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Abstract

The paper presents a numerical procedure for solving a class of optimal control problems
for heterogeneous systems. The latter are described by parameterized systems of ordinary
differential equations, coupled by integrals along the parameter space. Such problems arise
in economics, demography, epidemiology, management of biological resources, etc. The nu-
merical procedure include discretization and a gradient projection method for solving the
resulting discrete problem. A main point of the paper is the performed error analysis, which
is based on the property of metric regularity of the system of necessary optimality conditions
associated with the considered problem.
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1 Introduction

In principle, heterogeneous control systems, as described in [14], include age/size-structured
systems, advection-reaction systems, epidemiological models for heterogeneous populations, and
a variety of economic models involving agents with diverse individual features. In this paper we
present a numerical approach for solving optimal control problems for such systems, focusing on
the following special class of heterogeneous systems:

(1) i(t,p) = f(p,x(t,p),y(t,p),u(t,p)), =(0,p) = zo(p),
2) wt.r) = [ olp.q.o(t.)ult.0) d.

Here ¢ € [0,T] is interpreted as time, “dot” means differentiation with respect to ¢, p is a scalar
parameter taking values in an interval P = [0,1I]. The state variables z : [0,7] x P — R",
y :[0,7] x P — R™, and the control variable u : [0,7] x P — U C R" belong to functional
spaces specified below in such a way that together with appropriate assumptions for the functions
f:PxR"XR™xR" -5 R"and g: P x P x R" x R” — R™ equations (1), (2) make sense
for a given initial condition xg.

We associate with system (1), (2) the following optimal control problem:

x?y7u

(3) min{/Pl(x(T,p))dp + /OT/PL(p,af(t,p%y(t,p)w(t,p))dpdt},
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(4) u(t,p) €U,

where [ and L are scalar functions.

Numerous particular optimal control models of the above type can be found in the literature
(see e.g. [4, 14, 11] and the bibliography therein), but the main applications we have in mind
are in the dynamics of populations, where p is interpreted either as a genotype projection or
as some other individual-specific indicator. In these considerations x(t, -) represents the density
of the (multi-dimensional) population along the heterogeneity space P, and y is an aggregated
variable (coupling equations (1) and (2) together) that represents “externalities” influencing the
dynamics.

System (1), (2) does not directly cover age-structured population systems that play a crucial
role in population dynamics and economics ([3, 9]). However, modifications of the subsequent
considerations apply also to optimal control of such systems. Modifications of the presented
approximation scheme and the corresponding error analysis for more general systems (such as
size-structured systems or advection-reaction systems) is possible, but requires additional non-
straightforward work.

We mention that an explicit dependence of the data on the time ¢ is suppressed only for
shortness. Similarly, the function g may depend on y in a sufficiently “regular” way (see [15,
(A3)]). If a non-distributed control v : [0,7] — V is involved in the problem, then minor
modifications are needed, as explained in Section 6.

The aim of this paper is to present a numerical procedure for solving optimal control problems of
the type of (1)—(4). The numerical procedure proposed below employs the Euler discretization
scheme for approximation of Pontryagin’s type necessary optimality conditions for the problem.
The latter involve differential equations, integral relations, and an inclusion (representing the
condition of maximization of the Hamiltonian), that is, a system of generalized equations. A
gradient projection technique is applied for solving this system of generalized equations. A main
point of this paper is the error analysis, which provides an error estimate based on a “metric
regularity assumption” for the system of optimality conditions.

We mention that in our computational tools we always use second order discretization
schemes, rather than Fuler’s one. The reason for which we use exactly a second order scheme
(not first or higher than second order) is explained in the discussions in Section 7. However, we
base our exposition on the Euler scheme due to: (i) better readability that allows to grasp the
idea; (ii) to prove a second order accuracy only on the assumption of metric regularity mentioned
above is an open question.

The paper is organized as follows. In the next section we give a particular example from epi-
demiology. In Section 3 we present some preliminary material — assumptions, strict formulation
of the problem, known optimality conditions. Section 4 presents the numerical method based
on discretization and a gradient projection procedure. Section 5 is devoted to the error analysis.
Some extensions and discussions are given in the two final sections.

2 An example from epidemiology

Models describing the spread of infectious diseases in heterogeneous populations are well known
(see e.g. [4, Chapter 6], [11]). The one below is a typical representative, where, however, a control
is involved (interpreted as prevention), thus an optimal control problem can be considered.



Below p € [0,II] =: P is a scalar parameter representing a trait related to the level of
risk of infection of individuals having this trait (say, intensity of risky contacts, state of the
immune system, personal hygiene, or a combination of the above ones). The population has a
fixed size and is divided into three groups: susceptible, infected, and recovered; S(t,p), I(t,p),
R(t,p), p € P. Here S(t,-) is the density of the susceptible individuals at time ¢, similarly for I
and R. Thus [ S(t,p)dp is the size of the susceptible sub-population, etc. Moreover, a control
u(t,p) € [v,1], v € (0,1), is involved, interpreted as intensity of prevention applied to susceptible
individuals of treat p. The dynamics of the disease is described by the following system:

t,p) = —oa(p)u(t,p)J(t)S(t,p), S(0,p)=So(p),
I(t,p) = o(p)ult,p)J(t) St p)—pl(t,p), I(0,p)=Io(p),
R(t,p) = pI(t.,p), R(0,p)= Ro(p),

I = [ awip) .

where o(p) combines the strength of the disease with the specific level of risk of individuals
of treat p (without prevention), p is the recovery rate, a(p) is the infectiousness of infected
individuals of treat p. The prevention control reduces o(p) to o(p)u(t,p). Since the population
size is obviously constant, J(t) measures the infectiousness of the environment in which the
susceptibles live, thus o(p)u(t,p)J(t) is the incidence rate if control u(t, p) is applied.

A reasonable objective function to be minimized is

/oT /pw I(t,p) + c(p, u(t,p)) S(t,p)] dpdt,

where /3 the economic losses from one individual being infected in a unit of time, ¢(p, u) is the per
capita expenditure of applying control u to susceptibles of trait p. Typically ¢(p,u), u € [v,1] is
strongly convex and decreasing, with ¢(p,1) = 0 (no prevention effort).

Versions of the above problem will be a subject of a separate specialized study due to the
intriguing fact that it may happen (even in the case where ¢(p,u) = ¢(u) is independent of p)
that it is optimal to allocate more prevention to individuals of high risk, but it may also happen
(depending on the data specifications) that it is optimal to put more prevention to individuals of
low risk. This fact has important policy implications, especially in the case of budget constraints
Jpu(t,p)dp < B (such constraints are not involved in our general model, but are also tractable).

3 Preliminary material

In this section we formulate the needed assumption, and first order necessary optimality condi-
tions which will be used in the next sections. This preliminary material is basically an extraction
and adaptation of results from [15] and [14].

First we define the functional spaces used below. Denote D := [0,7] x P. The space X
consists of all functions x : D — R"™ which are Lipschitz continuous in ¢, measurable in p, and
the norm ||z|| := ||7||poo(p) + 1%l Loo(p) 1s finite. By Xy we denote the subset of X" consisting of
those z which satisfy z(0,-) = z(:). Further, Y := Loo(D) and U = {u € Loo(D) : u(t,p) € U
for a.e. (t,p)}. Finally, S := &y x Y x U.

The next assumptions will be standing in all the paper.



Standing assumptions. The set U C R" is convex and compact. The initial state xg belongs to
Lo (P). The functions f, g, [, L are differentiable with respect to all arguments, and the first
derivatives are locally Lipschitz continuous. There is a constant C' such that

Ifl+lgl <CA+|z|+|y|) foreveryte[0,T],p,ge P, xcR", yc R™ uecl.

Given u € U, there is a unique pair (z,y) € X x Y satisfying equations (1), (2) almost everywhere
on D (see e.g. [14, Theorem 1]). The triplet s = (x,y,u) € S will be called process and the
corresponding value of the objective functional in (3) will be denoted by J(u).

For a given reference process s = (z,y,u) € S we define the adjoint equation

(5) —(t,p) = E&(t,p) fo(p,s(t,p)) + /Pn(t, q) 9:(q, p, s(t,p)) dg + Lo (p, s(t,p)),
(6) g(Tv p) = ZI(IE(T,]))),
(7) 77(t7p) = g(tvp) fy(pvs(t’P)) +Ly(P73(tap))-

Notice that £ € R™ and n € R™ are considered as row-vectors, while z, y and u are column
vectors. The derivatives f;, fy, etc. are matrices of dimension n x n, n x m, etc.

The above linear system has a solution (§,7) € X x Y on D (this follows from [14, Proposi-
tion 1]).

Further we sometimes abridge z := (s,£{,n7) € Z2:=Sx X xY =Xy x Y xU x X x Y. Notice
that if z € Z then 2(t, ) € Loo(P). For a function z = (z,y,u,&,n) € Loo(P) (as it is usual, we
overload the notation z, since here z does not depend on t) we define the Hamiltonian

® H() = [ [60)1.5) + Lowse) +10) [ 9(p.0.5(0)) da] .

The Hamiltonian is differentiable in z and its derivative has a functional representation, which
is also an element of Ly (P), namely,

9) Hy(p,z) = &(p) fs(p,s(p)) + Ls(p, s(p)) + /Pn(q) 9s(q,p, s(p)) dg,

(10) He(p,2) = F(p,5(p), Hy(p,2) = /P 9(p, 0, 5(q)) d.

The following proposition follows from the second assertion of Theorem 3 in [14] (Pontryagin’s
type necessary optimality conditions).

Proposition 1 Let § € S be an optimal solution of problem (1)-(4). Let (£,7) € X x Y be the
corresponding unique solution of the adjoint system (5)—(7). Then for almost every (t,p) € D

(11> Hu(‘é(t7 ')7 é(t7 '>7 ﬁ(t7 ))(p) S —NU(ﬁ(t,p)),

where
_ )0 if véeU,
NU(U)_{{uER":(V,w—v)SOforallwEU} it vel.

18 the normal cone to U at v.



Due to expressions (9), (10) one can rewrite the primal-adjoint system (1)—(2), (5)—(7) in Hamil-
tonian form. Then Proposition 1 can be reformulated as follows.

Proposition 2 Let § € S be an optimal solution of problem (1)-(4). Then there exists a pair
(£,7) € X xY such that 2 := (8,£,1) € Z satisfies the following system of generalized* equations:

(12) 0 = —a(t,p) + He(p, 2(1,)),
(13) 0 = —y(t,p)+ Hylp,2(t, ")),
(14) 0 = &(t,p)+ Halp, 2(t,)),
(15) 0 = —&(T,p) + l(2(T,p)),
(16) 0 = —n(tp)+ Hy(p,2(t,)),
(17) 0 € Hyup,z(t, )+ Ny(u(t,p)).

The right-hand side of the above system is defined in Z, while the images are in G :=
YV XxYXxYXLo(P)x)Y x)Y. Thus the right-hand side defines a set-valued (due to the last
inclusion) mapping F': Z = G and system (12)—(17) takes the form

(18) 0€ F(z).

This inclusion represent the set of necessary optimality conditions for problem (1)—(4) and our
aim below will be to find numerically some Z € Z that is close to the set of solutions of (18).

4 Numerical procedure

The numerical approach presented in this paper consists (as usual in optimal control theory) of
two parts. The first part is to pass to a discretized version of problem (1)—(4), then to solve the
resulting finite dimensional optimization problem and to interpret the results in the terms of the
original problem. In practice we use for discretization of the differential equations a second order
Runge-Kutta scheme (the Heun scheme) and for integration we use the corresponding quadrature
formula (the trapezoidal rule). However, for more transparency in this paper we employ the
Euler scheme and the rectangular integration rule. A version of the gradient projection method
in the control space is used for solving the mathematical programming problem, where the adjoin
system is used in the calculation of the gradients.

4.1 Discretization of problem (1)—(4)

Let N and M be (presumably large) natural numbers, h := T/N, 7 := I[I/M, t, := kh, k =
0,...,N,p;=1ir,i=0,...,M. The box with vertices (tx,p;), (tk+1,i); (tk+1,Pi+1)s (tk,Dit1)
in D will be denoted by Q;, k=0,...,N—1,7=0,...,M — 1. In order to understand the
discrete version of system (1)—(4) below, we clarify that x;, yxi, {ki, M Will be interpreted as
approximations of z(ty,p;), ... n(tk,p:), respectively, while u; will be interpreted as a constant
approximation of u in the box Qp;, (In fact, the index k of yx; and nx; will vary only from 0 to
N —1 and from 1 to N, respectively.) This interpretation of uy; is important in the error analysis,
due to the presence of inclusion (17) in the system of necessary optimality conditions, where the

'The term “generalized” refers to the fact that the last relation is an inclusion rather than an equation.



normal cone Ny (u) may be (and usually is) a discontinuous set-valued mapping, therefore it is
important to view the control u as constant on every box Qg;.

Correspondingly, we define the discrete analogs of the spaces X, Xy, )V, U, and S, putting
a~on top of the symbols with the loo-norm in each of them. So, for example, X = {zp; -
k=0,...,N, 1 =0,. — 1}, X, = {z € X xo; = xo(pi)}, etc. As above we abridge
s=(z,y,u) €S —Xoxyxu z=(s,&,m) € Z: —Sx/‘?xy

Formally applying the Euler discretization scheme and the rectangular quadrature formula
we obtain the following discretized problem:

M1 N—1M—1
(19) min {T S lpiani) +ht > Y L(pi,xki,yki,ukz‘)}

=0 k=0 =0

subject to x € Xy, u € U, and the equations

(20) Yi = T Z g(pup]vxk])ukj)v 1= O)"'aM_ 17

(21) xk‘-ﬁ-l,i = Tk + hf(pi)xkia ykiauk‘i)’ 1= 07 ey M — ]-a

where k runs from 0 to N — 1. Clearly, given u € U the iterative scheme (20), (21) produces
unique sequences denoted further by z[u| and y[u]. The objective value in (19) resulting from
u is denoted by J(u), Clearly, the spaces X, ..., U, the matrices (of vectors) z[u], y[u], and the
value J(u) depend on N and M (hence on h and 7) and this dependence will be sometimes
made explicit: for example 27 [u] and J"7(u) may appear in the text to indicate it.

4.2 Gradient projection method for solving the discretized problem

In order to apply a gradient projection method for solving problem (19)—(2 ) we need to calculate
the gradient of .J. Since .J is defined in the subset U of Iy, the derivative J'(u), considered as a
matrix (of r-dimensional vectors) acts on Au € U as

N-1M-1

J )JAu = ht Z Z )] s At

k=0 =0

It is a routine task to represent this derivative by involving the discrete adjoint equations
corresponding to (20), (21). For this reason we define the following discrete version of the
Hamiltonian H in (8): for x = (z0,...,Zpm-1), ¥ = (Yo,-- - YM—1)s s 7 = (N0, -+, NM—1)
and s = (z,y,u), z = (s,£,n) (again we overload the symbols z, ..., 1, since here they denote
M-dimensional vectors instead of (N + 1) x M matrices) define

M-1 M—1
H(z) =7 |&f(pirsi) + L(pi;si) +m0i Y 9(pirpj» 55)
i=0 Jj=0

The derivatives of H with respect to z have the component-wise representation

M—1
Hy(i,2) = Hg(i,8,&,m) = &fs(pissi) + Ls(pi,si) + 7 Y 1igs(pj, pis 8i),
=0
3 ) ) ) M—
He(i,z) = He(i,s) = f(pi, i), Hy(i,2) = Hy(i,z,u) Z (pi, pj, Tj, uj).
7=0



Then it is a routine task to represent

(22) [T (w)|ki = Hu(iy Skis Ekstir Mest,),

where now u € U, the components = = x[u] and y = y[u] of z are determined from (20), (21),
and the components ¢ and 7 satisfy for k=0,...,N —1 and i =0,..., M — 1 the equations

(23) Eng = la(piszni),

(24) M1 =  Hy(d, Skis Skr14)s

(25) i = Eht1i + hH (4, Skis Ebt 16> Mht1,-)s

where k£ runs (backwards) from N —1to 0 and ¢ =0,...,M — 1. As usual, 2., etc., denotes

the vector (of vectors) (2xi)i=1,..m—1. Notice also that fly does not depend on 7, therefore the
argument 7 is missing in (24).

Having the representation (22) of the gradient of J we may define the following procedure.
Starting from an initial guess u € U we calculate the corresponding solution of the initial-value
problem (20), (21) and obtain (z[u],y[u]). Then we solve (backwards) system (23)—(25), and
calculate J'(u) from (22). At this point one can use a variety of methods to calculate a next
control upext € U (see e.g. [12]). Onme possibility is to implement a line search involving the
following scalar function:

pla) = J(Py(u—al (u))),

where P; is the projection operator on U with respect to any norm in the finite-dimensional
space where u lives. The projection operator Py; has the comfortable representation

(26) [Py (V)]ki = Pu(vii),

where the projection on U is usually easy to calculate. The calculation of ¢(«a) requires to solve
again (20), (21) and to calculate the objective value in (19). After making iterations defined
by any method for scalar minimization of ¢ on [0,00), we obtain unexy € U and continue the
procedure in the same manner.

The above procedure can be terminated by any of the usual stopping tests, resulting in some
% € Z. One reasonable criterion for the quality of the obtained “approximation” is the residual
that it gives in the system of necessary optimality conditions for problem (19)—(21). Clearly, for
optimality of z € Z it is necessary that —J'(u) € Ny;(u). Having in mind the representation of
J' in (22)-(25) and (26) we formulate this necessary optimality condition as: z € Z and

(27) 0 = —ylt,pi)+ fln(i,:ﬂk7.,uk7.),

(28) 0 = =M H(i,s),

(29) 0 = —&ni+le(pi,oNi),

(30) 0 = —ngri+ Hy(i, kis Segr),

(31) 0 = w + Hy (i, iy St 1.6 Mot 1)
(32) 0 € Hyli,Skis Eratis Mirt,) + Nu(uri),



fork=N-1,...,0,i=0,..., M—1. The numerically obtained Z satisfies the above system with
some (calculable) residual g[Z] = {g[Z]xi}, so that equations (inclusion) (27)-(32) are satisfied
with ¢[Z)ki = (919K, 91Z]kis - - -, 9[U)ki) in the left-hand side.

Let us introduce a single number p = p(2) that measures the size of the inaccuracy of the
gradient procedure:

p = max{|g[Z|ki|: k=0,...,N—1,i=0,...,M —1}.

In fact, if (Z,7) solves (27), (28) for the control @ and then £ and 7 solve (29) and (31) for the
obtained § (as on every step of the gradient projection procedure), then we have that

p=max{|gli] : k=0,...,N—1,i=0,...,M —1}.

Having in mind (22) we obtain that

p = dist(—J (@), Ny (@),
where the distance is lo. Since the gradient projection methods are convergent (in the sense
that the above distance converges to zero), only under continuous Frechet differentiability of J
and convexity of U, and since p is computable, we may assume that it can be made as small as
we want.

Ones some % € Z is produced by the gradient projection procedure, we define @ € U as i(t,p) =
ug; for (t,p) € Qki, k=0,...,N—1,9=0,...,M — 1. This is the result of the overall solution
procedure.

What is the relation between @ and the set of optimal controls of the original problem (1)
(4)?7 Similar question concerns the corresponding trajectories and adjoint variables. This will
be investigated in the next section.

5 Error analysis

The ideology for establishing an error estimate for the proposed numerical procedure is based on
the concept of metric regularity of generalized equations such as (18) (see [7] for a comprehensive
exposition). We implement it in a way similar to that in our earlier contribution [8] (dealing
with ODE control problems). We first embed the approximate discrete solution Z = "7 in the
continuous-time space Z, then we estimate the corresponding residual in (18) and use a metric
regularity assumption for F' to obtain an error estimate.

The control @ obtained by the numerical procedure in the previous section was embedded
in U as the piece-wise constant function @ (constant on every box Q;). In a similar way we
proceed with § and 7: §(¢,p) := Gr; and 7(t,p) := fg41, for (¢,p) € Qp;. For x and £ we define
for (t,p) € Qi

t—tr  _ N ~ ~ t—t, ~ ~
M (Fri1s— Fri),  E(t,p) = Epi + Tk(ﬁkﬂ,i — &ki)-

Due to Standing Assumptions, it is easy to verify that both ||Z|| and ||Z|| are bounded, uniformly
in N and M. Then easy calculations (involving the Lipschitz constants of f, g, L,l and their
first derivatives) show that there exists a constant Cp, independent of N and M, such that

(33) geF(z), with [gllg <Co(h+7+p).



We present the calculation for y and x, where O(e) will denote any measurable and bounded
function on D such that ||O(¢)|L., < ce and the constant ¢ is independent of N, M, and
the particular approximate solution @ obtained by the gradient projection procedure. We have
|Z(t,p) — Zki| = O(h + 7) on Qy;, thus for (t,p) € Qi

Pj+1
/gp,q, #(t,q),u(t, q)) dq—Z/ 9(p, ¢, T, Urz) dg + O(h)

M- Pj+1
Z / 9, pj, Tj, Ukj)dg+ O(h+7) = Gy + O(h + 7 + p)

(_ p)+Oh+1+p).

Q@>u

Similarly, for (¢,p) € Qk; we have

be) = TEIIE  p50) +0() = f(pis B 0(00), 4 9) + O(7)

= f(paé(tvp))+0(h+7—+ﬁ)
For the residual in (17) we obtain for (¢,p) € Qp;
dlSt( (pv ( ap))? NU(a(tap)) = dlSt( (p7 ( ))a NU(ak’z))

dist(Hu(p, Zri), Nu(tgi)) + O(h + 7+ p)
= OMh+71+p),

IA

where we substantially used that 4 is constant in every box Qp;.

Having at hand (33) we have to establish an estimation for the distance in Z from Z to some
solution z € Z of the inclusion 0 € F'(z) (see (18)). The instrument for that is briefly presented
below based on [7, Chapter 3.

Below we denote by d the distance generated by the norm either in Z or in G. We use the
same symbol for the distance from point to set: d(p, Q) = inf,eq d(p,q). As usual F~1(g) =
{z€eZ:geF(z)}

Definition 1 The set-valued mapping F' : Z = G is said to be metrically regular (MR) at z*
for 0 if 0 € F(2*) and there is a constant x > 0 together with neighborhoods A of z* and B of
0 such that

d(z, F71(g9)) < kd(g, F(z)) for all (z,g9) € A x B.

The infimum of k over all combinations of k, A and B for which the above relation is satisfied
is called the regularity modulus for F at z* for 0 and denoted by reg(F;z*|0). In absence of
metric regularity we set reg(F';z*|0) = oo.

Definition 2 The set-valued mapping F' : Z = G is said to be strongly metrically reqular (SMR)
at z* for 0 if it is metrically regular at z* for 0 with neighborhoods A, B and constant x such
that F'~1(g) N A is single valued when g € B.

The last definition means that g — F~!(g) N A is a Lipschitz function on B with Lipschitz
constant k.



Denote by Z* the set of solutions z* € Z of inclusion (18), that is, Z* = F~1(0).

Clearly, the triple (x, A, B) in the definition of MR is not unique. If F' is MR at z (further we
skip “for 0”), then for every k > reg(F’; z|0) there is a pair of open sets A(z,x) 3 z and B(z,k) >
0 such that the definition of MR is fulfilled with the triple (x, A(z, k), B(z, k)). Presumably, the
smaller is k, the smaller must be these neighborhoods. Given k£ > 0, we fix such pairs of
neighborhoods for every z € Z for which reg(F;z|0) < &, else we set A(z,k) =0, B(z,k) = 0.
In particular, these sets are empty if 0 ¢ F(z) (in that case reg(F’; z|0) = +00).

We do the same for the points z at which F' is SMR: for every z € Z we fix open sets
A%(z,k) 3 2z, B%(z,k) > 0 (possibly empty) such that F~! N A%(z,x) is single-valued and
Lipschitz with constant x on the set B*(z, k). We shall use also the notation A‘;/z(z*, k):={z¢€
Z: ||z = 2% <d(z, 2\ A%(z*, k))}, which is nonempty whenever A®°(z*, k) is nonempty.

We remind that above we have in mind the mapping F' in (18), representing the Pontryagin
maximum principle for our original problem.

Theorem 1 There exists a constant C such that for every x > 0, every natural numbers N
and M, and every z € Z obtained by the numerical procedure in Section 4 with discretization
mesh size (N, M) and residual g, the following claims hold for the embedding 2 € Z of Z and
the residual g in (33):

(i) If (2,9) € A(z*, k) x B(z*, k) for some z* € Z*, then

d(z2,Z*) < Cr(h+ 7+ p);
(i) If Z € AT/Q(Z*, k) and g € B*(z*,K) for some z* € Z*, then

|2— 2"z < Cx (h+7+p).

Proof. If the assumption in Claim (i) is fulfilled, then

d(2,2*) = d(2,F71(0)) < kd(0,F(2)) < s ||gllg < kCo(h+ T+ p),

due to (33).
Let us prove Claim (ii). According to the definition of A] /Q(z*, k) we have
d(2,Z2*) = min{ inf |z — 2], inf Hz—é\}
ZEZ*NA3(2*,K) 2€Z*\ A3 (2*,k)

= min{ inf Iz — 2|, inf Hz—i”}
zEF~1(0)NAS (2% k) 2€Z*\AS (2% k)
= min{Hz*—éH, inf Hz—2||}
2€Z*\A3(2* k)

where we use that F~1(0) N A%(z*,k) = {z*}. Then we repeat the argument in the proof of
Claim (i). Q.E.D.

The assumption in Theorem 1 that the residual § of the numerically obtained “approximate
solution” Z belongs to the “region of Lipschitz stability”, B(z*, k), of some solution z* € Z* of

10



(18) needs some comments. We do not assume even existence of a solution of problem (1)—(4),
so Z* may be empty. Even if Z* is nonempty, the limit of (a subsequence of) 2 = 27 when h,
T converge to zero (in a topology in which the sequence 2" is precompact) the limit does not
need to be a solution of (18). To ensure the latter, one needs additional conditions that we do
not discuss further, since the issue is well known and similar in the ODE control context. We
only mention that the assumption in Theorem 1, that (27, gh") € Ai/Q(z*, k) X B*(z*, k) for
some z* € Z* is demanding in another aspect. If this assumption is fulfilled with a fixed z*
for h, T and p converging to zero (along some sequence), then the estimation in part (ii) of the
theorem implies that
|4 —u*||Lo(py £ Cr(h+T+p)

along this sequence. Taking into account that 4 is constant on every box Q;. Essentially, this
implies that «* must be (equivalent to) a Lipschitz continuous function. In several applications
(including reasonable modifications of the epidemiological model in Section 2) all optimal con-
trols may happen to be discontinuous. Such cases are not covered in the present paper. The
error analysis in case of discontinuous optimal controls is currently under investigation even for
simple classes of ODE optimal control problems (see e.g. [16, 10, 1, 2, 13]).

A question that remains open so far, is whether the generalized equation (18) has solutions
z* € Z* at which F is MR (SMR). A necessary and sufficient condition for SMR of F' at a
given point z* is given in [6] in the case of an ODE optimal control problem (where P consists
of a single point and the aggregated state y is not present). The extension of this result to the
problem (1)—(4) is not straightforward, although the same approach, based on the stability of
the SMR property with respect to linearization ([7, Theorem 5E.1]), is still applicable. Although
it is hard to check the sufficient conditions for SMR in advance, this is doable a posteriori.

6 Some extensions

We have already noticed that explicit dependence on the time ¢ of all data involved in problem
(1)—(4) does not bring any difficulty, assuming Lipschitz continuity in ¢.

In many applications the function g in (2) is independent of p, in which case y(t,p) = y(t) is
also independent of p (see the example in Section 2). Clearly, this brings only a simplification.

A version of problem (1)—(4) may involve non-distributed control variables v(t) € V. This
case needs small changes in the optimality conditions (12)—(17), namely, in the last one. To avoid
additional notations, assume that all control variables are independent of p, that is, u(t, p) = u(t).
Then U = {u € Loo([0,T]) : u(t) € U for a.e. t} and (12) changes to

06/PHu(p,z(t,.))dp+NU(u(t)).

Also the second index i of u; should be deleted in the discrete considerations in sections 4 and
5, and (32) changes to

M1
0€ > Huli, skir &k, Mht1,) + Nu(ug).
i=0
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7 Final discussions

As mentioned above, in practice we use second order Runge-Kutta schemes for discretization of
the differential equations and integrals. One reason for which we present only an approximation
procedure based on the Euler scheme, is to avoid technicalities. Another reason is, that even
when second order schemes are used, the error estimation technique employed in this paper
faces difficulties in obtaining second order estimations. Such are obtained for ODE problems
in [5], where, however, the error estimation is based on assumptions implying (uniform in the
discretization step) strong metric regularity of the discrete problem. To author’s knowledge,
it is an open question whether the latter follows only from SMR of the original problem. The
technique from [5] can probably be extended for obtaining second order accuracy also for the
distributed problems considered in the present paper, but this is a technically challenging issue.

On the other hand, applying higher than second order schemes to problems with control
constraints does not bring higher order accuracy, in general, due to the discontinuity of the first
derivative of the control function that usually appears at contact points with the boundary of
the constraints.
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