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Abstract

The paper deals with a general optimal control problem for age-structured systems. A
necessary optimality condition of Pontryagin type is obtained, where the novelty is in that
mixed control-state constraints are present. The proof uses an abstract Lagrange multiplier
theorem, and the main difficulty is to obtain regularity of the Lagrange multipliers in the
particular problem at hand.
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1 Introduction

The optimal control theory for age-structured systems has proved to be useful in numerous
branches of science: demography (migration or fertility control), population economics (life-cycle
investment/education models), health economics (investments in health care), economics (vin-
tage capital models), forestry and fishery (harvesting control), epidemiology (prevention/treatment
control), sociology (drug consumption or rumor dynamics and control), etc. Among the huge
amount of publications in the area we refer to the books [18, 12, 1] for the theory of age-structured
systems, to [4, 10, 7, 17] for optimal control theory of such systems, and to [2, 8, 9, 3, 15] for ap-
plications in some of the above mentioned areas. The references are scarce, but the bibliography
therein is much reacher.

In the present paper we consider a general age-structured optimal control problem of the
form

min

{∫ ω

0
l(a, y(T, a)) da+

∫ T

0

∫ ω

0
L(t, a, y(t, a), q(t), u(t, a), v(t), w(a)) da dt

}
(1)

on the set of all functions (y(t, a), q(t), u(t, a), v(t), w(a)) satisfying the age-structured system(
∂

∂t
+

∂

∂a

)
y(t, a) = f(t, a, y(t, a), q(t), u(t, a)), (t, a) ∈ D,(2)
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y(0, a) = y0(a,w(a)), a ∈ [0, ω],(3)

y(t, 0) = ϕ(t, q(t), v(t)), t ∈ [0, T ],(4)

q(t) =

∫ ω

0
h(t, a, y(t, a)) da, t ∈ [0, T ],(5)

and the additional constraints

gi(t, a, y(t, a), u(t, a), v(t), w(a)) ≤ 0, i = 1, . . . , d(g), (t, a) ∈ D.(6)

Here t ∈ [0, T ] is interpreted as time, a ∈ [0, ω] as age, D := [0, T ] × [0, ω]. The functions
y(t, a), q(t), u(t, a), v(t), w(a) take values in finite-dimensional Euclidean spaces, where y is
regarded as state function, q is sometimes called aggregated state, and u(t, a), v(t), w(a) are
distributed, boundary and initial control functions, correspondingly. Equation (2), together
with the initial condition (3) and the boundary condition (4), defines the state dynamics, (5)
defines the aggregated state q; the functions f , ϕ and h have appropriate dimensions. Conditions
(6) pose inequality type constraints on the control variables (if gi is independent of y for some
indexes i), and mixed control-state constraints (for those i for which gi depends also on y). The
precise statement of the problem and the assumptions used are given in the next section.

In the present paper we obtain necessary optimality conditions of Pontryagin’s type for the
problem (1)–(6). The novelty is that the problem involves mixed control-state constraints.

Pure state constraints arise in many applications of age-structured optimal control, usually
in the form y(t, a) ≥ 0. This is due to the necessity to keep the size of populations or capital
stocks nonnegative, although the controlled dynamics may formally allow to steer the state to
negative values. For example, in many economic models selling (or buying) capital stock is a
control variable that may formally drive the capital to negative values if this is not explicitly
prohibited.

Pure state constraints create substantial difficulties in the context of optimal control of
age-structured systems, due to the infinite-dimensionality of the state. There are only a few
known results: [7] (where the dynamic programming approach is employed), [14] (where only
the end-state is constraint) and a few more in which the derivations are not sound.

We stress that in the present paper we do not consider pure state constraints, rather, mixed
control-state constraints; this is due to our assumption (assumption A below), which requires
the control to be essentially present in the constraints (6). Nevertheless, mixed constraints
are also important in the context of optimal control of age-structured systems. First, often
such constraints are meaningful in particular applications. For example, the maximal size of
the feasible bank credit (investment control) may depend on the present capital stock (state
variable). Second, mixed constraints can often be used for approximating problems with pure
sate constraints. This approach is systematically employed in [19], for example, and can also
be used for approximate numerical solution, since the Lagrange multipliers in the case of mixed
constraints have a certain regularity, in contrast to the case of pure state constraints.

In the derivation of the Pontryagin-type optimality conditions (maximum principle) we use
a general Lagrange multiplier theorem presented in [5] and [16], which results in a local form of
the maximum principle. It is known, e.g. from [4, 10], that in the case of only control constraints
also the global form of the maximal principle holds true for the distributed control u(t, a). Of
course, the local maximum principle implies in a standard way the global one on additional
linearity/convexity-type assumptions also for problems with mixed constraints. However, it
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is an open question to obtain a global maximum principle for problem (1)–(6) without such
additional assumptions.

The paper is organized as follows. In the next section we give a strict formulation of the
problem together with the necessary assumptions. Section 3 presents the main result – a com-
plete set of Pontryagin type necessary optimality (a local maximum principle). The proof of the
main result is given in Section 4, which is split in several subsection for reader’s convenience.

2 Statement of the problem

In order to give a precise meaning to equations (2)–(5) (in line with, and partly repeating, the
previous contributions, e.g. [18, 4, 1, 10]) and the subsequent considerations, we introduce some
notations, spaces and definitions.

First of all, denote by d(z) the dimension of a vector z, that is, z ∈ IRd(z). In particular,
this applies to y, q, u, etc., so that y ∈ IRd(y), etc. Then f : IR1+1+d(y)+d(q)+d(u) → IRd(y),
y0 : IR1+d(w) → IRd(y), ϕ : IR1+d(q)+d(v) → IRd(y), and h : IR1+1+d(y) → IRd(q). Assume that these
functions are continuous together with their partial derivatives w.r.t. y, q, u, v, w. The same
assumption also applies to the functions l and L in the objective functional and to the functions
gi in the constraints.

Consider the family Σ of all maximal segments S ⊂ D parallel to the vector e = (1, 1)
(in line with the literature on first order PDEs, these will be called characteristic segments).
Each such segment corresponds to a (let-most) point (0, a) ∈ {0} × (0, ω] or to a (lowest) point
(t, 0) ∈ [0, T ]× {0} (see Fig. 1). Set

Γ = ({0} × (0, ω]) ∪ ([0, T ]× {0}).

Conversely, each point γ ∈ Γ defines a unique Sγ ∈ Σ emanating from γ, and γ 7→ Sγ is
one-to-one correspondence between the points of Γ and the characteristic segments S ∈ Σ.

-
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Fig. 1. Domain D and characteristic lines emanating from points in Γ.

If Γ̃ is a subset of Γ of full measure (in the sense of the Lebesgue measure), then we say that
the corresponding subset Σ̃ ⊂ Σ consists of almost all segments in Σ or that it is a full subset
of Σ.

For S ∈ Σ and a Lipschitz continuous function x : S → IRd(y) denote by ∂x
∂e its directional

derivative in the direction e := (1, 1), that is, ∂x
∂e (s) = limσ→0+(x(s + σe) − x(s))/σ, s ∈ S.
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For S ∈ Σ we define as usual the space W 1,∞(S, IRd(y)) consisting of all Lipschitz continuous
functions x : S → IRd(y), with the norm

‖x‖W 1,∞(S,IRd(y)) := ‖x‖C(S,IRd(y)) +

∥∥∥∥∂x∂e
∥∥∥∥
L∞(S,IRd(y))

.

Let us introduce the space YΣ consisting of all measurable functions y : D → IRd(y) for which
the restriction y|S on almost every characteristic segment S ∈ Σ is Lipschitz continuous, and in
addition, the norm

‖y‖YΣ
:= esssup

γ∈Γ
‖ y|Sγ‖W 1,∞(Sγ ,IRd(y))

is finite.
Clearly every y ∈ YΣ belongs to the space L∞

(
D, IRd(y)

)
, as well as ∂y

∂e . Moreover, YΣ is a

Banach space.

Let u ∈ L∞(D, IRd(u)), v ∈ L∞([0, T ], IRd(v)), w ∈ L∞([0, ω], IRd(w)) be any triple of control
functions, and let y ∈ YΣ, q ∈ L∞([0, T ], IRd(q)). Then the right-hand side of (2) is measurable
and bounded, hence (by the Fubini theorem), its restriction on almost every characteristic
segment S ∈ Σ belongs to L∞(S, IRd(y)). Due to the definition of the space YΣ, the same
applies to the left-hand side of (2), where the expression ∂

∂t + ∂
∂a has to be interpreted as the

directional derivative ∂y
∂e . Therefore, (2) is understood as an equation that has to be fulfilled

almost everywhere on almost every characteristic segment.
Moreover, for any y ∈ YΣ the restrictions [0, ω] 3 a 7→ y(0, a) and [0, T ] 3 t 7→ y(t, 0) are well

defined elements of L∞([0, ω], IRd(y)) and L∞([0, T ], IRd(y)), respectively (notice that the same
applies to the restriction of y on any horizontal or vertical segment in D). Then (3) and (4)
should also be understood as equations in L∞([0, ω], IRd(y)) and L∞([0, T ], IRd(y)), respectively.
Similarly, (5) is an equation in L∞([0, T ], IRd(q)).

Having in mind the above, we define that the pair (y, q) ∈ YΣ × L∞([0, T ], IRd(q)) is a
solution of system (2)–(5) (for given (u, v, w) as above) if (2) is fulfilled on almost everywhere on
almost every characteristic segment S ∈ Σ and (3)–(5) hold almost everywhere in the respective
intervals. Clearly, if a solution exists, then the objective functional (1) is well defined and finite.
The right-hand sides of the constraints (6) are measurable and bounded, and have to be satisfied
for a.e. (t, a) ∈ D.

Thus we consider problem (1)–(6) in the Banach space

X := YΣ × L∞([0, T ], IRd(q))× L∞(D, IRd(u))× L∞([0, T ], IRd(v))× L∞([0, ω], IRd(w))

of functions (y, q, u, v, w), where the norm is defined as

‖(y, q, u, v, w)‖ = ‖y‖YΣ
+ ‖q‖∞ + ‖u‖∞ + ‖v‖∞ + ‖w‖∞.

A local minimum of the problem in this norm is called a weak local minimum. Our aim in
this paper is to obtain first order necessary conditions for a weak local minimum. This will
be done by using an abstract Lagrange multipliers rule, recalled in Section 4.1. In order to
prove regularity of the Lagrange multipliers in the context of our specific problem we need an
additional assumption formulated in the next lines.

Denote the set of active constraints at a point (t, a, y, u, v, w) by

I(t, a, y, u, v, w) = {i ∈ {1, . . . , d(g)} : gi(t, a, y, u, v, w) = 0}.
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Assumption A. At any point (t, a, y, u, v, w) such that (t, a) ∈ D and gi(t, a, y, u, v, w) ≤ 0,
i = 1, . . . , d(g), the gradients of the active constraints gi with respect to u, that is the vectors

giu(t, a, y, u, v, w), i ∈ I(t, a, y, u, v, w),

are positively linearly independent.

Recall that a system of vectors p1, . . . , pm in IRr is said to be positively linearly independent if
the equality α1p1 + . . .+ αmpm = 0 with all αi ≥ 0 implies that αi = 0 for all i.

3 Main result: a necessary optimality condition

We assume that problem (1)–(6) has a week local solution (ȳ, q̄, ū, v̄, w̄) ∈ X . In the sequel
we use the following notational convention: we skip functions with “bar” whenever they play
the role of arguments of other functions. For example, fy(t, a) := fy(t, a, ȳ(t, a), q̄(t), ū(t, a)),
gi(t, a) := gi(t, a, ȳ(t, a), ū(t, a), v̄(t), w̄(a))), etc. Moreover, for convenience we consider the
“adjoint” vectors ψ and µ that appear below as row-vectors, in contrast to the column-vectors
y, q, etc. that were involved so far.

The next theorem gives a Pontryagin type necessary optimality condition.

Theorem 3.1 Let assumption A be fulfilled and let (ȳ(t, a), q̄(t), ū(t, a), v̄(t), w̄(a)) be a weak
local solution of problem (1)–(6). Then there exist Lagrange multipliers α ∈ {0, 1} and λ ∈
L∞(D, IRd(g)), with λi(t, a) ≥ 0 for a.e. (t, a) ∈ D and α+

∑d(g)
i=1 ‖λi‖∞ > 0, such that:

(i) the complementarity conditions hold:

λi(t, a) gi(t, a) = 0, for a.e. (t, a) ∈ D, i = 1, . . . , d(g);

(ii) the adjoint system

−
(
∂

∂t
+

∂

∂a

)
ψ(t, a) = ψ(t, a)fy(t, a) + µ(t)hy(t, a) + αLy(t, a) +

d(g)∑
i=1

λi(t, a)giy(t, a),(7)

µ(t) = ψ(t, 0)ϕq(t) +

ω∫
0

(
ψ(t, a)fq(t, a) + αLq(t, a)

)
da,(8)

with end- and boundary (transversality) conditions

ψ(T, a) = αly(a, ȳ(T, a)),(9)

ψ(t, ω) = 0,(10)

has a unique solution (ψ, µ) ∈ YΣ × L∞([0, T ], IRd(q));
(iii) the local minimum principle holds:

ψ(t, a)fu(t, a) + αLu(t, a) +

d(g)∑
i=1

λi(t, a)giu(t, a) = 0 for a.e. (t, a) ∈ D,(11)

ψ(t, 0)ϕv(t) +

∫ ω

0

(
αLv(t, a) +

d(g)∑
i=1

λi(t, a)giv(t, a)
)

da = 0 for a.e. t ∈ [0, T ],(12)

ψ(0, a)y0w(a) +

∫ T

0

(
αLw(t, a) +

d(g)∑
i=1

λi(t, a)giw(t, a)
)

dt = 0 for a.e. a ∈ [0, ω].(13)
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The meaning of solution of system (7)–(10) is similar as that of the primal system (2)–(5).

In the next paragraph we reformulate the result in Theorem 3.1 in a (point-wise) Hamiltonian
form.

Let us introduce the Hamiltonian

H(t, a, y, q, u, v, w, ψ) = ψf(t, a, y, q, u) + αL(t, a, y, q, u, v, w)(14)

and the augmented Hamiltonian

Ha(t, a, y, q, u, v, w, ψ, λ, µ) = H(t, a, y, q, u, v, w, ψ)

+µh(t, a, y) +

d(g)∑
i=1

λigi(t, a, y, u, v, w),(15)

where ψ> ∈ IRd(y) and µ> ∈ IRd(q) and “>” means transposition. Then, for the solution
(ȳ(t, a), q̄(t), ū(t, a), v̄(t), w̄(a)), the adjoint equation can be written as

−
(
∂

∂t
+

∂

∂a

)
ψ(t, a) = Ha

y (t, a),

where the multiplier µ(t) is given by the relation

µ(t) = ψ(t, 0)ϕq(t) +

ω∫
0

Hq(t, a) da.

The local minimum principle in (iii) takes the form

Ha
u(t, a) = 0,(16)

ψ(t, 0)ϕv(t) +

ω∫
0

Hv(t, a) da = 0,

ψ(0, a) y0w(a) +

T∫
0

Hw(t, a) dt = 0.

4 Proof of Theorem 3.1

In this section we first recall an abstract Lagrange multiplier theorem, then in the subsequent
subsections we verify that the assumptions of this theorem are fulfilled for our problem (1)–(6),
and derive the statements of Theorem 3.1.
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4.1 Lagrange multipliers rule for an abstract problem

Let X, Y , Z be Banach spaces, D ⊂ X be an open set, K ⊂ Z be a closed convex cone with
nonempty interior. Let f : D → IR, F : D → Y , bi : D → Z, i = 1, . . . , ν, be given mappings.
Consider the following problem:

f(x)→ min, F (x) = 0, bi(x) ∈ K, i = 1, . . . , ν.(17)

Let K0 := {ζ∗ ∈ Z∗ : 〈ζ∗, κ〉 ≤ 0 for every κ ∈ K} be the polar cone to K. Here 〈ζ, κ〉 is the
duality pairing between Z and its dual space Z∗.

The following theorem gives necessary conditions for a point x̄ ∈ D to be a local minimizer
for the problem (17) (see, e.g., [5] and [16]).

Theorem 4.1 Let x̄ provides a local minimum in problem (17). Assume that the objective func-
tion f and the mappings bi are Fréchet differentiable at x̄, the operator F is continuously Fréchet
differentiable at x̄, and F ′(x̄)X = Y (the regularity of equality constraint). Then there exist La-
grange multipliers α ≥ 0, ζ∗i ∈ K0, i = 1, . . . , ν, and y∗ ∈ Y ∗, satisfying the nontriviality
condition

α+
ν∑
i=1

‖ζ∗i ‖ > 0,

the complementary slackness conditions

〈ζ∗i , bi(x̄)〉 = 0, i = 1, . . . , ν,

and such that the Lagrange function

L(x) = αf(x) + 〈y∗, F (x)〉+
ν∑
i=1

〈ζ∗i , bi(x)〉

is stationary at x̄: L′(x̄) = 0.

4.2 Equality operator and its derivative

Later in this section we shall apply Theorem 4.1 with the following specifications for the spaces
X and Y and the mapping F . The space X is as defined in Section 2,

Y = L∞(D, IRd(y))× L∞([0, ω], IRd(y))× L∞([0, T ], IRd(y))× L∞([0, T ], IRd(q)),

and for x = (y, q, u, v, w) ∈ X we define

F (x)(t, a) =


f(t, a, y(t, a), q(t), u(t, a))− ∂

∂ey(t, a)
y0(a,w(a))− y(0, a)
ϕ(t, q(t), v(t))− y(t, 0)∫ ω

0 h(t, a, y(t, a)) da− q(t)

 .
Clearly, F maps X to Y and equations (2)–(5) can be rewritten as F (x) = 0. The aim of this
subsection is to prove that the surjectivity condition in Theorem 4.1 is fulfilled.

Lemma 4.1 At any point x̄ := (ȳ, q̄, ū, v̄, w̄) ∈ X the operator F ′(ȳ, q̄, ū, v̄, w̄) : X → Y is
surjective, that is F ′(x̄)X = Y .
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Proof. Below we use again our notational convention to skip arguments of functions with
“bar”. Then for any x = (y, q, u, v, w) ∈ X we can represent

F ′(x̄)x =


fy(t, a)y(t, a) + fq(t, a)q(t) + fu(t, a)u(t, a)− ∂

∂ey(t, a)
y0w(a)w(a)− y(0, a)

ϕq(t)q(t) + ϕv(t)v(t)− y(t, 0)∫ ω
0 hy(t, a)y(t, a) da− q(t)

 .
We have to prove that for every element (m,n, r, p) ∈ Y there exists an element x = (y, q, u, v, w) ∈
X such that F ′(x̄)x = (m,n, r, p). Setting u(t, a) = 0, v(t) = 0, w(a) = 0, this follows from the
next lemma. 2

Lemma 4.2 Consider the system

∂

∂e
y(t, a) = A(t, a)y(t, a) +B(t, a)q(t) +m(t, a),(18)

y(0, a) = n(a), y(t, 0) = C(t)q(t) + r(t),(19)

q(t) =

∫ ω

0
Q(t, a)y(t, a) da+ p(t),(20)

where the matrices A,B,C,Q have measurable and essentially bounded entries. Then for every
(m,n, r, p) in Y the above system has a unique solution (y, q) in YΣ × L∞([0, T ], IRd(q)).

Remark 4.1 The existence part of this lemma can be proved in a similar way as Lemma 5.1 in
[4] by using the (linear version of the) Banach contraction theorem. The proof below provides,
in addition, an explicit representation of the solution (y, q), given by the formulae (21), (22),
(24), (25), which will be used in Section 4.6 below. This proof is also known, in principle, but
we give it for completeness of the presentation.

Proof. For a0 ∈ [0, ω] denote by F0(a0; s, τ), s, τ ∈ [0,min{ω − a0, T}], the fundamental
matrix solution of the homogeneous ODE system

ẋ(s) = A(s, a0 + s)x(s)

normalized at s = τ , that is, F0(a0; τ, τ) = I – the unit matrix. Similarly, for t0 ∈ [0, T ] denote
by F (t0; s, τ), s, τ ∈ [0,min{ω, T − t0}], the fundamental matrix solution of

ẋ(s) = A(t0 + s, s)x(s)

normalized at s = τ . Then using the Cauchy formula one can obtain the following representation
of solution of equation (18), where q is taken as given. For (t, a) ∈ D with t < a,

y(t, a) = F0(a− t; t, 0)n(a− t) +

∫ t

0
F0(a− t; t, τ)[B(τ, a− t+ τ)q(τ) +m(τ, a− t+ τ)] dτ.(21)

For (t, a) ∈ D with t ≥ a, we have

y(t, a) = F (t− a; a, 0)[C(t− a)q(t− a) + r(t− a)](22)

+

∫ a

0
F (t− a; a, τ)[B(t− a+ τ, τ)q(t− a+ τ) +m(t− a+ τ, τ)] dτ.
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Substituting this expressions in (20) we obtain an integral equation for q as follows. For t ∈ [0, ω)
(if T > ω) we have

q(t) = p(t) +

(∫ t

0
+

∫ ω

t

)
Q(t, a)y(t, a) da

= p(t) +

∫ t

0
Q(t, a)F (t− a; a, 0)[C(t− a)q(t− a) + r(t− a)] da+

+

∫ t

0
Q(t, a)

∫ a

0
F (t− a; a, τ)[B(t− a+ τ, τ)q(t− a+ τ) +m(t− a+ τ, τ)] dτ da

+

∫ ω

t
Q(t, a)F0(a− t; t, 0)n(a− t) da

+

∫ ω

t
Q(t, a)

∫ t

0
F0(a− t; t, τ)[B(τ, a− t+ τ)q(τ) +m(τ, a− t+ τ)] dτ da.

For t ∈ [ω, T ] we have the expression

q(t) = p(t) +

∫ ω

0
Q(t, a)F (t− a; a, 0)[C(t− a)q(t− a) + r(t− a)] da+

+

∫ ω

0

∫ a

0
Q(t, a)F (t− a; a, τ)[B(t− a+ τ, τ)q(t− a+ τ) +m(t− a+ τ, τ)] dτ da.

Consider the three terms containing q in the first case, t ∈ [0, ω). Changing the variable t−a = s
in the first integral, changing t− a+ τ = s and the order of integration in the second integral,
and changing the order of integration in the third integral, we obtain that the sum of these three
integrals has the form ∫ t

0
K0(t, s)q(s) ds,

where K0 is a d(q)× d(q))-matrix function with measurable and essentially bounded entries.
In a similar way the sum of the two terms containing q in the case t ∈ [ω, T ] can be represented

in the form ∫ t

t−ω
K1(t, s)q(s) ds,

where K1 is function like K0 above. Concatenating K0 and K1 we obtain a measurable and
bounded matrix function K(t, s) such for any t ∈ [0, T ] the function q must satisfy the equation

q(t) =

∫ t

max{0,ω−t}
K(t, s)q(s) ds+ ρ(t),(23)

where ρ represents the sum of all terms that appear in the representations of q above. Using
similar manipulations of the integrals appearing in ρ we obtain a representation of the form

ρ(t) = p(t) +

∫ t

0
Qr(t, s)r(s) ds+

∫ ω

0
Qn(t, a)n(a) da(24)

+

∫ ω

0

∫ min{t,a}

0
Qm(t, a, τ)m(t− τ, a− τ) dτ da,

where Qr, Qn and Qm are matrix functions of corresponding dimensions, defined, measurable
and bounded on [0, T ]× [0, T ], [0, T ]× [0, ω], and [0, T ]× [0, ω]× [0, ω], correspondingly.
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Notice that each of the terms in the definition of ρ is a measurable and bounded function.
Then equation (23) regarded as a Volterra integral equation of the second kind has a unique
solution q ∈ L∞([0, T ]) (see Corollary 3.10 and Theorem 3.6 in [11]). This solution can be
represented as

q(t) = ρ(t) +

∫ t

0
R(t, s)ρ(s) ds,(25)

where R is the resolvent kernel, which is also measurable and bounded on [0, T ] × [0, T ], [11,
Theorem 3.6].

Using formulae (21) and (22) we define a function y. Due to m ∈ L∞(D, IRd(y)), we have
that y ∈ L∞(D, IRd(y)). Differentiating equations (21) and (22) along the characteristic lines we
obtain that equations (18)–(20) are fulfilled by the pair (y, q) and y ∈ YΣ.

The last claim of the lemma follows from the representations (24), (25), and (21)–(22). 2

4.3 Applying Theorem 4.1 to Problem (1)–(6)

In order to put problem (1)–(6) into the framework of Theorem 4.1 we set Z := L∞(D, IR) and
rewrite the constraints (6) in the form

gi(·, ·, y(·, ·), u(·, ·), v(·), w(·)) ∈ K, i = 1, . . . , d(g),

where K = L∞− (D, IR) (the cone of non-positive functions in the space Z). It is known that K
is a closed, convex cone with nonempty interior in Z.

In the sequel we will need the following lemma (see, e.g., [16] for the proof).

Lemma 4.3 Let z̄ ∈ K (that is z̄(t, a) ≤ 0 a.e. in D). Then, for λ ∈ Z∗, the conditions λ ∈ K0

and 〈λ, z̄〉 = 0 (i.e. λ is a support functional to K at the point z̄) are equivalent to the following
conditions: λ ≥ 0, and for each δ > 0 the element λ is concentrated on the set

Mδ = {(t, a) ∈ D : z̄(t, a) ≥ −δ}.

We recall that λ ≥ 0 means that 〈λ, z〉 ≥ 0 for every z ∈ −K, and “λ is concentrated on Mδ”
means that 〈λ, z〉 = 0 for every z which equals zero almost everywhere in Mδ.

For any given i = 1, . . . , d(g), we will use the above lemma for the function

z̄i(t, a) = gi(t, a, ȳ(t, a), ū(t, a), v̄(t), w̄(a)),

where from now on, (ȳ, q̄, ū, v̄, w̄) is a local minimizer in problem (1)–(6). According to the
lemma, the support functional λi is concentrated on each set

Miδ = {(t, a) ∈ D : gi(t, a, ȳ(t, a), ū(t, a), v̄(t), w̄(a)) ≥ −δ}, δ > 0.

The Lagrange function in Theorem 4.1 reads for our problem as

L(y, q, u, v, w) = 〈ψ, f(·, ·, y(·, ·), q(·), u(·, ·))− ∂

∂e
y(·, ·)〉

+〈ν0, y0(·, w(·)− y(0, ·))〉+ 〈ν1, ϕ(·, q(·), v(·))− y(·, 0)〉

+〈µ,
∫ ω

0
h(·, a, y(·, a)) da− q(·)〉
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+α

∫ ω

0
l(a, y(T, a)) da+ α

∫ T

0

∫ ω

0
L(t, a, y(t, a), q(t), u(t, a), v(t), w(a)) dadt

+

d(g)∑
i=1

〈λi, gi(·, ·, y(·, ·), u(·, ·), v(·), w(·))〉,

where α is a number and all other multipliers are linear functionals from the dual spaces

ψ ∈
(
L∞(D, IRd(y))

)∗
, ν0 ∈

(
L∞([0, ω], IRd(y))

)∗
, ν1 ∈

(
L∞([0, T ], IRd(y))

)∗
,

µ ∈
(
L∞([0, T ], IRd(q))

)∗
, λi ∈ Z∗ = (L∞(D, IR))∗.

According to Theorem 4.1 and Lemma 4.3, there exists a tuple of multipliers α ≥ 0, ψ, µ, ν0, ν1, λi
such that

α+

d(g)∑
i=1

‖λi‖ > 0,

λi ≥ 0, λi is concentrated on each set Miδ, δ > 0, i = 1, . . . , d(g), and

L′(ȳ, q̄, ū, v̄, w̄) = 0.

The latter means that for every (y, q, u, v, w) ∈ X

〈ψ, fy(·, ·)y(·, ·) + fq(·, ·)q(·) + fu(·, ·)u(·, ·)− ∂

∂e
y(·, ·)〉

+〈ν0, y0w(·)w(·)− y(0, ·)〉+ 〈ν1, ϕq(·)q(·) + ϕv(·)v(·)− y(·, 0)〉

+〈µ,
∫ ω

0
hy(·, a)y(·, a) da− q(·)〉+ α

∫ ω

0
ly(a)y(T, a) da

+α

∫ T

0

∫ ω

0

(
Ly(t, a)y(t, a) + Lq(t, a)q(t) + Lu(t, a)u(t, a) + Lv(t, a)v(t) + Lw(t, a)w(a)

)
da dt

+

d(g)∑
i=1

〈λi, giy(·, ·)y(·, ·) + giu(·, ·)u(·, ·) + giv(·, ·)v(·) + giw(·, ·)w(·)〉 = 0.(26)

In the next subsections we will analyze in detail this equation.

4.4 Regularity of the functional ψ

First we will show that the functional ψ ∈
(
L∞(D, IRd(y))

)∗
has a regular integral representation

(or shortly, is regular). This means that it can be represented in the form

〈ψ, z〉 =

T∫
0

ω∫
0

ψ̃(t, a)z(t, a) da dt, ∀z ∈ L∞(D, IRd(y)),(27)

where ψ̃ ∈ L1(D, IRd(y)).
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Since 〈ψ, z〉 =
∑d(y)
i=1 〈ψi, zi〉, it suffices to prove that the functional ψi is regular for an

arbitrary fixed i ∈ {1, . . . , d(y)}. To this end, we set in (26) q = 0, u = 0, v = 0, w = 0. Then
we obtain from (26) the variational equation

−〈ψ, ∂
∂e
y(·, ·)〉+ 〈ψ, fy(·, ·)y(·, ·)〉 − 〈ν0, y(0, ·)〉 − 〈ν1, y(·, 0)〉

+〈µ,
∫ ω

0
hy(·, a)y(·, a) da〉+ α

ω∫
0

ly(a)y(T, a) da

+α

T∫
0

ω∫
0

Ly(t, a)y(t, a) da dt+

d(g)∑
i=1

〈λi, giy(·, ·)y(·, ·)〉 = 0 ∀ y ∈ YΣ.(28)

By the Yosida–Hewitt theorem (see, e.g., [20] or [13, p. 382]), the functional ψi has a represen-
tation

ψi = ψri + ψsi ,

where ψri and ψsi are the regular and the singular parts of the functional ψi, respectively. In its
turn,

ψsi = ψs+i − ψ
s−
i ,

where ψs+i and ψs−i are the positive and the negative parts of the functional ψsi , respectively.
The latter means that the functionals ψs+i and ψs−i are nonnegative: ψs+i ≥ 0 and ψs−i ≥ 0, and
‖ψs+i ‖+ ‖ψs−i ‖ = ‖ψsi ‖. Using equation (28), we will show that ψs+i = 0.

Since ψs+i is a singular functional, there exists a sequence of measurable sets En ⊂ D,
n = 1, 2, . . . , such that

measEn → 0 (n→∞)(29)

and ψs+i is concentrated on every En, i.e.

〈ψs+i , z〉 = 〈ψs+i , zχEn〉 ∀ z ∈ L∞(D, IR), n = 1, 2, . . . ,

where χEn is the characteristic function of the set En. Thus

〈ψs+i , χEn〉 = 〈ψs+i , χD〉 = ‖ψs+i ‖.(30)

For every n = 1, 2, . . . , define the function yn(t, a) as follows: its ith component yni(t, a)
satisfies the equation

∂

∂e
yni(t, a) = χEn(t, a)

along almost every characteristic segment S ∈ Σ, with zero conditions on Γ:

yni(0, a) = 0, yni(t, 0) = 0.

All other components of yn(t, a) are taken identically equal to zero.
The convergence (29) implies

‖yn‖∞ → 0 (n→∞).(31)
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Consider the first term of equation (28) for y = yn. We obviously have

〈ψ, ∂
∂e
yn〉 = 〈ψi,

∂

∂e
yni〉 = 〈ψi, χEn〉 = 〈ψri , χEn〉+ 〈ψs+i , χEn〉 − 〈ψs−i , χEn〉.

Here 〈ψri , χEn〉 → 0, (n → ∞), since the functional ψri is regular and condition (29) holds for
the sequence En. Moreover, 〈ψs−i , χEn〉 = 0 since the functionals ψs+i and ψs−i are mutually
singular. Then, taking into account relations (30), we obtain that

〈ψ, ∂
∂e
yn(·, ·)〉 → ‖ψs+i ‖.(32)

In view of condition (31), all other terms in (28) for y = yn tend to zero. Thus, substituting
yn(t, a) in equation (28) and passing to the limit for n → ∞, we obtain that ‖ψs+i ‖ = 0, and
hence ψs+i = 0. Similarly, we prove that ψs−i = 0. Then ψs = 0. The latter means that
ψ = ψr, i.e. the functional ψ is regular. Consequently, condition (27) holds with some function
ψ̃ ∈ L1(D, IRd(y)), representing the functional ψr. In what follows, we omit the wave in the
notation ψ̃(t, a).

4.5 Stationarity with respect to u and regularity of λi

Set in (26) y = 0, q = 0, v = 0, w = 0. Then, taking into account the regularity of the functional
ψ, proved in the preceding subsection (see (27)), we obtain that for every u ∈ L∞(D, IRd(u))

T∫
0

ω∫
0

(
ψ(t, a)fu(t, a) + αLu(t, a)

)
u(t, a) da dt+

d(g)∑
i=1

〈λi, giu(·, ·)u(·, ·)〉 = 0.(33)

Now we use the regularity assumption (Assumption A) for the mixed constraints. According to
Theorem 7.1 in [5], equation (33) implies that all functionals λi have regular integral represen-
tation, i.e. there exist integrable functions λ̃i(t, a) such that

〈λi, z〉 =

T∫
0

ω∫
0

λ̃i(t, a)z(t, a) da dt ∀ z ∈ L∞(D, IR).(34)

Moreover, from the properties of λi stated in Theorem 4.1 (λi corresponds to the multiplier ζ∗i
in that theorem), it follows that the functions λ̃i are nonnegative and satisfy the complementary
slackness conditions

λ̃i(t, a) ≥ 0, λ̃i(t, a) gi(t, a) = 0, i = 1, . . . , d(g).(35)

In view of (34), relation (33) implies

ψ(t, a)fu(t, a) + αLu(t, a) +

d(g)∑
i=1

λ̃i(t, a)giu(t, a) = 0.(36)

This is a stationarity condition with respect to the control u (see (11)). It is fulfilled for a.e.
(t, a) ∈ D. In the sequel, we omit the “tilde” in the notation λ̃i.
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4.6 Regularity of ν0 and ν1

Take any n ∈ L∞([0, ω] and r ∈ L∞([0, T ], IRd(y)). According to Lemma 4.2 the system

∂

∂e
y(t, a) = fy(t, a)y(t, a) + fq(t, a)q(t),

y(0, a) = −n(a), y(t, 0)− ϕq(t)q(t) = −r(t),

q(t) =

∫ ω

0
hy(t, a)y(t, a) da

has a unique solution (y, q) ∈ YΣ × L∞([0, T ], IRd(q)). Set u(t, a) = 0, v(t) = 0, and w(a) = 0.
Then equation (26) becomes

〈ν0, n(·)〉+ 〈ν1, r(·)〉+ α

∫ ω

0
ly(a)y(T, a) da

+

∫ T

0

∫ ω

0

(
αLy(t, a)y(t, a) + αLq(t, a)q(t) +

d(g)∑
i=1

λi(t, a)giy(t, a)y(t, a)
)

da dt = 0.(37)

Since n and r can be selected arbitrarily and independently of each other and y and q have
integral representations via n and r (see Remark 4.1) we obtain from this equation that the
functionals ν0 and ν1 are regular, i.e. there exist integrable functions ν̃0 and ν̃1 such that

〈ν0, n(·)〉 =

∫ ω

0
ν̃0(a)n(a) dt ∀n, 〈ν1, r(·)〉 =

∫ ω

0
ν̃1(t)r(t) dt ∀ r.(38)

In the sequel we omit the “tilde” in the notations ν̃0 and ν̃1.

4.7 Stationarity with respect to v

Set in (26) y = 0, q = 0, u = 0, w = 0. Then, taking into account the regularity of the
functionals λi and ν1 (see (34),(38)), we obtain that for every v ∈ L∞([0, T ], IRd(v))∫ ω

0
ν1(t)ϕv(t)v(t) dt

+

∫ T

0

∫ ω

0
αLv(t, a)v(t) da dt+

d(g)∑
i=1

∫ T

0

∫ ω

0
λi(t, a)giv(t, a)v(t) da dt = 0.

This equation can be rewritten as

∫ ω

0
ν1(t)ϕv(t)v(t) dt+

∫ T

0

[ ∫ ω

0

(
αLv(t, a) +

d(g)∑
i=1

λi(t, a)giv(t, a)
)

da
]
v(t) dt = 0

for all v. Hence, we obtain

ν1(t)ϕv(t) +

∫ ω

0

(
αLv(t, a) +

d(g)∑
i=1

λi(t, a)giv(t, a)
)

da = 0.(39)
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4.8 Stationarity with respect to w

Set in (26) y = 0, q = 0, u = 0, v = 0. Then, quite similarly to the derivation of equation (39),
we obtain

ν0(a)y0w(a) +

∫ T

0

(
αLw(t, a) +

d(g)∑
i=1

λi(t, a)giw(t, a)
)

dt = 0.(40)

4.9 Stationarity with respect to q and regularity of µ

Setting in (26) y = 0, u = 0, v = 0, w = 0 and taking into account the regularity of the
functionals ψ and ν1, we obtain that for every q ∈ L∞([0, T ], IRd(q))

T∫
0

ω∫
0

ψ(t, a)fq(t, a)q(t) da dt+

∫ T

0
ν1(t)ϕq(t)q(t) dt− 〈µ, q(·)〉

+

T∫
0

ω∫
0

αLq(t, a)q(t) da dt = 0.

That is,

〈µ, q〉 =

T∫
0

( ω∫
0

(ψ(t, a)fq(t, a) + αLq(t, a)) da+ ν1(t)ϕq(t)
)
q(t) dt

for all q. This implies, in particular, that µ is a regular functional with the representation

µ(t) :=

ω∫
0

(
ψ(t, a)fq(t, a) + αLq(t, a)

)
da+ ν1(t)ϕq(t),(41)

so that

〈µ, q〉 =

T∫
0

µ(t)q(t) dt ∀ q ∈ L∞([0, T ], IRd(q)).(42)

4.10 Stationarity with respect to y

Now, we set in (26) q = 0, u = 0, v = 0, w = 0, taking into account the functionals ψ, λi, ν0,
ν1, and µ have regular integral representations (see (27), (34), (38), and (42)). We obtain that

T∫
0

ω∫
0

ψ(t, a)
(
fy(t, a)y(t, a)− ∂

∂e
y(t, a)

)
dadt

−
ω∫

0

ν0(a)y(0, a) da−
T∫

0

ν1(t)y(t, 0) dt+

ω∫
0

αly(a)y(T, a) da

+

T∫
0

ω∫
0

(
µ(t)hy(t, a) + αLy(t, a) +

d(g)∑
i=1

λi(t, a)giy(t, a)
)
y(t, a) da dt = 0(43)
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for every y ∈ YΣ.
Now, our aim is to prove that the function ψ(t, a) is absolutely continuous along almost every

characteristic, and also to obtain the adjoint equation for ψ and the transversality conditions in
Theorem 3.1.

Let p(t, a) be a function which is absolutely continuous along almost every characteristic Sγ
and satisfies, along almost every Sγ , the equation

− ∂

∂e
p(t, a) = p(t, a)fy(t, a) + µ(t)hy(t, a) + αLy(t, a) +

d(g)∑
i=1

λi(t, a)giy(t, a)(44)

and also satisfies the following transversality conditions

p(T, a) = αly(a), p(t, ω) = 0.(45)

Recall that Sγ is the characteristic segment starting at the point γ = (tγ , aγ) ∈ Γ, where as
before Γ is the union of the bottom and left segments of the boundary of D. Let τγ be the
terminal value of the parameter τ such that σγ := γ + τγe is the end of Sγ , opposite to γ. That
is, σγ ∈ Γ̃ := {(T, a) : a ∈ [0, ω]} ∪ {(t, ω) : t ∈ [0, T ]} and

Sγ = [γ, γ + τγe] = [γ, σγ ].

Then equation (44) means that along almost every characteristic Sγ we have

− d

dτ
p(γ + τe) = p(γ + τe)fy(γ + τe) + µ(tγ + τ)hy(γ + τe)

+αLy(γ + τe) +

d(g)∑
i=1

λi(γ + τe)giy(γ + τe).

In particular, this implies existence and uniqueness of the function p, since on almost every
characteristic Sγ it is defined by a linear ODE with the end-point condition (45) at τ = τγ , and
all the functions (not counting p) in the right-hand side are integrable, while fy is measurable
and bounded.

Let z ∈ L∞(D, IRd(y)), y0 ∈ L∞([0, ω], IRd(y)) and y1 ∈ L∞([0, T ], IRd(y) be arbitrarily chosen.
For γ ∈ Γ define

yΓ(γ) =

{
y0(a) if γ = (0, a), a ∈ [0, ω],
y1(t) if γ = (t, 0), t ∈ [0, T ].

Let y ∈ YΣ be defined by the family (parameterized by γ ∈ Γ) of solutions along almost every
characteristic Sγ of the linear ODEs

d

dτ
y(γ + τe) = fy(γ + τe)y(γ + τe) + z(γ + τe)

with the initial condition y(γ) = yΓ(γ) at τ = 0. In other words, y satisfies almost everywhere
the equation

∂

∂e
y(t, a) = fy(t, a)y(t, a) + z(t, a).(46)
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Along almost every characteristic Sγ we have

p(σγ) y(σγ)− p(γ) y(γ) =

τγ∫
0

d

dτ

(
p(γ + τe)y(γ + τe)

)
dτ

=

τγ∫
0

( d
dτ
p(γ + τe)

)
y(γ + τe) dτ +

τγ∫
0

p(γ + τe)
d

dτ
y(γ + τe) dτ

=

τγ∫
0

(
− p(γ + τe)fy(γ + τe)− µ(tγ + τ)hy(γ + τe)

−αLy(γ + τe)−
d(g)∑
i=1

λi(γ + τe)giy(γ + τe)
)
y(γ + τe) dτ

+

τγ∫
0

p(γ + τe)
(
fy(γ + τe)y(γ + τe) + z(γ + τe)

)
dτ

=

τγ∫
0

(
− µ(tγ + τ)hy(γ + τe)− αLy(γ + τe)

−
d(g)∑
i=1

λi(γ + τe)giy(γ + τe)
)
y(γ + τe) dτ +

τγ∫
0

p(γ + τe)z(γ + τe) dτ.

Integrating along Γ, we obtain that

∫
γ∈Γ

p(σγ)y(σγ) dγ −
∫
γ∈Γ

p(γ)y(γ) dγ =

∫
γ∈Γ

τγ∫
0

(
− µ(tγ + τ)hy(γ + τe)− αLy(γ + τe)

−
d(g)∑
i=1

λi(γ + τe)giy(γ + τe)
)
y(γ + τe) dτ dγ +

∫
γ∈Γ

τγ∫
0

p(γ + τe)z(γ + τe) dτ dγ.(47)

The left-hand side of the last equality can be represented as∫
γ∈Γ

p(σγ)y(σγ) dγ −
∫
γ∈Γ

p(γ)y(γ) dγ =

∫
γ∈Γ̃

p(γ)y(γ) dγ −
∫
γ∈Γ

p(γ)y(γ) dγ

=

T∫
0

p(t, ω)y(t, ω) dt+

ω∫
0

p(T, a)y(T, a) da−
T∫

0

p(t, 0)y(t, 0) dt−
ω∫

0

p(0, a)y(0, a) da.

Substituting this expression in (47), noticing that
∫
γ∈Γ

∫ σγ
0 =

∫ T
0

∫ ω
0 and rearranging the terms

we obtain that

T∫
0

ω∫
0

(
µ(t)hy(t, a) + αLy(t, a) +

d(g)∑
i=1

λi(t, a)giy(t, a)
)
y(t, a) da dt
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=

T∫
0

ω∫
0

p(t, a)z(t, a) da dt−
T∫

0

p(t, ω)y(t, ω) dt−
ω∫

0

p(T, a)y(T, a) da

+

T∫
0

p(t, 0)y(t, 0) dt+

ω∫
0

p(0, a)y(0, a) da.(48)

Using relation (48) in (43) and taking into account (46), (45) and the initial condition y(γ) = yΓ,
we obtain that

T∫
0

ω∫
0

(
p(t, a)− ψ(t, a)

)
z(t, a) da dt

+

∫ ω

0
(p(0, a)− ν0(a))y0(a) da+

∫ T

0
(p(t, 0)− ν1(t))y1(t) dt = 0.

Since the functions z, y0 and y1 can be selected arbitrarily and independently of each other, this
variational equation implies that

p(t, a) = ψ(t, a), p(0, a) = ν0(a), p(t, 0) = ν1(t).(49)

Consequently, the function ψ is absolutely continuous along almost every characteristic, satisfies
the adjoint equation (7), and the transversality conditions (9). Moreover, due to (49) we have

ν0(a) = ψ(0, a), ν1(t) = ψ(t, 0).(50)

Using these equalities in (39), (40), and (41), we obtain (12), (13), and (8), respectively.

4.11 Boundedness of the Lagrange multipliers

In order to prove boundedness of the Lagrange multiplier ψ we need some auxiliary material
presented below.

Lemma 4.4 Let K ⊂ IRm be a compact set and let ai : K → IRs be continuous functions,
i = 1, . . . , k. Let I(z) ⊂ {1, . . . , k} be a set of indices, defined at each point z ∈ K. Assume
that the mapping I(z) has the following property: if zn → z (n → ∞) and i ∈ I(zn) ∀n, then
i ∈ I(z) (that is, the mapping z → I(z) is upper semicontinuous on K). Assume, in addition,
that for any z ∈ K the system of vectors ai(z), i ∈ I(z) is positively linearly independent. Then
there exists a constant C > 0 such that for every z ∈ K and any numbers αi ≥ 0, i ∈ I(z), the
following inequality holds: ∑

i∈I(z)
αi ≤ C

∣∣∣∣∣∣
∑
i∈I(z)

αiai(z)

∣∣∣∣∣∣ .(51)

Proof. Contrary to the statement of the lemma, assume that there exist a sequence {zn} in
K and sequences of numbers αin ≥ 0, i ∈ I(zn), such that

∑
i∈I(zn)

αin > n

∣∣∣∣∣∣
∑

i∈I(zn)

αinai(zn)

∣∣∣∣∣∣ ∀n.(52)
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Without loss of generality (taking if necessary a subsequence) we assume that I(zn) does not
depend on n, i.e. I(zn) = I ∀n, and zn → z (n→∞). Note that z ∈ K and I ⊂ I(z). Set

βin =
αin∑
i∈I αin

, i ∈ I.(53)

Then
βin ≥ 0, i ∈ I,

∑
i∈I

βin = 1, ∀n,(54)

and from (52)-(54) it follows that ∣∣∣∣∣∑
i∈I

βinai(zn)

∣∣∣∣∣ < 1

n
∀n.(55)

Again, without loss of generality we assume that βin → βi, i ∈ I (n→∞). Then passing to the
limit in (54) and (55) we obtain

βi ≥ 0, i ∈ I,
∑
i∈I

βi = 1,
∑
i∈I

βiai(z) = 0.

Since I ⊂ I(z), the latter contradicts to the positive linear independence of the system of vectors
ai(z), i ∈ I(z) at the point z ∈ K. 2

Note that estimates, similar to (51), were obtained earlier in [16, p.107] and [5, Lemma 5].
In what follows, we set for brevity

x = (y, u, v, w), z = (t, a, x) = (t, a, y, u, v, w).

Suppose that there exists a compact set K ⊂ IRd(z) such that

g(z) ≤ 0 ∀ z ∈ K.(56)

Set
I(z) = {i ∈ {1, . . . , d(g)} : gi(z) = 0}.

Then, obviously, I(z) satisfies the condition of Lemma 4.4: if zn ∈ K ∀n, zn → z (n→∞) and
i ∈ I(zn) ∀n, then i ∈ I(z). Further, note that, by Assumption A, for any z ∈ K the gradients

giu(z), i ∈ I(z)

are positively linearly independent. Hence Lemma 4.4 implies the following corollary.

Corollary 4.1 Let a compact set K ⊂ IRd(z) satisfies condition (56). Then there exists a
constant C > 0 such that, for any z ∈ IRd(z) and any numbers λi ≥ 0, i ∈ I(z) we have

∑
i∈I(z)

λi ≤ C

∣∣∣∣∣∣
∑
i∈I(z)

λigiu(z)

∣∣∣∣∣∣ .(57)
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Now, consider the measurable and essentially bounded function

x̄(t, a) : Q→ IRd(x), x̄(t, a) = (ȳ(t, a), ū(t, a), v̄(t), w̄(a)).

Let K ⊂ IRd(z) be a compact set satisfying condition (56) and such that

(t, a, x̄(t, a)) ∈ K for a.e. (t, a) ∈ Q.(58)

For example, the role of K can be assigned to the set called the closure of the function x̄ w.r.t.
the measure [6]. Its definition is as follows. Suppose that K is such a set. Then, K consists of
all points (t′, a′, x′) ∈ D × IRd(x) such that for any ε > 0,

meas{(t, a) ∈ D : |t− t′| < ε, |a− a′| < ε, |x̄(t, a)− x′| < ε} > 0.

Then the set K is compact and satisfies conditions (56) and (58).

Continuing with the auxiliary material, let us rewrite equation (11) in the form

d(g)∑
i=1

λi(t, a)giu(t, a) = −ψ(t, a)fu(t, a)− αLu(t, a), for a.e. (t, a) ∈ D.(59)

Then conditions (57)–(59) imply∑
i∈I(t,a,x̄(t,a))

λi(t, a) ≤ C|ψ(t, a)fu(t, a) + αLu(t, a)| for a.e. (t, a) ∈ D.

In view of the complementarity conditions,

∑
i∈I(t,a,x̄(t,a))

λi(t, a) =

d(g)∑
i=1

λi(t, a).

Consequently, the following estimate holds:

d(g)∑
i=1

λi(t, a) ≤ C|ψ(t, a)fu(t, a) + αLu(t, a)| for a.e. (t, a) ∈ D.(60)

Let us define the function

ϕ(t, a) = αLy(t, a) +

d(g)∑
i=1

λi(t, a)giy(t, a).(61)

In view of (60) and since α ≥ 0 and λi(t, a) ≥ 0, we get from (61)

|ϕ(t, a)| ≤ α‖Ly‖∞ + max
i
‖giy‖∞ ·

d(g)∑
i=1

λi(t, a)

≤ α‖Ly(·, ·)‖∞ + max
i
‖giy‖∞ · C|ψ(t, a)fu(t, a) + αLu(t, a)|

≤ α (‖Ly‖∞ + C1‖Lu‖∞) + C1 · ‖fu‖∞|ψ(t, a)| for a.e. (t, a) ∈ D,

where C1 := C maxi ‖giy‖∞. Thus we obtain that there exist constants c > 0 and d > 0 such
that the function ϕ ∈ L1(D, IRd(y)), as in (61), and the adjoint function ψ ∈ L1(D, IRd(y)) satisfy
the inequality

|ϕ(t, a)| ≤ c|ψ(t, a)|+ d for a.e. (t, a) ∈ D.(62)

We shall use the following lemma.
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Lemma 4.5 For c ≥ 0 and d ≥ 0, denote

Ω := {(ϕ,ψ) ∈ IRd(y) × IRd(y) : |ϕ| ≤ c|ψ|+ d}.

Then there exist a matrix function M : Ω→ IRd(y)·d(y) and a vector function ξ : Ω→ IRd(y), both
Borel measurable, such that for every (ϕ,ψ) ∈ Ω it holds that ‖M(ϕ,ψ)‖ ≤ c, |ξ(ϕ,ψ)| ≤ d, and

ϕ = M(ϕ,ψ)ψ + ξ(ϕ,ψ).(63)

Proof. Define the subsets

Ω2 := {(ϕ,ψ) ∈ Ω : rank{ϕ,ψ} = 2},
Ω1 := {(ϕ,ψ) ∈ Ω : rank{ϕ,ψ} = 1, ϕ 6= 0, ψ 6= 0},
Ω0 := {(ϕ,ψ) ∈ Ω : ϕ = 0 or ψ = 0}.

For any (ϕ,ψ) ∈ Ω2 ∪ Ω1 denote by P (ϕ,ψ) the projection operator of IRd(y) on Lin{ϕ,ψ}.
Clearly, the restriction of the mapping (ϕ,ψ) 7→ P (ϕ,ψ) to any of the sets Ω2 and Ω1 is
continuous.

For (ϕ,ψ) ∈ Ω2 define R(ϕ,ψ) as the clockwise rotation defined in Lin{ϕ,ψ} that sends ψ
to a vector positively proportional to ϕ. For (ϕ,ψ) ∈ Ω1 we have ψ = βϕ for some number
β = β(ϕ,ψ) 6= 0. In this case we define R(ϕ,ψ) on Lin{ϕ,ψ} = Lin{ϕ} by R(ϕ,ψ)η =
sign(β(ϕ,ψ))η. Then in both cases R(ϕ,ψ)P (ϕ,ψ) is a linear mapping IRd(y) → IRd(y) with
the norm equal to one. Denote by M̃(ϕ,ψ) the matrix of this mapping in the canonical base.
Clearly the restriction of M̃(ϕ,ψ) on each of the sets Ω2 and Ω1 is a continuous matrix function.

From the definition of M̃(ϕ,ψ) we have the identity

M̃(ϕ,ψ)ψ =
ϕ

|ϕ|
|ψ|, (ϕ,ψ) ∈ Ω2 ∪ Ω1.

Then for (ϕ,ψ) ∈ Ω2 ∪ Ω1 we obtain the representation

ϕ =
c|ψ|

c|ψ|+ d
ϕ+

d

c|ψ|+ d
ϕ =

c|ϕ|
c|ψ|+ d

M̃(ϕ,ψ)ψ +
d

c|ψ|+ d
ϕ

= M(ϕ,ψ)ψ + ξ(ϕ,ψ),

where

M(ϕ,ψ) =
c|ϕ|

c|ψ|+ d
M̃(ϕ,ψ), ξ(ϕ,ψ) =

d

c|ψ|+ d
ϕ.

Obviously ‖M‖ ≤ c‖M̃‖ = c and |ξ| ≤ d on the set Ω2 ∪ Ω1. Moreover, the restrictions of M
and ξ on Ω2 and on Ω1 are continuous.

We extend the definitions of M and ξ to Ω0 by setting M(ϕ,ψ) = 0 and ξ(ϕ,ψ) = ϕ for
(ϕ,ψ) ∈ Ω0. Clearly, the restrictions of M and ξ on Ω0 are also continuous. The identity (63)
is evidently fulfilled. Moreover, if ϕ 6= 0, then ψ = 0 and |ξ| = |ϕ| ≤ d is fulfilled.

Finally, we notice that the set Ω2 is open in Ω, Ω1 ∪Ω0 is closed, and Ω0 is closed. Since the
restrictions of M and ξ on the sets Ω2, Ω1 and Ω0 are continuous, we have the claimed Borel
measurability. 2
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Now we are ready to prove the boundedness of the Lagrange multiplier ψ. Observe that due to
(62) we have (ϕ(t, a), ψ(t, a)) ∈ Ω for a.e. (t, a) ∈ D. According to Lemma 4.5, the following
identity holds:

ϕ(t, a) = M̄(t, a)ψ(t, a) + ξ̄(t, a),(64)

where M̄(t, a) := M(ϕ(t, a), ξ(t, a)) and ξ̄(t, a) := ξ(ϕ(t, a), ψ(t, a)). Notice that both M̄ and ξ̄
are measurable (due to the Borel measurability of M and ξ in Lemma 4.5) and are bounded.

We have obtained that ψ satisfies (7), (9) and (10). Inserting (64) in (7), the latter takes
the form

−
(
∂

∂t
+

∂

∂a

)
ψ(t, a) = ψ(t, a)(fy(t, a) + M̄>(t, a)) + µ(t)hy(t, a) + ξ̄(t, a),(65)

where M̄ is transposed, since in Lemma 4.5 the vector ψ was regarded as a column, while ψ is
considered as a row in the adjoint equation. Since all functions involved as data in (65) and in
(9) and (10) are bounded, Lemma 4.2 implies that ψ and µ are essentially bounded. From (65)
we also obtain that ψ is Lipschitz continuous along almost every characteristic and the norm

esssup
γ∈Γ

‖ψ|Sγ ‖W 1,∞(Sγ ,IRd(y))

is finite.
The boundedness of ψ, nonnegativeness of λi, and estimate (60) imply the boundedness of

λi. Further, conditions (50) imply that ν0 and ν1 are essentially bounded. Finally note that,
without loss of generality, we can take α ∈ {0, 1}. This completes the proof of Theorem 3.1.
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