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Abstract. This paper investigates what is the Hausdorff distance be-
tween the set of Euler curves of a Lipschitz continuous differential in-
clusion and the set of Euler curves for the corresponding convexified
differential inclusion. It is known that this distance can be estimated by
O(

√
h), where h is the Euler discretization step. It has been conjectured

that, in fact, an estimation O(h) holds. The paper presents results in fa-
vor of the conjecture, which cover most of the practically relevant cases.
However, the conjecture remains unproven, in general.

1 Introduction

In this paper we address the problem of convexification of finite-difference inclu-
sions resulting from Euler discretization of the differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0, t ∈ [0, 1], (1)

where x ∈ IRn, x0 ∈ IRn is given, and F : IRn ⇒ IRn is a set-valued mapping.
Standing assumptions will be that F is compact-valued, bounded (by a constant
denoted further by |F |) and Lipschitz continuous with a Lipschitz constant L
with respect to the Hausdorff metric.1

Denote by S the set of all solutions of (1), and by R := {x(1) : x(·) ∈ S}
the reachable set at t = 1. In parallel, we consider the convexified differential
inclusion

ẏ(t) ∈ coF (y(t)), y(0) = x0, t ∈ [0, 1], (2)

and denote by Sco and Rco the corresponding solution set and reachable set.

Now we consider the Euler discretizations of (1) and (2):

xk+1 ∈ xk + hF (xk), k = 0, . . . , N − 1, (3)

? This research is supported by the Austrian Science Foundation (FWF) under grant
P 26640-N25.

1 In fact, the global boundedness and Lipschitz continuity can be replaced with local
ones if all solutions of (1) are contained in a bounded set. Then the formulations
of some of the claims in the paper should be somewhat modified. The standing
assumptions above are made simpler for more transparency.



2

and
yk+1 ∈ yk + h coF (yk), k = 0, . . . , N − 1, y0 = x0, (4)

where N is a natural number and h = 1/N is the mesh size. Denote by Sh and
Sco
h the sets of (discrete) solutions of these inclusions, respectively, and by Rh

and Rco
h the corresponding reachable sets.

It is well known that Sco = clS. This paper investigates what is the Hausdorff
distance between Sh and Sco

h , and also between Rh and Rco
h . The former is

defined as

H(Sh, S
co
h ) = sup

(y0,...yN )∈Sco
h

inf
(x0,...xN )∈Sh

max
i=0,...,N

|yi−xi| = sup
y∈Sco

h

inf
x∈Sh

‖x−y‖l∞ .

Results by Tz. Donchev [1] and G. Grammel [4] imply that H(Sh, S
co
h ) =

O(
√
h). The unpublished author’s report [9] contains the following

Conjecture: There exists a constant c such that for every natural number N

H(Sh, S
co
h ) ≤ ch. (5)

This conjecture has been proved in a number of special cases (see Section 3),
but not in general. It is important to clarify what the constant c depends on.
A stronger form of the conjecture is that c depends only on |F |, L, and the
dimension of the space, n. However, in some of the results presented below the
constant c will depend also on some geometric properties of F (x). Therefore we
speak about the weak and the strong form of the conjecture. We mention that
there is an even stronger form of the conjecture, where Lipschitz continuity is
required for coF instead of F . This case will be only partly discussed in Part 2
of Section 3.

Clearly, (5) implies the same estimation for H(Rh, R
co
h ), but the inverse im-

plication does not need to be true. (Here, and at some places below we use the
symbol H also for the Hausdorff distance between compact subsets of IRn, which
will be clear from the context.)

The problems mentioned above are relevant for many engineering applications,
where switched systems [5] or mixed-integer control problems (see [6–8] and the
references therein) arise. The mixed-integer control problems can be formulated
as

min
u(·)

{
p(x(1)) +

∫ 1

0

q(x(t)) dt

}
(6)

ẋ(t) = ϕ(x(t), u(t)), x(0) = x0, u(t) ∈ U, t ∈ [0, 1], (7)

where some of the components of the control u are restricted in a convex set,
the remaining components take values in a discrete set. Thus the set U is non-
convex. The problem becomes combinatorial and due to the high dimension of
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its discretized counterpart (obtained, say, by the Euler method with mesh size h)
is hard to be solved numerically. For this reason, in the abovementioned papers
the authors propose to solve the convexified version of the problem and then
from the numerically obtained optimal control to construct another, piecewise
constant one, that takes values in U only, and such that the loss of performance is
small (relative to the discretization step h). Such constructions will be discussed
in the next sections. It is easy to see that the loss of performance (compared
with the optimal performance of the convexified problem) can be estimated by
H(Sh, S

co
h ) +O(h), and in the case q = 0 by H(Rh, R

co
h ) +O(h), provided that

p and q are Lipschitz continuous. This gives one motivation for the question
formulated above.

In the next section we present a result related to the problem posed above
(but not implying validity of the conjecture), while in Section 3 we prove the
conjecture under some additional conditions. The proofs use ideas from [9, 8].

2 A related result

The next result deviates from the conjecture formulated in the introduction, but
has practical relevance in view of the control problem (6), (7).

Theorem 1 There exists a constant C such that for every natural number N
and for every y = (y0, y1, . . . , yN ) ∈ Sco

h there exist positive numbers h1, . . . hN
with

∑N
k=1 hk = 1 and a solution x = (x0, . . . xN ) of

xk+1 ∈ xk + hkF (xk), k = 0, . . . , N − 1, (8)

such that

‖x− y‖l∞ ≤ (4n+ 1)|F |eL h.

Proof. Obviously coF is Lipschitz and bounded with the same constants as F .

Let y = (y0, y1, . . . , yN ) ∈ Sco
h . Then there exist ξi ∈ coF (yi) such that

yi+1 = yi + hξi, i = 0, . . . , N − 1. (9)

We split the points y0, . . . , yN into groups of n+ 1 successive elements, the last
one containing possibly a smaller number of elements. Let m be the number of
groups, not counting the last one if it contains less than n+ 1 elements. Thus m
is the largest integer for which m(n+ 1) ≤ N .

We shall define a trajectory (x0, x1, . . . , xN ) of (8) successively for each group
of indexes. Namely, since x0 is given and y0 = x0, we set ∆0 = |x0 − y0| = 0,
then we assume that xi(n+1) is already defined, together with the corresponding
steps hj , j = 0, . . . , i(n+ 1). Denote ∆i = |xi(n+1) − yi(n+1)|.
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Due to (9) we have that for j = 0, . . . , n

ξi(n+1)+j ∈ coF (yi(n+1)+j) = coF

(
yi(n+1) + h

j−1∑
s=0

ξi(n+1)+s

)
⊂ coF (yi(n+1)) + hjL|F |B,

where B is the unit ball in IRn. Then there exist ξ̃i(n+1)+j ∈ coF (yi(n+1)) such
that

|ξ̃i(n+1)+j − ξi(n+1)+j | ≤ hjL|F |, j = 0, . . . , n, (10)

where we have set ξ̃i(n+1) = ξi(n+1). Since ξ̃i(n+1)+j ∈ coF (yi(n+1)), we have
also that

1

n+ 1

n∑
j=0

ξ̃i(n+1)+j ∈ coF (yi(n+1)).

According to the Carathéodory theorem, there exist η̃i(n+1)+j ∈ F (yi(n+1)) and
αj ≥ 0,

∑n
j=0 αj = 1, such that

n∑
j=0

αj η̃i(n+1)+j =
1

n+ 1

n∑
j=0

ξ̃i(n+1)+j . (11)

Let us define hi(n+1)+j = h̄j := (n + 1)hαj . Due to the Lipschitz continuity of
F , there exists ηi(n+1) ∈ F (xi(n+1)) such that

|ηi(n+1) − η̃i(n+1)| ≤ L∆i.

To extend the trajectory x0, . . . , xi(n+1) we set

xi(n+1)+1 = xi(n+1) + h̄0ηi(n+1).

Since

H(F (xi(n+1)+1), F (yi(n+1))) ≤ H(F (xi(n+1)+1), F (xi(n+1))) +H(F (xi(n+1)), F (yi(n+1)))

≤ h̄0L|F |+ L∆i,

there exists ηi(n+1)+1 ∈ F (xi(n+1)+1) such that

|ηi(n+1)+1 − η̃i(n+1)+1| ≤ h̄0L|F |+ L∆i.

Then we define
xi(n+1)+2 = xi(n+1)+1 + h̄1ηi(n+1)+1.

Continuing in the same way we define for every j = 0, . . . , n the vectors ηi(n+1)+j

and xi(n+1)+j+1 such that

ηi(n+1)+j ∈ F (xi(n+1)+j),

xi(n+1)+j+1 = xi(n+1)+j + h̄jηi(n+1)+j ,

|ηi(n+1)+j − η̃i(n+1)+j | ≤ L|F |
j−1∑
k=0

h̄k + L∆i. (12)
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In this way the trajectory of (3) is extended to the discrete time (i+ 1)(n+ 1).
The next estimations follow from (12), (11), (10):

∆i+1 = |x(i+1)(n+1) − y(i+1)(n+1)|

≤ |xi(n+1) − yi(n+1)|+

∣∣∣∣∣∣
n∑

j=0

h̄jηi(n+1)+j − h
n∑

j=0

ξi(n+1)+j

∣∣∣∣∣∣
≤ ∆i +

n∑
j=0

h̄j
∣∣ηi(n+1)+j − η̃i(n+1)+j

∣∣+

∣∣∣∣∣∣
n∑

j=0

h̄j η̃i(n+1)+j − h
n∑

j=0

ξ̃i(n+1)+j

∣∣∣∣∣∣
+h

n∑
j=1

∣∣∣ξ̃i(n+1)+j − ξi(n+1)+j

∣∣∣
≤ ∆i +

n∑
j=0

h̄jL∆i + L|F |
n∑

j=1

h̄j

j−1∑
k=0

h̄k

+

∣∣∣∣∣∣(n+ 1)h

n∑
j=1

αj η̃i(n+1)+j − h
n∑

j=1

ξ̃i(n+1)+j

∣∣∣∣∣∣+ h

n∑
j=0

hjL|F |

≤ (1 + (n+ 1)Lh)∆i + (n+ 1)2L|F |h2 +
n(n+ 1)

2
L|F |h2

≤ (1 + (n+ 1)Lh)∆i + (n+ 1)(2n+ 1)L|F |h2.

Since this holds for any i < m it implies in a standard way the inequality

∆i ≤ (2n+ 1)|F |ei(n+1)Lhh ≤ (2n+ 1)|F |em(n+1)Lhh ≤ (2n+ 1)|F |eLh.

Then taking into account the errors that can be made within n intermediate
steps, or in the last N − m(n + 1) ≤ n steps we obtain for the above defined
solution of (8)

|xk − yk| ≤ (2n+ 1)|F |eLh+ 2n|F |h ∀k = 0, . . . , N.

The proof is complete. Q.E.D.

Obviously the above theorem does not give an answer to the main question
in this paper, since the time-steps in (8) need not be uniform. Although the total
number of jumps is N , there could be much smaller distance between the jumps,
which may be trouble for practical implementations. Moreover, as it is clear
from the proof, in the terms of the control problem (6)–(7), the choice of uk ∈ U
at step k depends on n future values of the optimal control of the convexified
problem (that is, it is anticipative). However, this is in line with the model
predictive control methodology used in practice. Moreover, the construction in
the proof of the theorem can be viewed as an alternative of the “adaptive control
grid” proposed in [7] where 2N jump points of the control are used (instead of
N).
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3 Cases in which the conjecture is proved

Part 1. First we consider the case of a constant mapping F , that is, the inclusion

ẋ(t) ∈ V, x(0) = x0, t ∈ [0, 1], (13)

where V ⊂ IRn is compact. This case will be embodied later in more general
considerations.

We mention that conjecture (5) has not been proved even in this “simple”
case. However, for constant mappings F (x) = V it holds that

H(Rh, R
co
h ) ≤ ch,

where the constant c depends only on |V | and n. This can be proved (and
has been proved by several mathematicians in private communications with the
author: Z. Artstein, M. Brokate, E. Farkhi, T. Donchev) in different ways, the
simplest of which uses the Shapley-Folkmann theorem (see e.g. [3, Appendix 1]).

Now, we consider the case of a set V consisting of finite number of points:

V = {v1, . . . , vs}, vi ∈ IRn. (14)

The proof is given in the research report [9] and is somewhat modified below.

Proposition 1. For differential inclusion (13) with the constant mapping V
specified in (14) the estimation

H(Sh, S
co
h ) ≤ 2s|V |h,

holds for every h = 1/N , N ∈ IN .

Proof. Let a trajectory y0, . . . , yN of the convexified inclusion

yk+1 ∈ yk + h coV, k = 0, . . . N − 1, y0 = x0,

be fixed. Then

yk+1 = yk + hξk, with ξk =

s∑
j=1

αkjvj ,

where αkj ≥ 0 and
∑s

j=1 αkj = 1. We have

yk = y0 + h
k−1∑
i=0

s∑
j=1

αijvj = y0 + h

s∑
j=1

βkjvj ,

where βkj =
∑k−1

i=0 αij . Clearly,

s∑
j=1

βkj =

s∑
j=1

k−1∑
i=0

αij = k.
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We shall define the sequence

xk+1 ∈ xk + hV, x0 = y0,

as follows. Let xk be already defined. Denote

δkj = βkj − γkj ,

where γkj is the number of times vj is chosen in the construction of xk. Clearly,

s∑
j=1

γkj = k, hence

s∑
j=1

δkj = 0. (15)

Denote also

Jk = {j : δkj ≥ 0}, ∆k =
∑
j∈Jk

δkj .

Let j = j̄ be an index for which δkj is maximal. Then we define

xk+1 = xk + hvj̄ .

We shall estimate ∆k+1. First suppose that δk+1,j̄ ≥ 0, thus j̄ ∈ Jk+1. Then we
have

∆k+1 =
∑

j∈Jk+1

(βk+1,j−γk+1,j) = βkj̄ +αkj̄−γkj̄−1+
∑

j∈Jk+1\{j̄}

(βk+1,j−γk+1,j)

= δk,j̄+αk,j̄−1+
∑

j∈Jk+1\{j̄}

(βkj+αkj−γk+1,j) = δk,j̄+αk,j̄−1+
∑

j∈Jk+1\{j̄}

(δkj+αkj)

≤ δk,j̄ + αk,j̄ − 1 +
∑

j∈Jk\{j̄}

δkj +

s∑
j=1

αkj − αk,j̄ ≤ ∆k − 1 +

s∑
j=1

αkj = ∆k.

In the last line we have used that δkj < 0 for j 6∈ Jk.
Now, let us consider the case δk+1,j̄ < 0. Then

βkj̄ + αkj̄ − γkj̄ − 1 ≤ 0,

hence

δkj̄ ≤ 1− αkj̄ ≤ 1.

From the maximality of δkj̄ we obtain δk,j ≤ 1 for all j, hence

∆k ≤ s.

Combining the two cases we obtain that at every step k

either ∆k+1 ≤ ∆k, or ∆k ≤ s.
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Having in mind that ∆0 = 0 from here we conclude that

∆k ≤ s ∀ k = 0, . . . , N.

To complete the proof we notice that

yk − xk = h

s∑
j=1

δkjvj = h

∑
j∈Jk

δkjvj +
∑
j 6∈Jk

δkjvj

 ,

thus

|yk − xk| ≤ h|V |

∑
j∈Jk

δkj +
∑
j 6∈Jk

|δkj |

 .

Hence, using (15) we obtain

|yk − xk| ≤ h|V |(∆k +∆k) ≤ 2s|V |h.

Q.E.D.

Notice that the proof of the above proposition is constructive and the defi-
nition of vk ∈ V at every step is non-anticipative with respect to the reference
trajectory y0, . . . , yN . A construction like that of vk is named in [7, 8] as Sum
Up Rounding Strategy.

We mention that the constant c = 2s|V | in Proposition 1 depends on the
number of elements of V , that is, only the weaker form of Conjecture (5) is
proved (the constant c depends on the geometric properties of V ). In particular,
it does not help to deal with sets V for which the boundary of coV contains
curved pieces. The next result is capable to capture some such cases.

Part 2. In this part we consider the general inclusion (1), weakening a bit the
standing assumptions. Namely, instead of assuming Lipschitz continuity of F we
assume that coF is Lipschitz continuous.

Notice that all sequences in Sh and Sco
h are contained in the compact set

X := {x ∈ IRn : |x − x0| ≤ M}. Let there exist functions li : X → IRn,
i = 1, . . . , n such that:
(i) li are Lipschitz continuous;
(ii) the vectors li(x), i = 1, . . . , n, are linearly independent and |li(x)| = 1 for
every x ∈ X;
(iii) for every x ∈ X, every v̄ ∈ coF (x) and every σ1, . . . , σn ∈ {−1, 1} there
exists v ∈ F (x) such that

σiαi(x; v − v̄) ≤ 0, i = 1, . . . , n,

where αi(x; z) is the i-th coordinate of z ∈ IRn in the basis {li(x)}.

Clearly, the numbers αi(x; z) are uniquely defined from

z =

n∑
i=1

αi(x; z) li(x). (16)
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Proposition 2. Under the suppositions made in Part 2 there exists a constant
C such that

H(Sh, S
co
h ) ≤ Ch

for every h = 1/N , N ∈ IN .

Proof. Denote bij(x) = 〈ei, lj(x)〉, i, j = 1, . . . , n, where {ei} is the standard
basis in IRn. Then the matrix

B(x) = {bij(x)}

is invertible, and its inverse, (B(x))−1, is Lipschitz continuous (with constant
L̄) and bounded (by a constant M̄) in X with respect to the operator matrix
norm. Since we have

α(x; z) = B−1(x)z,

the mapping x −→ α(x; z) is Lipschitz continuous in x ∈ X with Lipschitz
constant L̄|z| and |α(x; z)| ≤ M̄ |z| for all z ∈ IRn. Moreover, due to (16)

|z| ≤
n∑

i=1

|αi(x; z)| |li(x)| ≤ n‖α(x, z)‖∞,

where ‖α(x; z)‖∞ := maxi |αi(x; z)|.
Let us fix an arbitrary (y0, . . . , yN ) ∈ Sco

h , and let a solution xk of (1) be
already defined until some k ≥ 0. Denote

δk = ‖α(xk;xk − yk)‖∞.

We have
yk+1 = yk + huk

for some uk ∈ coF (yk). There exists some v̄k ∈ coF (xk) such that

|v̄k − uk| ≤ L|xk − yk| ≤ nL‖α(xk;xk − yk)‖∞ = nLδk.

We define vk ∈ F (xk) according to assumption (iii) applied for

v̄ = v̄k, x = xk, σi = sign(αi(xk;xk − yk)).

Then define
xk+1 = xk + hvk.

We have

αi(xk+1; xk+1 − yk+1) = αi(xk+1;xk − yk + h (vk − v̄k)) + hαi(xk+1; v̄k − uk)

= αi(xk;xk − yk) + hαi(xk; vk − v̄k)

+[αi(xk+1;xk − yk + h (vk − v̄k))− αi(xk;xk − yk + h (vk − v̄k))]

+hαi(xk+1, v̄k − uk).
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Due to the choice of vk we have

|αi(xk;xk − yk) + hαi(xk; vk − v̄k)| ≤ max{δk, 2hMM̄}.

The term in the brackets in the chain of equalities above can be estimated by

L̄|xk+1 − xk| |xk − yk + h (vk − v̄k)| ≤ hML̄(δk + 2hM),

and the last term by
hM̄ |v̄k − uk| ≤ hM̄nLδk.

Combining the obtained estimations we obtain that

δk+1 ≤ max{δk, 2hMM̄}+ hML̄(δk + 2hM) + hM̄nLδk

= max{δk, 2hMM̄}+ h(ML̄+ M̄nL)δk + 2h2M2L̄.

Now we consider two cases.
If δk ≤ 2hMM̄ , then

δk+1 ≤ 2hMM̄ + 2h2MM̄(ML̄+ M̄nL) + 2h2M2L̄ ≤ C1h,

with an appropriate constant C1.
If δk > 2hMM̄ , then

δk+1 ≤ (1 + h(ML̄+ M̄nL))δk + 2h2M2L̄.

The above two estimations in combination imply in a standard way the claim
of the proposition. Q.E.D.

We mention that the construction of the x of (3) in the above proof is non-
anticipative with respect to the reference solution y of (4).

The next is a simple consequence of the above proposition.

Corollary 1. Under the conditions of Proposition 2, let F satisfy

F (x) = ∂(coF (x)) ∀x ∈ IRn,

where ∂Y denotes the boundary of Y . Then the conclusion of Proposition 2 holds
true.

Indeed, we may take an arbitrary fixed orthonormed basis {li(x) = li}. Let
us take an arbitrary v̄ ∈ coF (x) and σi ∈ {−1, 1}. If v̄ 6∈ ∂F (x), then moving
from v̄ along the vector −(σ1l1 + . . . + σnln) we shall reach a point v ∈ ∂F (x)
for which (iii) is obviously satisfied.

One example (that was considered as non-trivial) is the inclusion (13) with V
being the semi-circle in IR2 (a semi-sphere in IRn can be treated in the same
way):

V = {(v1, v2) : (v1)2 + (v2)2 = 1, v2 ≥ 0}.
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The claim of the conjecture (5) for this example follows from Proposition 2.
Indeed, one may take li = ei – the standard basis in IR2. For any v̄ ∈ coV and
σ1, σ2 ∈ {−1, 1} define v2 = v̄2, v1 = −σ1

√
1− v̄2

2 . Then σ1α1(v) = −
√

1− v̄2
2 ≤

0 and σ2α2(v) = 0. Assumption (iii) of Proposition 2 is fulfilled.

Part 3. Now, we consider a differential inclusion of the form

ẋ(t) ∈ G(x)V, x(0) = x0, (17)

where G(x) is an (n×m)-matrix and V ⊂ IRm.

Proposition 3. Let V be compact and G(·) be Lipschitz continuous with con-
stant L > 0, and bounded by a constant M , both with respect to the operator
norm of G. Let (5) holds for the differential inclusion (13) with some constant
c. Then for the differential inclusion (17) the estimation

H(Sh, S
co
h ) ≤ cM(1 + L)eL|V |h,

holds for every h = 1/N , N ∈ IN .

This proposition is an extension of [8, Theorem 2] where it is assumed that
G is differentiable and V is a box. The proof below is a discrete-time adoption
of that in [8].

Proof. Let {yk} ∈ Sco
h . Then for every k = 0, . . . , N −1 there is some wk ∈ coV

such that yk+1 = yk + hG(yk)wk. According to the second assumption of the
proposition, there exists a sequence {vk} with vk ∈ V , such that∣∣∣∣∣

k∑
i=0

(vi − wi)

∣∣∣∣∣ ≤ c for every k = 0, . . . , N.

Let {xk} ∈ Sh be defined by xk+1 = xk + hG(xk)vk. Denote δk = yk − xk. Then
δ0 = 0 and

δk+1 = h

k∑
i=0

(G(yi)wi −G(xi)vi)

= h

k∑
i=0

G(yi)(wi − vi) + h

k∑
i=0

(G(yi)−G(xi))vi

= hG(yk)

k∑
i=0

(wi − vi)− h
k−1∑
i=0

(G(yi+1)−G(yi))

i∑
j=0

(wj − vj)

+h

k∑
i=0

(G(yi)−G(xi))vi,
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where in the last equality we use the discrete analog of the integration by parts
formula for Stieltjes integrals. Then

|δk+1| ≤ hMc+ hLMc+ hL|V |
k∑

i=0

|δi|

= hL|V |
k∑

i=0

|δi|+ hcM(1 + L).

Next, we use the following simple fact that can be proved by induction.

Lemma 1. If the sequence {∆k ≥ 0} satisfies

∆k+1 ≤ A
k∑

i=0

∆i +B, k = 0, 1, . . . , ∆0 = 0,

then
∆k ≤ B(1 +A)k−1, k = 1, 2, . . . .

Thus,

|δk| ≤ hcM(1 + L)(1 + hL|V |)k−1 ≤ hcM(1 + L)eL|V |.

Q.E.D.

Part 4. Following [8], one can use the above proposition to obtain an estimation
as in (5) for non-affine inclusions of the form

ẋ ∈ f(x, U), (18)

where U ∈ IRm consists of finite number of points; U = {u1, . . . , us}, and
f(·, ui) : IRn → IRn.

Proposition 4. Let the functions f(·, ui) be Lipschitz continuous with constant
L > 0, and bounded my a constant M . Then for the differential inclusion (18)
the estimation

H(Sh, S
co
h ) ≤ 2s3/2M(1 +

√
sL)e

√
sL h, (19)

holds for every h = 1/N , N ∈ IN .

Proof. The set of trajectories, S, of (18) coincides with that of the inclusion

ẋ ∈ G(x)V, (20)

where u = (u1, . . . , us), G(x) = [f(x, u1), . . . , f(x, us)], and V = {e1, . . . , es}
with ei – the unit coordinate vectors in IRs. The convexified version of (20)
reads as

ẋ ∈ G(x) coV. (21)
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Moreover, the Euler discretizations of (18) and ẏ ∈ co f(y, U) are equivalent to
those of (20) and ẏ ∈ G(y)V . Then it is enough to estimate H(Sh, S

co
h ), where

Sh and Sco
h are the solution sets of the Euler discretizations of (20) and (21),

respectively. Then the claim of the proposition follows from Proposition 1 (saying
that c = 2s|V | = 2s, and Proposition 3, taking into account that |V | = 1, the
Lipschitz constant of G(·) is

√
sL, and ‖G(x)‖ ≤

√
sM , both with respect to the

operator norm of G. Q.E.D.

This propositions extends the result in [8] mainly in that f(·, u) is not as-
sumed differentiable. The constant in (19) depends on the number of elements of
U , which means that only the weak form of Conjecture (5) is proved in the con-
sidered special case. On the other hand, the assertion of the proposition covers
most of the practically interesting cases.

4 Conclusion

To the author’s knowledge, the conjecture that H(Sh, S
co
h ) = O(h) is still open

(both in its stronger and weaker form). We stress that the conjecture has not
been proved even in the case of a constant mapping F (x) = V ⊂ IRn. However,
the partial results in this paper cover most of the practically important cases.
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