outcomes for which the objective integrals in (5) and (6) converge for all admissible states, 

controls, and parameter values. 

3. Open-loop Nash equilibrium strategies 

This section identifies an open-loop Nash equilibrium (OLNE). The assumption here is that 

information on the backlogs as well as the goodwill stock is not available and the firms’ 

strategies depend on time only. 

Omitting from now on the time argument when no confusion can arise, the manufacturer’s 

(current-value) Hamiltonian is 

   2 2 22 2 2MH p p G v au bw cX           

         1 2 3v u p G v w G               (7)  

where 1( )t , 2( )t , and 3( )t  are the manufacturer’s (current-value) costate variables, 

associated with state variables, X , Y , and G , respectively.  

The costate equations are given by 

1 1r cX             (8)

 2 2r             (9) 

 3 3 2r p         .        (10) 

The retailer’s (current-value) Hamiltonian is 

        2 2
1 2 32 2RH p p G v dv eY v u p G v w G                      

 

(11) 

where 1( )t , 2( )t , and 3( )t  are (current-value) costates.  

The costate equations are 

1 1r             (12) 

2 2r eY             (13) 

 3 3 2r p                 (14) 

The state equations are as in (1), (2), and (4). For the case where optimal controls are positive, 

necessary optimality conditions are (1), (2), (4), (8)-(10), (12)-(14), and  

 10M ol
uH u a             (15) 

 30M ol
wH w b            (16) 

for the manufacturer, and  
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  20R ol
vH v d              (17) 

    0 2R ol ol ol
pH p G dv         

  
      (18) 

for the retailer. The superscript “ol” refers to “open-loop’’. It is readily shown that the 

Hamiltonians are strictly concave in the decision variables, which guarantees unique maxima. 

Analysis of the necessary conditions provides the following results. 

Lemma 1. For the case where optimal controls are positive, the manufacturer’s OLNE 

production rate and advertising effort rate satisfy 

ol ol olu ru cX a  ,     ol olu cX ra      (19) 

 ol ol olw r w p b    ,     ol olw p b r       (20) 

where the subscript   indicates that controls are computed in steady state.  

Proof. See A1.  

The second equation in (19) shows - as expected - that the larger the backlog, the larger the 

production rate in steady state. The second equation in (20) shows that, in steady state, the 

larger the consumer price, the larger the manufacturer’s advertising effort. This is because 

price and goodwill have opposite effects on demand. The second equation in (20) also shows 

that a larger discounting rate implies a smaller steady state advertising effort. The intuition is 

that shortsighted manufacturers should not invest very much in long-run advertising goodwill. 

Proposition 1. Under a WPC, the manufacturer’s advertising effort rate is always zero. Under 

an RSC, the effort rate is always positive.  

Proof. See A2.  

The first part of Proposition 1 tells a manufacturer operating under a WPC that it is not 

worthwhile to invest in advertising (to increase consumer demand) because the 

manufacturer’s gross revenue is independent of retail sales. Consequently, brand goodwill 

decreases steadily over time. With an RSC, the manufacturer has an incentive to raise brand 

goodwill - and hence consumer demand - because the manufacturer receives a positive share 

of the retailer’s revenue.  

Lemma 2. The retailer’s OLNE purchase rate and consumer price satisfy 

 ol ol olv rv eY r d   ,    ol olv eY r rd      (21) 

 1

2

ol ol olp G dv   ,     2ol ol olp G eY r    
   
  

 (22) 
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Proof. See A3. 

Eq. (21) shows that in steady state, the larger the retailer’s backlog the higher the purchase 

rate. Given that the transfer price is higher under a WPC than an RSC, the retailer has a lower 

steady state purchase rate under a WPC. This is intuitive. Using (22) shows that (in steady 

state) the larger the retailer’s backlog, the higher the consumer price. Also this is intuitive: if 

the retailer is understocked, she should decrease demand by raising the consumer price.  

Consider an RSC in steady state and use (3), (20), and (22). A higher consumer price leads 

(by (3)) to lower consumer demand but it also implies a higher level of manufacturer 

advertising (by (20)). More advertising implies a higher stock of goodwill and (by (3)) greater 

consumer demand. By (22), a higher goodwill stock implies a higher consumer price. The 

managerial implication of these effects is that should – for any reason - the retailer increase 

the consumer price, the resulting decrease in demand/sales will be mitigated by the 

manufacturer, who responds by increasing advertising to make the goodwill stock larger and 

thereby stimulate consumer demand. 

The next proposition shows that an equilibrium under a WPC exhibits nice structural 

properties. 

Proposition 2. Under a WPC, the steady state is unique and the equilibrium path converging 

to the steady state is monotonic.  

Proof. See A4.  

Under a WPC, steady state values for production and backlogging, as well as procurement 

and backlogging, are all strictly positive if the transfer price is not larger than the steady state 

consumer price, i.e., ol

WPC WPC
p    This requirement is likely to be satisfied in practice; one 

would not expect a retailer to have a negative gross margin. 

Technically, long-run feasibility and local stability of the equilibrium under a WPC did not 

require additional assumptions. We conclude that in steady state, backlogs are constant and 

consumer demand equals production, which in turn equals the purchase rate. Advertising 

effort as well as the goodwill stock are zero. 

Proposition 3. Under an RSC, the supply chain has a unique steady state. This steady state is 

feasible and is a saddle point in the control-state space if the following conditions are satisfied 

1r b    and    

where   is an upper threshold of   that is strictly lower than 1. Under the two conditions, the 

equilibrium path converging to the steady state is monotonic.   
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Proof. See A5.  

According to Proposition 3, the equilibrium path to the steady state under an RSC is 

monotonic if the sharing parameter is sufficiently small,   . The parameter   may be seen 

as a proxy for the bargaining position for the manufacturer. If   is higher than  , the steady 

state cannot be reached from some or all initial states (Engwerda, 1998). The implication is 

that the RSC is not superior to a WPC as a long-term contract in an OLNE because it does not 

ensure stability while WPC does. This interesting feature of the RSC was not envisioned in 

the literature on supply chain contracting and coordination in static or short-term setups 

(Cachon, 2003; Cachon and Lariviere, 2005; El Ouardighi et al., 2008; El Ouardighi and Kim, 

2010). Long-run feasibility and stability of an equilibrium under an RSC can be ensured only 

by contracts that have a sharing parameter being lower than the threshold  . In addition, the 

inequality 1r b    must hold. The interpretation of this inequality is that the discount rate 

must not be “too large”, that is, supply chain members must be relatively farsighted.  

In the case where the threshold for the sharing parameter is close to 1, the manufacturer’s 

production rate and the retailer’s purchase and sales rates are close to zero. This situation is 

sustainable, however, because the retailer is able to compensate the high manufacturer share 

in the sales revenue by charging a high consumer price, which is backed up by a substantial 

manufacturer advertising effort. (Technically, the local monotonicity of the equilibrium path 

can still be assured, though globally the paths may be non-monotonic). 

It can be shown that whatever the compensation scheme, the manufacturer’s steady state  

backlog rate, relative to the retailer’s steady state purchase rate, i.e., 
ol olX v  , equals ra c  

(see A.5). However, the retailer’s steady state backlog rate, relative to consumer sales, i.e., 

ol olY S  , is lower under an RSC than a WPC if  WPC RSC WPC
     . If this inequality is 

satisfied, an RSC is more effective than a WPC in meeting demand in the sense that relative 

understocking at the retailer’s outlet is reduced. This result confirms what happens in practice 

when an RSC is introduced. The main idea of an RSC is to enable the retailer to buy more 

units by lowering the transfer price, compared to a WPC. This reduces the likelihood of the 

retailer being understocked.  

The condition  WPC RSC WPC
      can be illustrated by the data from the Blockbuster 

case in Mortimer (2008). We rewrite the condition as follows: 
RSC WPC

   . The left-hand 

side of this inequality is the fraction of retail revenue that the retailer keeps for herself while 
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the right-hand side is a positive number, strictly less than 1. In the Blockbuster example,   is 

approximately 60% while the fraction on the right-hand side is $8/$65 = 0.12. Hence the 

condition is satisfied.     

4. Feedback Nash equilibrium strategies 

If information on backlogs and advertising goodwill is available to both firms throughout the 

game, they may condition their current actions on the current values of these stocks, as well as 

on time. In this case, one can look for a feedback Nash equilibrium (FBNE). To identify an 

FBNE, we derive the Hamilton-Jacobi-Bellman (HJB) equations of the firms and then 

characterize the equilibrium strategies. The model we have formulated has an infinite horizon 

and parameters are constant. In such a case, one can look for strategies that are stationary in 

the sense that they depend on the state but not on time (explicitly).  

Let  , ,MV X Y G  be the manufacturer’s value function, which represents the optimal profit of 

the manufacturer in a game that starts out at time t  in state  ( ), ( ), ( )X t Y t G t . The 

manufacturer’s HJB equation then is 

   2 2 2

,
Max 2 2 2M

u w
rV p p G v au bw cX         

 
         M M M

X Y GV v u V p G v V w G            (23) 

where subscripts on MV
 
denote partial differentiation. Necessary conditions for a maximum 

on the right-hand side of (23) are, if production and advertising rates are positive, 

 fb M
Xu V a            (24)

 
 fb M

Gw V b            (25) 

where the superscript “fb” refers to ‘’feedback’’.  

The retailer’s HJB equation is 

         2 2

,
Max 2 2R R R R

X Y G
v p

rV p p G v dv eY V v u V p G v V w G                     (26) 

where  , ,RV X Y G  is the retailer’s value function. Necessary conditions for a maximum are, if 

the purchase rate and the consumer price are positive,  

 fb R R
X Yv V V d            (27)

 
  2fb R

Yp G V     
 

         (28) 

Proposition 4. Whenever all decision variables are positive, FBNE strategies for production, 

advertising effort, procurement, and consumer price are as follows 
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 2fb M M M Mu B C X I Y J G a           (29) 

 2fb M M M Mw F J X K Y H G b          (30) 

     2 2fb R R R R R R R Rv B D C I X I E Y J K G d         
 

   (31) 

1 2 1

2

R R R R
fb D I E K

p X Y G


     

  
       

    

      (32) 

in which 
M

B ,
M

C ,
M

F ,
M

H ,
M

I ,
M

J ,
M

K ,
R

B ,
R

C ,
R

D ,
R

E ,
R

I ,
R

J ,
R

K  are time-

independent parameters of the two value functions 

  2 2 2, ,M M M M M M M M M M MV X Y G A B X C X D Y E Y F G H G I XY J XG K YG           (33) 

  2 2 2, ,R R R R R R R R R R RV X Y G A B X C X D Y E Y F G H G I XY J XG K YG         
 

(34) 

Proof. See A6.  

The FBNE strategies are determined analytically by (29)-32) as linear functions of the three 

state variables. To determine the value function coefficients one has to solve a system of 14 

nonlinear algebraic equations which does not seem to be possible. Therefore we use a 

numerical procedure. From the set of numerical solutions we select those that ensure a 

globally asymptotically stable steady state solution (if it exists).  

Technical Remark. See A7.  

For the numerical solutions we use the following baseline parameters.  

Parameter  
 a b c d e  r   

Value 1 000 10 0.1 2 0.05 0.01 0.1 0.1 0.1 WPC = 100,RSC = 0 WPC = 0,RSC = 0.8 

Table 1. Baseline parameters  

In the supply chain management literature, it is usual to set the value of r between 0.05 (e.g., 

El Ouardighi and Erickson, 2015) and 0.1 (e.g., El Ouardighi, 2014). Here, we choose the 

upper value r = 0.1 to emphasize the relative importance of short time operational 

performances. Note that the wholesale price is set equal to zero in the RSC. In sensitivity 

analyses, a broad range of values is used for all parameters except  and . For each 

parameter, the solutions are calculated for values deviating 25% and 50% above and below 

the baseline value. Neither the feasibility nor the qualitative pattern of the solutions generated 

was affected by variations up to 50% from the baseline values. 

Technical Remark. See A8.  
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We use the optimal values of the contract parameters in an FBNE, that are derived in the next 

section (see 5.1). For an optimal WPC with transfer price 73 98. , the eigenvalues of the 

Jacobian in (A8) are all real and negative, which ensures monotonic convergence to the stable 

steady state. The coefficients of the value functions for this solution are given in Table 2. 

MA  MB  
MC  MD  ME  MF  MH  MI  

MJ  MK  

112 829.5367 -9.1361 -0.0327 59.244 -0.0215 127.5785 -0.0302 -0.0502 -0.034 -0.032 

RA  RB  
RC  RD  RE  RF  RH  RI  

RJ  RK  

74405.9114 -2.199571 0.00003 -75.1883 -0.0151 88.6002 0.0651 0.0007 -0.00249 -0.0068 

Table 2. Value function coefficients in a WPC 

Using (29)-(32) and the values in Table 2, FBNE strategies with the optimal WPC are 

 91.36123+0.32733 0.050286 0.34015
fb

WPC
u X Y G        (35) 

 63.78926 0.0170075 0.016004 0.030274
fb

WPC
w X Y G         (36) 

 99.1623 0.0019 3.0371 0.4402fb

WPC
v X Y G            (37) 

 87.59417 0.0000395 0.015146 0.053449fb

WPC
p X Y G         (38) 

According to (35), the production rate increases if the manufacturer or retailer backlog grows. 

This is to avoid understocking and is expected. A higher level of goodwill increases consumer 

demand which motivates increasing production.  

Eq. (36) says that the manufacturer should use less advertising effort to promote consumer 

demand when there are backlogs or when the goodwill stock is already large. These results 

confirm intuition.  

Using (37) shows that a larger manufacturer backlog (i.e., poorer availability) deters retailer 

procurement, as expected. The retailer buys more if her own backlog increases. Realizing that 

a higher level of goodwill increases consumer demand induces the retailer to purchase more.  

According to (38), the retailer sets a lower consumer price when there is a backlog at the 

manufacturer level (due to insufficient supply). This is consistent with the manufacturer’s 

decreasing advertising effort in such situations. In contrast, the retailer sets a higher price to 

lower demand when there is a backlog at the retail level. Finally, a higher level of goodwill 

increases consumer demand and justifies an increase in the consumer price.  

For an optimal RSC with parameters 0, 0.7  (see Section 5.1 below), the eigenvalues 

associated with the stable steady state are real and negative and hence convergence to the 

steady state is monotonic. The values of the coefficients of the value functions under an RSC 

are given in Table 3. 
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MA  MB  
MC  MD  ME  MF  MH  MI  

MJ  MK  

112 599.0816 -36.9961 -0.0327 33.6214 -0.0201 101.9747 0.0321 -0.0458 -0.0327 -0.0295 

RA  RB  
RC  RD  RE  RF  RH  RI  

RJ  RK  

113 011.2873 -2.1122 0.00001 -6.1348 -0.0144 93.9565 0.0275 0.0003 -0.001 -0.005 

Table 3. Value function coefficients in an RSC 

Using (29)-(32) and the values in Table 3, the strategies in an optimal RSC are 

369.96161 0.6551 0.45885 0.32778
fb

RSC
u X Y G         (39) 

50.98738 0.016389 0.014757 0.032101
fb

RSC
w X Y G        (40) 

402.262 0.0013 2.8889 0.3985fb

RSC
v X Y G          (41) 

60.22474 0.000065 0.048083 0.058467
fb

RSC
p X Y G         (42) 

Comparing the signs of the value function coefficients under a WPC in (35)-(38) with those of 

an RSC in (39)-(42) shows no differences, except for manufacturer advertising effort which 

depend negatively on goodwill under a WPC, but positively under an RSC. There is no 

straightforward explanation to this, noting that goodwill enters in a complicated manner in the 

value functions given by (33)-(34). With this exception we conclude that there are no 

qualitative differences between the way in which the state variables influence the operations 

and marketing decisions under the two contracts.  

5. Comparisons of contracts and strategies  

We assume, as would be the case in practice, that the choice of a contract precedes that of 

strategy type. We wish to assess the “coordination ability” of the two contracts, under open-

loop and feedback strategies, respectively, and characterize the evolution of operations and 

marketing variables over time. For this purpose we use the analytical solutions from Sections 

3 and 4. To see how efficient a given contract is in coordinating the supply chain, we need a 

benchmark which is taken to be optimal cooperative solution which is defined as the solution 

which maximizes the overall profit of the supply chain.  

Payoffs are investigated when contract parameters and strategies vary. For each strategy, an 

optimal contract is first defined. Then, contracts and strategies are compared with the 

cooperative solution in terms of their payoffs and policies.   

To determine the cumulative payoffs and the operations and marketing policies under each 

contract and each strategy, we use the baseline parameters of Table 1. Solution paths are 

calculated for initial state values    0 0 0, , 0,0,50X Y G  . Thus the assumption is that firms 
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start out with zero backlogs. For the numerical solution, a boundary value approach and a 

continuation algorithm, described in Grass et al. (2008) and Grass (2012) are used. 

5.1. Optimal contracts and strategies  

The reader should be aware that now we abandon the assumption that contract parameters 

have fixed values that are exogenously given. In this section we wish to determine an optimal  

contract for each type of strategy (open-loop and feedback). The meaning of ‘’optimal’’ will 

be made clear below.  

 
Figure 1. OLNE and FBNE payoffs in a WPC, as functions of the transfer price 

Starting with a WPC (that is, given the sharing parameter   is zero) we vary the transfer price 

  to find out what happens to manufacturer and retailer profits in an OLNE and a FBNE, 

respectively. Then, considering an RSC, we vary both the transfer price   and the sharing 

parameter   to answer the same question. As in El Ouardighi (2014), the manufacturer 

determines an optimal WPC by choosing a transfer price that maximizes her individual profit. 

The retailer can accept or reject the contract. Given that the retailer accepts the contract, 

Figure 1 shows the firms’ cumulative profits under WPC and both strategy types. Figure 1 

depicts the manufacturer and retailer overall payoffs in a WPC and an OLNE, 
olM

WPC
 and 

olR
WPC

, respectively, as well as 
fbM

WPC
 and 

fbR
WPC

 in a WPC and a FBNE, respectively, as 

fbR

WPC
  

( )ol

WPC
u t  

fbM

WPC
  

( )ol

WPC
u t  

M: FB OL 

R: FB OL 

 

*fb

WPC

 

olR

WPC
  

( )ol

WPC
u t  

olM
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  
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u t  
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functions of the transfer price . For comparison, an uniform division of the cooperative 

profits, 2c
 , is also depicted.  

An optimal WPC is characterized both by a higher transfer price 

( *
73.98

fb

WPC
* 60.15ol

WPC
) and payoff in a FBNE than in an OLNE, for both 

manufacturer, *fbM
WPC

 5 * 41.19125 10 9.8865 10
olM

WPC
 and retailer, 

* 47.8993 10
fbR

WPC

* 44.4626 10
olR

WPC
. Therefore, if the supply chain members are able to 

have and share state information, both firms prefer an optimal WPC and FBNE to an optimal 

WPC and OLNE because they get higher profits although it creates a greater double 

marginalization effect. The reason is that a higher transfer price in a FBNE leads to a higher 

consumer price, but - as a countermeasure to stimulate consumer demand - also induces the 

manufacturer to develop goodwill through increased advertising effort. A higher transfer price 

is desirable in a FBNE because it increases supply chain members’ payoffs due to greater 

sales. This suggests that advertising in a FBNE could mitigate the effects of double 

marginalization on profits by stimulating the consumer demand. If the supply chain members 

do not share state information, or if the cost of getting and sharing state information is too 

large, that is, greater than * *fb olM M
WPC WPC

 for the manufacturer and * *fb olR R
WPC WPC

 for the 

retailer, an optimal WPC in an OLNE is the only  option for both firms. Although the transfer 

price in this case is smaller than in a FBNE, double marginalization is stronger because the 

manufacturer cannot use advertising to mitigate its effects on sales and profits. The rationale 

behind this result is suggested by equation (10), which represents the rate of change of the 

manufacturer’s marginal incentive to invest in goodwill advertising. Under WPC and OLNE, 

the manufacturer has no incentive to invest in advertising because the retailer’s backlog and 

marginal sales revenue are both payoff-irrelevant for the manufacturer (i.e., both 2  and   

are zero). In an OLNE, the retailer’s marginal sales revenue is payoff-relevant for the 

manufacturer if   is positive, that is, under a RSC. Under a WPC, the retailer’s backlog is 

payoff-relevant for the manufacturer if 2  is non-zero. In particular, if the retailer’s backlog 

is implicitly beneficial for the manufacturer, it will increase sales through greater goodwill 

advertising. In return, greater sales will induce the retailer to increase its purchase rate from 

the manufacturer to incur lower backlog costs. Overall, the manufacturer invests in 
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advertising under WPC if it has an interest in raising the retailer’s backlog cost. Conversely, if 

the manufacturer cannot observe the retailer’s backlog, advertising efforts are not beneficial.  

The search for a mutually beneficial alternative to an optimal WPC should aim at minimizing 

the difference between the supply chain’s cooperative and the sum of non-cooperative 

payoffs. The reason is that an optimal RSC is acceptable by both firms if it is profit Pareto-

improving, that is, no firm gets a lower profit under an optimal RSC than under an optimal 

WPC. The joint cooperative profits are the upper bound on firms’ profits and the Nash 

bargaining scheme (Dockner et al., 2000) is used to determine the RSC parameters. The 

retailer computes and selects the value of the sharing parameter that minimizes the difference 

between the cooperative profit and the sum of non-cooperative payoffs, that is, 

 M R

RSC RSC

c    .  

To motivate the above we note that if the retailer sets the sharing parameter to maximize her 

own profit we can end up in a solution which is not Pareto-improving. That is, for a fixed 

transfer price being lower than that under a WPC, the best non-cooperative solution for the 

retailer might be to share as little revenue as possible with the manufacturer. For the 

manufacturer to agree to charge a transfer price which is lower than that under a WPC, the 

RSC should be profit Pareto-improving. Given that the manufacturer charges such a transfer 

price, the retailer has to choose a sharing parameter between 0 and 1 as neither 0 nor 1 are  

Pareto-improving, but there is an interval of values of the sharing parameter that is profit 

Pareto-improving. We know the upper bounds on the firms’ profits and to get the best Pareto-

improving RSC (given the value of the transfer price) we must find the value of the sharing 

parameter that makes individual profits as close as possible to their respective upper bounds. 

The adoption of a RSC is not to maximize the retailer’s profits but to coordinate the SC. This 

is the way in which we compute the curves in Figure 2.  

Under an RSC, one contract parameter needs to be exogenously specified (Cachon and 

Lariviere, 2005; Jørgensen, 2011). We assume that the manufacturer sets a more 

advantageous transfer price to the retailer than that under an optimal WPC. The retailer, in 

turn, computes the value of the sharing parameter that minimizes the difference between the 

supply chain’s cooperative and the sum of non-cooperative payoffs. To identify an optimal 

RSC, we compute for each strategy the intersection points between the firms’ payoffs curves 

that are at the shortest distance from the cooperative payoffs curve. Figure 2 represents the 

curves of these intersection points as functions of transfer price and sharing parameter in an 

OLNE (2.a) and an FBNE (2.b).    
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  2.a. OLNE case      2.b. FBNE case 

Figure 2. Optimal RSC in OLNE and FBNE  

As expected, an optimal RSC is characterized by a strictly lower transfer price than an 

optimal WPC in OLNE or in FBNE. However, while the transfer price should be strictly 

positive in an OLNE ( * 45.5ol
RSC

), it is zero in an FBNE ( *
0

fb

RSC
). The optimal sharing 

parameter is considerably larger in an FNBE than in an OLNE, * *0.7 0.35
fb ol
RSC RSC

. 

The firms’ payoffs are significantly greater in an OLNE than in an FBNE, 

* * 5 * * 51.40689 10 1.18 10
ol ol fb fbM R M R

RSC RSC RSC RSC
. Both firms prefer an optimal 

RSC in an OLNE to an optimal RSC in an FBNE. Sensitivity analysis shows that this holds 

also true for smaller discounting rates and greater demand price-sensitivity. This suggests that 

farsightedness under an RSC increases the value of the commitment which is inherent in the 

OLNE. However, because * *fb fbM M
WPC RSC

, an RSC in an FBNE is not profit Pareto-

improving because the manufacturer prefers a WPC in an FBNE. Actually, an RSC in an 

FBNE is a dominated option for both firms. Under an RSC and OLNE, the state information 

is disregarded which makes it not only more profitable but also less constraining in terms of 

state information collecting and sharing than RSC and FBNE for both firms. Because both 

firms’ profits are strictly greater under optimal RSC in an OLNE than under optimal WPC in 

an FBNE, * *ol fbM M
RSC WPC

 and * *ol fbR R
RSC WPC

, both firms are willing to adopt an RSC in an 

OLNE. Finally, if supply chain members are unable to condition their decisions upon the 

current state, they have a strong incentive to select an RSC because the increase in profits 

entails no additional constraints in terms of collecting and sharing state information. This 

result is notable, although it may be counterintuitive. Therefore, a switch from a WPC to an 

RSC may require a change in the strategy type, from a contingent to a commitment strategy. 
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Each contract type enables the supply chain members to effectively “align their interests” so 

that they both prefer the same type of equilibrium—either a commitment or a contingent 

strategy—depending on the state information availability under a WPC, and a commitment 

strategy under an RSC.  

5.2. Optimal operations and marketing policies 

Supply chain members play, for any given contract, the Nash strategies identified above. To 

analyze the transient behavior of operations and marketing policies, we generate the time 

paths of the control variables under each contract (WPC and RSC) and strategy (open-loop 

and feedback).  

In Figs. 3.a-3.b, the time paths of the manufacturer’s production rate, the retailer’s purchase 

rate and the sales rate are graphed on a logarithmic scale for the cooperative and non-

cooperative equilibria. The time axis is also logarithmically scaled to show the paths in more 

detail on an initial interval of time where the significant dynamic changes take place.  

In the cooperative setting (Figs. 3.a-3.b), operations decision variables and sales have S-

shaped time paths. The production and the purchase rates are initially low and increase 

steadily over time until the steady state is reached in finite time. Though not quite visible, the 

transient sales are greater than the purchase rate, which in turn exceeds the production rate. 

This makes the backlogs of both firms increase. Except during an initial phase, the 

cooperative production, purchase and sales rates are greater than in the non-cooperative case. 

 
3.a. WPC vs. cooperative equilibrium         3.b. RSC vs. cooperative equilibrium 

Figure 3. Operations policies and sales under optimal WPC and RSC in OLNE and FBNE vs. cooperative case 

Under a WPC and OLNE (Fig. 3.a), operations policies and sales have quite different patterns 

than in the cooperative setting. Sales are (slightly) monotonically decreasing while the 

production and purchase rates first increase and then (slightly) decrease. Initially, the 

manufacturer holds a positive inventory because the production rate is greater than the 
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retailer’s purchase rate. Later on, the purchase rate surpasses the production rate for a finite 

time interval until they both equalize at the steady state. However, the purchase rate starts at a 

lower level than sales until the steady state. The production, purchase and sales rates in an 

OLNE are significantly lower than in FBNE during an initial period. With a WPC and FBNE 

(Fig. 3.a), convergence of these three variables is similar than to that of an OLNE, except that 

all time paths are increasing. The dynamic adjustment of the purchase and sales rates toward 

the steady state is similar to that in the cooperative solution.  

Under an RSC (Fig. 3.b), operations policies in OLNE and FBNE, by and large, follow the 

same pattern as the cooperative solution. Yet they differ in that the OLNE strategy displays 

(inferior) parallel paths to the cooperative paths, while the FBNE paths are flatter with greater 

initial values than the cooperative equilibrium and lower steady state values than the OLNE.  

Figs. 4.a-b show the time paths of the manufacturer’s advertising effort and the consumer 

price for the cooperative solution and the non-cooperative equilibria. In the cooperative 

equilibrium, advertising effort and consumer price also have S-shaped time paths with 

increasing values until the steady state is reached. The marketing instruments are used in a 

way such that an increase in the consumer price (which decreases demand) goes along with an 

increase in advertising effort (which increases demand). 

 
      4.a. WPC vs. cooperative equilibrium           4.b. RSC vs. cooperative equilibrium 

Figure 4. Marketing policies under optimal WPC and RSC in OLNE and FBNE vs. cooperative equilibrium 

Under a WPC in an OLNE (Fig. 4.a), the advertising effort is zero while the consumer price 

decreases (slightly) over time. According to Eq. (22), the decreasing time path of the 

consumer price results from the decrease of both the manufacturer’s goodwill and the 

retailer’s purchase rate (see Fig. 3.a). The decreasing time path of sales (Fig. 3.a) is due to the 

fact that goodwill decreases faster than the consumer price. Under a WPC and FBNE, 
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marketing instruments affect demand in the same way: An increase in the consumer price 

goes along with a decrease in advertising effort (both decrease demand). 

Marketing instruments are strategic complements under an RSC in both OLNE and FBNE, as 

in the cooperative solution. For a given strategy type, the time paths of marketing strategies 

are affected by the contract type. With an RSC and OLNE, the marketing policy prescribes 

under-advertising and successively over-pricing over a (brief) initial time interval and under-

pricing thereafter. Cooperation is the more effective way of increasing demand because 

cooperative advertising effort is greater. 

A WPC and OLNE or FBNE will in general lead to lower consumer prices than an RSC and 

OLNE. In a static setting, Cachon and Lariviere (2005) obtain that the consumer price is 

lower with an RSC than a WPC. In a dynamic setting, the retailer can set a higher consumer 

price under an RSC by rewarding the manufacturer for her efforts to develop the market 

potential through increased goodwill. The strategic interaction between the two marketing 

instruments eliminates the need to reduce the consumer price, a standard argument for the use 

of an RSC. Finally, the strategy type with the highest consumer price is more profitable. 

In Fig. 5, the phase diagram of the manufacturer’s backlog and advertising goodwill and the 

retailer’s backlog is depicted for the cooperative solution and the non-cooperative equilibria. 

 
 

Figure 5. Phase diagram in the state space for cooperative and non-cooperative equilibria 

Although cooperation is more effective than non-cooperation in developing demand (owing to 

higher advertising goodwill), it also leads to larger backlogs for the manufacturer and retailer. 

In the non-cooperative game, the case of a WPC and OLNE can be described in a way 

opposite to that of the cooperative solution because it leads to a lower sales rate, due to 

absence of advertising effort, as well as smaller backlogs for both firms. An RSC and OLNE 
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has more similarities with the cooperative solution than a WPC and OLNE. Sensitivity 

analysis verifies this for low values of the production and advertising cost coefficients and 

high price-sensitivity of demand. An RSC and FBNE differs from a WPC and FBNE because 

the former results in a lower retailer backlog and greater manufacturer backlog and goodwill. 

This holds for low values of the production cost coefficient and the retailer’s backlogging 

cost, high values of the advertising cost coefficient, and high price-sensitivity of demand. 

Due to the differences between the cooperative and non-cooperative values of the retailer’s 

purchase rate and sales volume, it is appropriate to assess understocking at the manufacturing 

and retailing levels in relative instead of absolute terms. To do so, we determine the transient 

paths of the relative backlog for each firm, that is, ( ) ( )X t v t  for the retailer, defined as the 

percentage of backlogged retailer’s order at the manufacturer’s plant, and ( ) ( )Y t S t  for the 

manufacturer, representing the percentage of backlogged consumer demand by the retailer. 

These time paths are illustrated in Figs. 6.a-6.b. 

  
       6.a. Manufacturer’s relative backlog rate     6.b. Retailer’s relative backlog rate 

Figure 6. Manufacturer’s and retailer’s relative backlog rates in cooperative and non-cooperative equilibria 

As suggested in Section 3, in an OLNE the contract type does not affect the manufacturer’s 

steady state relative backlog. Fig. 6.a suggests that the manufacturer’s steady state relative 

backlog, i.e., X v ra c   , is also independent of the strategy type in both the cooperative 

solution and the non-cooperative equilibria. However, the manufacturer’s transient relative 

backlog shows significant differences between cooperation and non-cooperation. In a 

cooperative solution and under an RSC and FBNE, the manufacturer has no initial inventory 

and the convergence of the relative unavailability of the product to the steady state is slower 

in the cooperative case. In contrast, in an OLNE under both contracts and in an FBNE and an 

RSC, the manufacturer holds a positive inventory during an initial time interval. The 

inventory gradually turns into backlogging as time passes. 
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In Fig. 6.b, the retailer’s steady state relative backlog is affected by both the compensation 

scheme and the type of game equilibrium. As suggested in Section 3, in an OLNE, the 

retailer’s steady state relative backlog is greater under a WPC than an RSC if the 

manufacturer’s relative share  of the retailer’s revenue does not exceed the relative reduction 

of the transfer price that the retailer obtain from the manufacturer under an RSC versus a 

WPC, i.e., if  WPC RSC WPC
     ; This requirement is fulfilled in our case both for OLNE 

and FBNE. Fig. 6.b suggests that the retailer’s relative backlog also is greater under a WPC 

and FBNE than an RSC and FBNE. A WPC and OLNE is the least effective in meeting 

demand, followed by a WPC and FBNE. At the steady state, relative backlogging at the 

retailer is even lower under an RSC and both strategy types than in the cooperative 

equilibrium. The lowest (relative) unavailability level at the retailer is observed for an RSC 

and FBNE. Overall, the relative availability is better under an RSC than under a WPC for 

both strategy types. However, the retailer’s transient relative backlog evolves conversely to 

the manufacturer’s rate under RSC and OLNE, as under WPC with both strategy types.  

 
Compensation scheme 

Wholesale price contract Revenue sharing contract 

 

 

Decision rule  

 

Open-loop strategy  
Unadvertised, lower priced product 

with poorer marketing and operational 

performance 

Higher advertised and priced product 

with greater marketing performance 

and lower operational performance 

 

Feedback strategy 
Advertised and higher-priced product 

with greater marketing and operational 

performance 

Lower advertised and priced product 

with lower marketing performance 

and greater operational performance 

Tab. 4. Supply chain outcomes under WPC and RSC with open-loop and feedback strategies 

The key results of our analysis are summarized in Table 4. The cooperative outcome reflects a 

vertically integrated supply chain that sells a heavily advertised, high-priced product where 

(relative) availability is of high concern. In contrast, under a WPC and OLNE, the supply 

chain sells an unadvertised, lower-priced product with poorer availability. As for a WPC and 

FBNE, the RSC and OLNE leads to higher-priced and advertised products. Marketing is 

important in both cases, and availability has a significantly higher priority under RSC and 

OLNE than under WPC and FBNE. Finally, an RSC and FBNE has the most effective 

operational performance in terms of relative availability.  

6. Conclusions 

In this paper, we analyze how the performances of wholesale price and revenue sharing 

contracts are affected by the information structure and the resulting decision rules in a supply 

chain in terms of operational and marketing decisions, and payoffs.  
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We point out an important, yet undisclosed merit of the wholesale price contract, that it is 

always a stable contract in the long run, regardless of whether state information is available or 

not in the supply chain. In contrast, when state information is unavailable in the supply chain, 

employing a revenue sharing contract is not optimal in the long term if the manufacturer’s 

bargaining power is excessively large. Our results also suggest that the unavailability of 

information on the current state of key operational and marketing variables is more 

detrimental under wholesale price contract than under revenue sharing contract. An important 

implication of this is that it serves supply chain members better to share information on their 

respective inventories under a wholesale price than a revenue sharing contract.  

The analysis of the operations/marketing game has provided a series of observations that 

should be useful for operations, marketing, and supply chain managers: 

 Integrating marketing and operations decisions is strongly believed to be beneficial to the 

supply chain. We have demonstrated that using advertising to create goodwill leads to 

higher consumer prices and stimulates sales while maintaining high product availability. 

 Noncooperative behavior leads to under-investment in goodwill and a lower consumer 

price. If supply chain firms play a noncooperative game, the type of strategy that better 

enhances individual profits depends on the type of contract chosen. With a wholesale price 

contract, feedback strategies provide better outcomes than open-loop strategies. Under a 

revenue sharing contract, open-loop strategies provide preferable results for all firms. 

 With a wholesale price contract, feedback strategies mitigates the double marginalization 

problem because an increase in price does not deter growth of demand. While such 

strategies are effective in expanding sales, their effectiveness in meeting demand is limited. 

In such a situation, supply chain members should try to improve, throughout the game, the 

mutual availability of information on the current state of key operational and marketing 

variables of the supply chain. 

 With a revenue sharing contract, open-loop strategies provide results that are closest to 

those of a cooperative strategy. Such strategies are effective both in expanding and meeting 

demand. Supply chain members could profitably precommit to a plan of action during the 

entire game if the manufacturer’s bargaining power is not excessively large and supply 

chain members are farsighted.    

The current research contributes to the understanding of the role of contracts, the use of 

information in a supply chain, and the implications for supply chain members’ operations and 

marketing strategies. The importance of the availability of information and the strategies used 
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by supply chain members under dynamic conditions has received little attention in the 

literature. Moreover, the literature seems to have followed two disparate streams, one in 

marketing and another in operations management. This paper has demonstrated the 

importance of the informational basis on which marketing and operations strategies are 

designed and the role of the contact under which decisions are made. The research also 

contributes to the stream of literature which views marketing and operational decision-making 

from an integrated point of view.  

Appendix 

A1. First, note that the manufacturer’s backlog (for both positive and negative values) has a 

negative influence on its objective function because backlogging is costly and hence we 

expect that its costate 1  is negative. Next, because the manufacturer’s goodwill has no 

(positive) influence on its objective under a WPC (RSC), 3  is expected to be zero (positive). 

For 2 , equation (9) can be explicitly solved and has the solutions 
2 0   and 

2
rtCe  , where 

C is an arbitrary, nonzero constant of integration. Equations (15) and (16) show the following. 

A positive value of the manufacturer’s production rate requires a negative value of the costate 

1 . A positive value of the manufacturer’s advertising effort requires a positive value of the 

costate variable 3 . The manufacturer’s optimal decisions in (15)-(16) do not depend on 2  

and henceforth we choose the zero solution for 2 . Differentiating (15) wrt time and using (8) 

and (15) gives (19). Differentiating (16) wrt time and using (10) and (16) yields (20).  

A2. Regarding the first part of the proposition, note that WPC implies 0   and, in (20), 

 ol ol
w r w   and 0

ol
w  . The equation  ol ol

w r w   has the general solution  
( )

ol r t
w t De


 , 

where D  is a constant of integration. For 0D  , the solution is 0
ol

w  , while 0D   makes 

ol
w   when t  . Since (0) 0

ol
w  , 0D   is not possible, which proves that 0

ol
w  . For the 

second part of the proposition, we note that, in RSC the term p  in (10) is positive when we 

exclude the possibility that 0
ol

p  . We know that 3  non-negative is necessary for 0
ol

w  . 

Suppose 3 0  . Then the optimality condition (10) cannot hold. Hence 3  must be positive and 

the second part of the proposition follows from (16).  

A3. A similar argument as the one used for costate 
2  leads to choose the solution 

1 0   in 

(12). The retailer’s backlog has a negative influence on its objective, which suggests that the 

costate 
2
 should be negative. Finally, because goodwill positively influences the retailer’s 
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objective, whatever the compensation scheme, 3  is expected to be positive. According to 

(17), a positive value of the retailer’s purchase rate requires 
2   , which means that the 

retailer’s unit purchase cost is lower than the imputed cost of backlogging one unit at the 

retail level. (The consumer price stated in (18) is clearly positive). Differentiating (17) wrt 

time and using (13) and (17) gives (21). Differentiating (18) wrt time and using (4), (20) and 

(21) yields (22).  

A4. To compute the steady state under WPC, we form the associated canonical system in the 

state-control space. To do so, we plug the RHS of (18) for p  in the RHS of (20) and (2) to 

eliminate the equation of p . We obtain the following system of 6 linear equations 
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The resolution of (A4.1) along with (18) gives 
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(A.4.2) 

To check the stability of the system, we find the roots of the characteristic equation associated 

with the Jacobian in (A4.1), that is (Grass et al., 2008), 

1
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2 4
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WPC
   (A1.3) 

All the eigenvalues are real, 3 having a positive sign and 3 having a negative sign. The saddle-

point property of the steady state is thus granted and the path converging to it is monotonic.  

A5. Under RSC, the canonical system in the state-control space is 
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   (A5.1) 

The solution of the system, along with (18), gives  
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We check the local stability of the steady state. Because the number of negative eigenvalues is 

at most three, a change in signs implies that the number of negative eigenvalues is reduced 

and therefore the number of stable eigendirections of the steady state declines, making the 

locally stable steady state unstable. Because the determinant of the Jacobian is given as the 

product of the eigenvalues, and three negative eigenvalues exist for 0   (see A4), the 

determinant becomes zero if one of the eigenvalues becomes zero for 0  . Due to the 

sparsity of the Jacobian in (A5.1), the determinant is given as 

     2 2RSCJ ce d b d r abd                (A5.9) 

It then suffices to find the zero values of (A5.9). For  , this leads us to find the roots of  
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that is,  
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Five scenarios are then possible, depending on the value of the discriminant 

      
2

1 1 4D b r b r d           in (A5.11), that is, 

- 0D  , which implies that the number of negative and positive eigenvalues does not change; 

- 0D   so that either 
1 2

0 1     or 
1 2

0 1     exists;  

- 0D   so that either 
1 2

0 1     or 
1 2

0 1     exists.  
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If   1b r   , it is obvious that 0D  . Conversely, if   1b r   , we have: 

    1 1 4b r b r        , which also implies that 0D  . Therefore, the first scenario is 

invalid. Regarding the second scenario, it can be shown that 
1

0 1   if   1b r   , which 

invalidates the third and fourth scenarios, that is, 
1 2
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1 2

0 1    . However, if 
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2
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If   1 2b r   , then we get 
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Conversely, if   1 2b r   , we obtain 

   
2

1 2 1 2 1b r b r                 (A5.14) 

Therefore, the second scenario according to which 
1 2

0 1     is also invalid. Finally, only 

the smallest root in (A5.11), denoted as 
1

  , where 
1

1   requires that   1b r   , should 

be considered as a bifurcation threshold, which validates the fifth scenario whereby 

1 2
0 1    , so that for 0    , the number of negative eigenvalues cannot change. Next, 
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   

 


 
 to hold, 

it is necessary that   1b r   . This contradicts the condition that   1b r   , and proves that 

1    is a necessary and sufficient condition for the feasibility of the steady state.  

A6. Substituting from (24)-(25) and (27)-(28) into (23) and (26) yields: 

22 22 2

22 4 2 2 2 2 4

MM M R M R M R
M M GY X Y X X X Y

G
VV V V V V V VcX G

rV V G
a b d d

 


  

 
           

 
 

 

2 21

2 2 4

M R M R R
M R MY X X X Y

Y Y Y
V V V V V

V V V
d d d d d d d

      

 

   
           

  

 ( A6.1) 

22 2
21

2 4 2 2 2 4 2

R R M R R R
R R RY X X X X Y

G Y
V V V V V VeY G

rV V G V
d d a d

  


  

   
                 

 

    
2 2

2 4 2

R M R
RG G X

Y
V V V

V
b d d d

    



 
      

 

 (A6.2) 



 29 

We need to establish the existence of bounded and continuously differentiable value functions 

M
V  and 

S
V  that solve the HJB equations as well as unique and nonnegative solutions X, Y, 

and G to the state equations. To do so, we make the following conjectures 

2 2 2M M M M M M M M M M M
V A B X C X D Y E Y F G H G I XY J XG K YG            (A6.3) 

2 2 2R R R R R R R R R R R
V A B X C X D Y E Y F G H G I XY J XG K YG            (A6.4) 

from which we obtain 

2
M M M M M

X
V B C X I Y J G           (A6.5) 

2
M M M M M

Y
V D E Y I X K G           (A6.6) 

2
M M M M M

G
V F H G J X K Y           (A6.7) 

2
R R R R R

X
V B C X I Y J G           (A6.8) 

2
R R R R R

Y
V D E Y I X K G           (A6.9) 

2
R R R R R

G
V F H G J X K Y           (A6.10) 

Plugging the RHS of (A6.5) and (A6.7) in (24) and (25), respectively, gives (29) and (30). 

Plugging the RHS of (A6.8) and (A6.9) in (27), and the RHS of (A6.9) in (28) and 

rearranging, respectively, yields (31) and (32). Inserting the RHS of (A6.5)-(A6.10) into 

(A6.1)-(A6.2), and equating coefficients, we develop a system of 20 connected and quadratic 

equations in , ..., , , ..., ,
M M R R

A K A K  which can be solved numerically with given values for the 

parameters. This leads to the following coupled quadratic equations 

 2 2 2 2
2 2 4

M M M R M R R M R M R M R
rA B a F b D B B D B D D B B B d             

 
 

    2
1 2 2 4

M R M
d D D d D           (A6.11) 

   2 2 2 2 2
M R M R M R M R M R M R M R M R

rB C C I B C C B B I C D D C I B d         
 

 

    2
1 2 2 2 2

M R M R MM M M M R R
D I I D IF J b d B C a D I d              (A6.12) 

   2 2 2 2
2 2 4 1 2 2 4 2

M M M R M R M R M R M R
rC C a J b I d I I C I I C C C d c            

 
 (A6.13) 

   2 2 2
R M R M R M R M R R M M R M RM

I I E B I I B B E D I D I E B drD           
   

    
    2

2 1 2 2 2
M M M R M R M M R R M

F K b d E D D E B I a D E d E            
 

(A6.14) 

   2 2 2 2
2 2 4 2 2

M M M R M R M R M R M R
rE I a K b E d E E I E E I I I d           

   
(A6.15) 

      2
M R M R M R M R M R R M M R M R M M

rF J J K B J J B B K D J D J K B d H b F            
 
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    2
1 2 2 2 2 2

M R M R M M R R M M
d D K K D B J a D K D d K                 (A6.16) 

   2 2 2 2
2 2 4 1 2

M M M R M R R M M R M R
rH H b J a K d K K K J K J J J d            

2 2 4
M M

K H      (A6.17) 

 2
2 2 2 2

M M M M M R R M R M R M R M R M R
rI C I a J K b E I C E E C I I C I I C d         

  2
M R M R

d E I I E   
 

(A6.18) 

    2
2 1 2 2 2 2

M M M M R M R R R M M M
rJ C J a d I K K I I K I H b J             

      2 2 2
R M M R M R M R M R M R

I J I J C J J C C K K C d      
 

 (A6.19) 

    2
2 1 2 2

M M M M R M R R R M M M
rK I J a d E K K E E K E H b K             

   2
R M M R R M M R M R M R

K I K I E J E J I J J I d      
    

(A6.20) 

      
2 2

2 2
4 2 2 2 2 4

R R R R R M R M R R R
rA d B d B d d D d D d B B a F F b B D d                  

 
(A6.21) 

       2 2 2 2 2
M R M RR R R R R M R M R

B C C BrB C d d I d D I d a F J J F b              
 

       2 2
R R R R R R

B C B I C D d   
 

 (A6.22) 

    
2 2

2 2 4 4 2
R R R M R M R R R

rC C d d I d C C a J J b C I d         (A6.23) 

       2 2 2
M R M RR R R R R M R M R

B I I B arD I d d E d D E d F K K F b              

 
      2

R R R R R R
B I B E D I d   
 

 (A6.24) 

    
2 2

2 2 2 2
R R R M R M R R R

rE e I d d E d I I a K K b E I d           (A6.25) 

     2 2 2 2 2
R R R R R R R M R M R

rF J d d K D F d D K d B J J B a                   

   2 +
M R M R R R R R R R

F H H F b B J B K D J d     (A6.26) 

    
2 2

4 2 2 2 2 4
R R R R R M R M R R R

rH J d K H d K d J J a K K b J K d               (A6.27) 

       
2

2 2 2
R R M R M R M R M R R R R R

rI I d C I I C a J K K J b C I C E d          (A6.28) 

     2 2 2 2 2
R R R R R M R M R M R M R

rJ I J d I K d C J J C a J H H J b            

 2 2R R R R R RC J C K I J d    (A6.29) 

     2 2
R R R R R M R M R M R M R

rK E K d E K d I J J I a K H H K b            

 2
R R R R R R

I J E J I K d    (A6.30)   



 31 

A7. Plugging the right-hand side of (32) into (3) gives the equilibrium sales rate 

   2 2 2
R R R R

S D I X E Y K G          
 

     (A7.1) 

Plugging the RHS of (29)-(30), (31), and (35) into (1)-(2), and (4), respectively, the system is 

2 2 2

2 2 1

2 2 2 2 2

2

R R M R R M R R M M R R

R R R R R R R R R R R R

M M M M

C I C I E I J K J B B D

d a d a d a a d
X X

I C I E I E K J K D B D
Y Y

d d d d
G G

J K H F

b b b b

  (A7.2) 

The FBNE is globally asymptotically stable if the eigenvalues of the Jacobian matrix 

associated with the dynamic system in (A7.2) all are negative.  

A8. The roots of the system of 20 non-linear equations in A6 are computed with Matlab 

7.5.0.342 (R2007b). To ensure that all equilibria are identified, a two-step approach is 

necessary. First, we randomly search for equilibria and we use an algorithm (Matcont) to 

continue these equilibria by changing a parameter value of the model. If the branch of any 

equilibrium undergoes a limit point bifurcation, this is detected by the algorithm and further 

equilibria can be detected. For both contracts, 10,000 initial vectors were chosen randomly for 

the coefficients and used to solve the equation system. Only a single steady state satisfying 

the criterion of global asymptotic stability was found for each contract. Matcont was used to 

detect any other equilibria due to bifurcation. However, even after this step, a single and 

stable steady state remained in all cases.  
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