Coming to Terms with Quantified Reasoning

Laura Kovacs

TU Wien, Austria
laura.kovacs@tuwien.ac.at

Abstract

The theory of finite term algebras provides a natural framework to
describe the semantics of functional languages. The ability to effi-
ciently reason about term algebras is essential to automate program
analysis and verification for functional or imperative programs over
algebraic data types such as lists and trees. However, as the theory
of finite term algebras is not finitely axiomatizable, reasoning about
quantified properties over term algebras is challenging.

In this paper we address full first-order reasoning about prop-
erties of programs manipulating term algebras, and describe two
approaches for doing so by using first-order theorem proving. Our
first method is a conservative extension of the theory of term alge-
bras using a finite number of statements, while our second method
relies on extending the superposition calculus of first-order theorem
provers with additional inference rules.

We implemented our work in the first-order theorem prover
Vampire and evaluated it on a large number of algebraic data type
benchmarks, as well as game theory constraints. Our experimental
results show that our methods are able to find proofs for many hard
problems previously unsolved by state-of-the-art methods. We also
show that Vampire implementing our methods outperforms existing
SMT solvers able to deal with algebraic data types.

Categories and Subject Descriptors CR-number [subcategory]:
D 2.4 Software/Program Verification, F.3.1 Specifying and Ver-
ifying and Reasoning about Programs, F.3.2 Semantics of Pro-
gramming Languages, F 4.1. Mathematical Logic, 1.2.3 Deduc-
tion and Theorem Proving, 1.2.4 Knowledge Representation For-
malisms and Methods

Keywords Program analysis and verification, algebraic data types,
automated reasoning, first-order theorem proving, superposition
proving

1.

Applications of program analysis and verification often require
generating and proving properties about algebraic data types, such
as lists and trees. These data types (sometimes also called recur-
sive or inductive data types) are special cases of term algebras, and
hence reasoning about such program properties requires proving in
the first-order theory of term algebras. Term algebras are of partic-
ular importance for many areas of computer science, in particular

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

POPL’17, January 15-21, 2017, Paris, France

(© 2017 ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009887

Simon Robillard

Chalmers Univ. of Technology, Sweden
simon.robillard@chalmers.se

260

Andrei Voronkov

University of Manchester, UK
Chalmers Univ. of Technology, Sweden

andrei@voronkov.com

program analysis. Terms may be used to formalize the semantics
of programming languages (Goguen et al. 1977; Clark 1978; Cour-
celle 1983); they can also themselves be the object of computation.
The latter is especially obvious in the case of functional program-
ming languages, where algebraic data structures are manipulated.
Consider for example the following declaration, in the functional
language ML:

datatype nat zero | succ of nat;

Although the functional programmer calls this a data type declara-
tion, the logician really sees the declaration of an (initial) algebra
whose signature is composed of two symbols: the constant zero
and the unary function succ. The elements of this data type/algebra
are all ground (variable-free) terms over this signature, and pro-
grams manipulating terms of this type can be declared by means of
recursive equations. For example, one can define a program com-
puting the addition of two natural numbers by the following two
equations:

add zero x
add

X

Yy

Verifying the correctness of programs manipulating this data type
usually amounts to proving the satisfiability of a (possibly quanti-
fied) formula in the theory of this term algebra. In the case of the
program defined above, a simple property that one might want to
check is that adding a non-zero natural number to another results in
a number that is also different from zero:

(succ x) succ (add x vy)

X # zero V y # zero = add x y # zero

Note that depending on the semantics of the programming lan-
guage, there may exist cyclic terms such as the one satisfying the
equation z &~ succ(z), or even infinite terms, but in a strictly evalu-
ated language, only finite non-cyclic terms lead to terminating pro-
grams. Since program verification is in general concerned with pro-
gram safety and termination, it is desirable to consider in particular
the theory of finite term algebras, denoted by 77 in the sequel.
The full first-order fragment of 7z is known to be decid-
able (Mal’cev 1962). One may hence hope to easily automate the
process of reasoning about properties of programs manipulating al-
gebraic data types, such as lists and trees, corresponding to term
algebras. However, properties of such programs are not confined
strictly to 7pr for the following reasons: program properties typi-
cally include arbitrary function and predicate symbols used in the
program, and they may also involve other theories, for example
the theory of integer/real arithmetic. Decidability of Tz is how-
ever restricted to formulas that only contain term algebra symbols,
that is, uninterpreted functions, predicates and other theory sym-
bols cannot be used. If this is not the case, non-linear arithmetic
could trivially be encoded in Tr7, implying thus the undecidabil-
ity of 7rr. Due to the decidability requirements of 7p7 on the
one hand, and the logical structure of general program properties

over term algebras on the other hand, decision procedures based
on (Mal’cev 1962) for reasoning about programs manipulating al-
gebraic data cannot be simply used. For the purpose of proving
program properties with symbols from 777, one needs more so-
phisticated reasoning procedures in extensions of 7.

For this purpose, the works of (Barrett et al. 2007; Reynolds and
Blanchette 2015) introduced decision procedures for various frag-
ments of the theory of term algebras; these techniques are imple-
mented as satisfiability modulo theory (SMT) procedures, in par-
ticular in the CVC4 SMT solver (Barrett et al. 2011). However,
these results target mostly reasoning in quantifier-free fragments
of term algebras. To address this challenge and provide efficient
reasoning techniques with both quantifiers and term algebra sym-
bols, in this paper we propose to use first-order theorem provers.
We describe various extensions of the superposition calculus used
by first-order theorem provers and adapt the saturation algorithm of
theorem provers used for proof search.

Theory-specific reasoning in saturation-based theorem provers
is typically conducted by including the theory axioms in the set of
input formulas to be saturated. Unfortunately a complete axiomati-
zation of the theory of term algebras requires an infinite number of
sentences: the acyclicity rule, which ensures that a model does not
include cyclic terms, is described by an infinite number of inequal-
ities x % f(x), z % f(f(x)),... This property of term algebras
prevents us from performing theory reasoning in saturation-based
proving in the usual way.

As a first attempt to remedy this state of affairs, in this paper we
present a conservative extension of the theory of term algebras that
uses a finite number of sentences (Section 5). This extension relies
on the addition of a predicate to describe the “proper subterm”
relation between terms. This approach is complete and can easily
be used in any first-order theorem prover without any modification.

Unfortunately, the subterm relation is transitive, so that the num-
ber of predicates produced by saturation quickly becomes a burden
for any prover. To improve the efficiency of the reasoning, we of-
fer an alternative solution: extending the inference system of the
saturation theorem prover with additional rules to treat equalities
between terms (Section 6).

We implemented our new inference system, as well as the sub-
term relation, in the first-order theorem prover Vampire (Kovics
and Voronkov 2013). We tested our implementation on two sets
of benchmarks. We used 4170 problems describing properties of
functional programs manipulating algebraic data types; these prob-
lems were taken from (Reynolds and Blanchette 2015). This set
of examples were generated using the Isabelle inductive theorem
prover (Nipkow et al. 2002) and translated by the Sledgeham-
mer system (Blanchette et al. 2013). Further, we also used prob-
lems from (Colmerauer et al. 2000) with many quantifier alterna-
tions over term algebras. When compared to state-of-the-art SMT
solvers, such as CVC4 and Z3 (de Moura and Bjgrner 2008), our
experimental results give practical evidence of the efficiency and
logical strength of our work: many hard problems that could not be
solved before by any existing technique can now be solved by our
work (see Section 7).

Contributions. The main contributions of our paper are summa-
rized below.

e We extend the theory 77 of finite term algebras with a subterm
relation denoting proper subterm relations between terms. We
call this extension 7,4 and prove that 7,1 is a conservative
extension of Tpr. When compared to Trr, the advantage of
T is that it is finitely axiomatizable and hence can be used
by any first-order theorem prover. Moreover, one can combine
TF+T with other theories, going even to undecidable fragments
of the combined theory of term algebras and other theories. As

261

an important consequence of this conservative extension, our
work yields a superposition-based decision procedure for term
algebras (Section 5).

We show how to optimize superposition-based first-order rea-
soning using new, term algebra specific, simplification rules,
and an incomplete, but simple, replacement for a troublesome
acyclicity axiom. Our new inference system provides an alter-
native and efficient approach to axiomatic reasoning about term
algebras in first-order theorem proving and can be used with
combinations of theories (Section 6).

e We implement our work in the first-order theorem prover Vam-
pire. Our works turns Vampire into the first first-order theo-
rem prover able to reason about term algebras, and therefore
about algebraic data types. Our experiments show that our im-
plementation outperforms state-of-the-art SMT solvers able to
reason with algebraic data types. For example, Vampire solved
50 SMTLIB problems that could not be solved by any other
solver before (Section 7).

2. Preliminaries

We consider standard first-order predicate logic with equality. The
equality symbol is denoted by ~. We allow all standard boolean
connectives and quantifiers in the language. We assume that the
language contains the logical constants T for always true and L
for always false formulas.

Throughout this paper, we denote terms by 7, s, u, ¢, variables
by z,vy, 2z, constants by a, b, ¢, d, function symbols by f,g and
predicate symbols by p, g, all possibly with indices. We consider
equality = as part of the language, that is, equality is not a symbol.
For simplicity, we write s % ¢ for the formula —(s ~ t).

An atom is an equality or a formula of the form p(t1, ..., ts),
where p is a predicate symbol and t1,...,t, are terms. A literal
is an atom A or its negation —A. Literals that are atoms are called
positive, while literals of the form —A are negative. A clause is a
disjunction of literals Ly V ...V Ly, where n > 0. When n = 0,
we will speak of the empty clause, denoted by L. The empty clause
is always false.

We denote atoms by A, literals by L, clauses by C, D, and
formulas by F, G, possibly with indices.

Let F' be a formula with free variables Z, then VF' (respectively,
3F) denotes the formula (VZ)F (respectively, (3Z)F). A formula
is called closed, or a sentence, if it has no free variables. A formula
or a term is called ground if it has no occurrences of variables.

A signature is any finite set of symbols. The signature of a
formula F is the set of all symbols occurring in this formula. For
example, the signature of (Vx)b ~ g(z) is {g, b}. When we speak
about a theory, we either mean a set of all logical consequences
of a set of formulas (called axioms of this theory), or a set of all
formulas valid on a class of first-order structures. Specifically, we
are interested in the theories of term algebras, in which case we use
the second meaning. When we discuss a theory, we call symbols
occurring in the signature of the theory interpreted, and all other
symbols uninterpreted.

By an expression E we mean a term, atom, literal, or clause.
A substitution 0 is a finite mapping from variables to terms. An
application of this substitution to an expression (e.g. a term or a
clause) F, denoted by F0, is the expression obtained from F by the
simultaneous replacement of each variable x in it, such that 6(x)
is defined, by 6(z). We write E[s] to mean an expression E with
a particular occurrence of a term s. A unifier of two expressions
E; and E» is a substitution 6 such that 16 = E56. It is known
that if two expressions have a unifier, then they have a so-called
most general unifier (mgu) — see (Robinson 1965) for details on
computing mgus.

3. Superposition and Proof Search

We now recall some terminology related to inference systems and
first-order theorem proving. Inference systems are used in the the-
ory of superposition (Nieuwenhuis and Rubio 2001) implemented
by several leading automated first-order theorem provers, including
Vampire (Kovécs and Voronkov 2013) and E (Schulz 2002). The
material of this section is based on (Kovacs and Voronkov 2013),
adapted to our setting.

3.1 The Superposition Inference System

First-order theorem provers perform inferences on clauses. An in-
ference rule is an n-ary relation on formulas, where n > 0. The
elements of such a relation are called inferences and usually writ-
ten as:
Ci ... Cy
C

The clauses C1, ..., C, are called the premises of this inference,
whereas the clause C' is the conclusion of the inference. An infer-
ence system I is a set of inference rules. An axiom of an inference
system is any conclusion of an inference with O premises. Any in-
ferences with 0 premises and a conclusion C' will be written with-
out the bar line, simply as C.

Modern first-order theorem provers use and implement the su-
perposition inference system, which is parametrized by a simplifi-
cation ordering = on terms and a selection function on clauses.

An ordering =< on terms is called a simplification ordering if it
satisfies the following conditions:

1. < is well-founded: there exists no infinite sequence of terms
to,t1,...suchthatto <t; =< ..

2. X is stable under substitution: if s < t then s < t6, for every
term s, ¢ and substitution 6;

3. <is monotonic: if s < t then {[s] < [[t] for all terms [, s, ¢;

4. = has the subterm property: if s is a proper subterm of ¢, then
s <X t.

Given two terms s < ¢, we say that s is smaller than ¢ and ¢ is
larger/greater than s wrt <. This ordering < can be extended to
literals and clauses.

A selection function selects in every non-empty clause a non-
empty subset of literals. In the following, we underline literals to
indicate that they are selected in a clause; that is we write L V C
to denote that the literal L is selected. A selection function is said
to be well-behaved if in a given clause it selects either a negative
literal or all the maximal literals wrt the simplification ordering <.

We now fix a simplification ordering < and a well-behaved
selection function and define the superposition inference system.
This inference system, denoted by S, consists of the inference rules
of Figure 1. The inference system S is a sound and refutationally
complete inference system for first-order logic with equality. By
refutational completeness we mean that if a set .S of formulas is
unsatisfiable, then (1 is derivable from S in S.

3.2 Proof Search by Saturation

Superposition theorem provers implement proof-search algorithms
in S using so-called saturation algorithms, as follows. Given a set
S of formulas, superposition-based theorem provers try to saturate
S with respect to S, that is build a set of formulas that contains
S and is closed under inferences in S. At every step, a saturation
algorithm selects an inference of S, applies this inference to S,
and adds conclusions of the inferences to the set S. If at some
moment the empty clause [J is obtained, by soundness of S, we can
conclude that the input set of clauses is unsatisfiable. To ensure that
a saturation algorithm preserves completeness of S, the inference

selection strategy must be fair: every possible inference must be
selected at some step of the algorithm. A saturation algorithm
with a fair inference selection strategy is called a fair saturation
algorithm.

A naive implementation of fair saturation algorithms based on S
will not yield however an efficient theorem prover. This is because
at every step of the saturation algorithm, the number of clauses in
the set S of clauses, representing the proof-search space, grows.
Therefore, for the efficiency of organizing proof search, one needs
to use the notion of redundancy, which allows to delete so-called
redundant clauses during saturation from the search space. A clause
C € S is redundant in S if it is a logical consequence of those
clauses in S that are strictly smaller than C' w.r.t. the simplification
ordering <. In a nutshell, saturation algorithms using redundancy
not only generate but also delete clauses from the set S of clauses.
Deletion of redundant clauses is desirable since every deletion
reduces the search space. If a newly generated clause C’ during one
step of saturation makes some clauses in S redundant, adding C" to
the search space will remove other (more complex) clauses from S.
This observation is exploited by first-order theorem provers in the
process of prioritizing inferences during inference selection, giving
rise to so-called simplifying and generating inferences. Simplifying
inferences make one or more clauses in the search space redundant
and thus delete clauses from the search space. That is, an inference

C1 ... Cu
C

is called simplifying if at least one of the premises C; becomes
redundant (and deleted) after the addition of the conclusion C' to
the search space. Inferences that are not simplifying are generating:
instead of simplifying clauses in the search space, they generate and
add a new clause to the search space. Efficient saturation algorithms
exploit simplifying and generating inferences, as follows: from
time to time provers try to search for simplifying inferences at the
expense of delaying generating inferences.

4. The Theory of Finite Term Algebras

A definition of the first-order theory of term algebras over a finite
signature can be found in e.g. (Rybina and Voronkov 2001), along
with an axiomatization of this theory and a proof of its complete-
ness. In this section we overview this theory and known results
about it.

4.1 Definition

Let 3 be a finite set of function symbols containing at least one
constant. Denote by 7 (X) the set of all ground terms built from
the symbols in 3.

The X-term algebra is the algebraic structure whose carrier set
is 7(X) and defined in such a way that every ground term is in-
terpreted by itself (we leave details to the reader). We will some-
times consider extensions of term algebras by additional symbols.
Elements of ¥ will be called term constructors (or simply just con-
structors), to distinguish them from other function symbols. The
3-term algebra will also be denoted by T (X).

Consider the following set of formulas.

\ 3 (=~ f@) (A
fes
(@) # 9(y) (A2)
for every f, g € X such that f # g;

@)= fy) =T~y (A3)
for every f € X of arity > 1;

e Resolution

AV Cy —A'V Co sEsVC
(C1V Ca)o o
where A is not an equality predicate, o = mgu(A, A’) and § = mgu(s, s)
e Superposition
l~rv(C L'V Co l~rVv(C tl =t vCs lrv ey tl'l#t' v Cs
(CrV L[r]v C2)o (CyVitr] =t v ()0 (CyVvir] &t v ()0
where !’ not a variable, L is not an equality, § = mgu(l,1'), 10 £ 76 and t[I']0 £ ¢'0

e Factoring
AVA VC
(AvC)o

where o = mgu(A4, A’), 0 = mgu(s,s’), s6 £ t0 and t0 £ ¢'0

stvs ~tvC
(smtVtgt Ve

Figure 1. The superposition calculus S.

t¥éc
for every non-variable term ¢ in which x appears.

Some of these formulas contain free variables, we assume that
they are implicitly universally quantified.

Axiom (Al), sometimes called the domain closure axiom, as-
serts that every element in X is obtained by applying a term con-
structor to other elements.

Axiom (A3) describes the injectivity of term constructors, while
axiom (A2) expresses the fact that terms constructed from different
constructors are distinct. Throughout this paper, we refer to (A2) as
the distinctness axiom and to (A3) as the injectivity axiom.

The axiom schema (A4), called the acyclicity axiom, asserts that
no term is equal to its proper subterm, or in other words that there
exist no cyclic terms.

In the following sections we will also discuss theories in which
there are non-constructor function symbols. Note that when we deal
with such theories, the acyclicity axioms are used only when all
symbols in ¢ are constructors.

(A4)

4.2 Known Results

We denote by Tpr the theory axiomatized by (A1)—(A4), that is,
the set of logical consequences of all formulas in (A1)—(A4). Note
that the X-term algebra is a model of all formulas (A1)—(A4), and
therefore also a model of Tpr.

Theorem 1. The following results hold.

1. Trr is complete. That is, for every sentence F in the language
of T(X), either F € Tpr or (-F) € Trr.

2. Trr is decidable.

3. If ¥ contains at least one symbol of arity > 1, then the first-
order theory of Tpr is non-elementary.

Completeness of 7#7 is proved in a number of papers - a
detailed proof can be found in, e.g., (Rybina and Voronkov 2001).

Decidability of Tr7 in Theorem 1 is implied by the complete-
ness of Trr and by the fact that Tpr has a recursive axiomati-
zation. More precisely, completeness gives the following (slightly
unusual) decision procedure: given a sentence F', run any complete
first-order theorem proving procedure (e.g., a complete superposi-
tion theorem prover) simultaneously and separately on F' and —F'.
We can get around the problem that the axiomatisation is infinite
but throwing in axioms, one after one, while running the proof
search — indeed, by the compactness property of first-order logic,

263

if a formula G is implied by an infinite set of formulas, it is also im-
plied by a finite subset of this set. One of contributions of this paper
is showing how to avoid dealing with infinite axiomatizations.

Further, the non-elementary property of 7pr in Theorem 1
follows from a result in (Ferrante and Rackoff 1979): every theory
in which one can express a pairing function has a hereditarily non-
elementary first-order theory.

Note that the completeness of Trr implies that Trr is exactly
the set of all formulas true in the 3-term algebra. First-order theo-
ries of term algebras are closely related to non-recursive logic pro-
grams, for related complexity results, also including the case with
only unary functions, see (Vorobyov and Voronkov 1998).

Let us make the following important observation. The decidabil-
ity and other results of Theorem 1 do not hold when uninterpreted
functions or predicates are added to Tr7. If we add to the X-term
algebra uninterpreted symbols, one can for example use these sym-
bols to provide recursive definitions of addition and multiplication,
thus encoding first-order Peano arithmetic. Using the same reason-
ing as in (Korovin and Voronkov 2007) one can then prove the fol-
lowing result.

Theorem 2. The first-order theory of X-algebras with uninter-
preted symbols is 11+ -complete, when ¥ contains at least one non-
constant.

We will not give a full proof of Theorem 2 but refer to (Korovin
and Voronkov 2007) for details. Here, we only show how to encode
non-linear arithmetic in 77 using X-term algebra uninterpreted
symbol, which is relatively straightforward. Assume, without loss
of generality, that ¥ contains a constant 0 and a unary function
symbol s (successor). Then all ground terms, and hence all term
algebra elements are of the form s™(0), where n > 0. We will
identify any such term s™(0) with the non-negative integer .

Add two uninterpreted functions + and - and consider the set A
of formulas defined as follows:

Vz (z+0==x)

VaVy (s(z) +y = s(z +y))

vz (z-0=0)

Vavy (s(z) -y = (z-y) +y)
It is not hard to argue that in any extension of the Y-algebra
satisfying A, the functions + and - are interpreted as the addition

and multiplication on non-negative integers. Let now G be any
sentence using only +, -, s, 0. Then we have that A — G is valid
in the X-algebra if and only if G is a true formula of arithmetic.
Note that Theorem 2 refers to the theory of algebras, i.e. the
set of formulas valid on 3-algebra. In view of this theorem, with
uninterpreted symbols of arity > 1 in the signature, this includes
more formulas than the set of formulas derivable from (A1)—(A4).

4.3 Other Formalizations

Instead of using existential quantifiers in (A1), one can also use ax-
ioms based on destructors (or projection functions) of the algebra.
For all function symbols f of arity » > Oandalli = 1,...,n, in-
troduce a function pz}. The destructor axioms using these functions
are:

J:Rﬁf(p}(l‘),,p}l(w)) (A1)
The axiom (A3) can be replaced by the following axioms, which
can be considered as a definition of destructors:

Py (f(1, .. (A3)

Given the other axioms, (A3) and (A3’) are logically equivalent, but
some authors prefer the presentation based on destructors. Note,
however, that the behavior of a destructors p’ is unspecified on
some terms.

3 Tiy ey Tn)) R T

4.4 Extension to Many-Sorted Logic

In practice, it can be useful to consider multiple sorts, especially
for problems taken from functional programming. In this setting,
each term algebra constructor has a type 71 X -+ X 7, — T.
The requirement that there is at least one constant should then
be replaced by the requirement that for every sort, there exists a
ground term of this sort.

We can also consider similar theories, which mix constructor
and non-constructor sorts. That is, some sorts contain constructors
and some do not.

Consider an example with the following term algebra signature:

Ypin = {leaf : 7 — Bin,node : Bin X T X Bin — Bin}

This signature defines an algebra of binary trees, where every node
and leaf is decorated by an element of a (non-constructor) sort 7.
In this case term algebra axioms are only using sorts with construc-
tors. The axioms of this theory of trees, as defined previously, are
shown in Figure 2.

5. A Conservative Extension of the Theory of
Term Algebras

In this paper we aim to prove theorems in first-order theories
containing constructor-defined types. While in general the theory
is IT1-complete, we still want to have a method that behaves well in
practice. Our method will be based on extending the superposition
calculus by axioms and/or rules for dealing with term algebra
constructor symbols.

One of the criteria of behaving well in practice is to have a
method that is complete for pure term algebra formulas, that is,
without uninterpreted functions. The immediate idea would be to
use the axiomatization of term algebras consisting of (Al1)-(A4),
however this does not work since there is an infinite number of
acyclicity axioms.

In this section we show how to overcome this problem by using
an extension of term algebras by a binary relation Sub, denoting
the proper subterm relation. Let us further denote by 7,1, the set
of formulas which contains (A1)-(A3), but replaces the acyclicity
axiom (A4) by the following axioms (B1)—(B3):

264

Sub(zi, f(x1,.. Sy Tn)), B
for every f € X of arity n > 1 and every i such thatn > 7 > 1.

3 Ly

Sub(x,y) A Sub(y, z) — Sub(z, 2) (B2)

—Sub(z, x) (B3)
Intuitively, the predicate Sub(s,) holds iff s is a proper sub-
term of ¢. Axiom (B1) ensures that this relation holds for terms
s appearing directly under a term algebra constructor in ¢ , while
(B2) describes the transitivity of the subterm relation and ensures
that the relation also holds if s is more deeply nested in £. Axiom
(B3) asserts that no term may be equal to its own proper subterm.
We now observe the following properties of (B1)—(B3).

Theorem 3. 'TF+T is a conservative extension of Trr, that is:

1. Every theorem in Trr is a theorem in Ty

2. Every theorem in ’7'F+T that uses only symbols from the language
of Trr (i.e. not using the predicate Sub) is also a theorem of
TFT.

Proof. For (1), it is enough to prove that every instance of the
acyclicity axiom (A4) of Tpr is implied by axioms of 7;1.. To this
end, note that for every term ¢ and its proper subterm s, (B1)-(B2)
imply Sub(s,t), so every instance of the acyclicity axiom (A4) is
implied by (B1)—(B3).

To prove part (2), first note that T;T is consistent (sound). This
follows from the fact that it has a model, which extends the >-term
algebra by interpreting Sub as the subterm relation. Now assume,
by contradiction, that there is a sentence F' not using Sub such that
F € T and F ¢ Trr. By the completeness result of Theorem 1,
we then have =F € Tpr, which by part (1) implies ~F € T
We have both F' € T and =F € T, which contradicts the
consistency of 7. O

Note that the full first-order theory of term algebras with the
subterm predicate is undecidable (Venkataraman 1987).

The important difference between 77 and 7,1 is that 7.,
is finitely axiomatizable. This fact and Theorem 3 can be directly
used to design superposition-based proof procedures for Trr, as
follows. Given a term algebra sentence F', we can search for a
superposition proof of F' from the axioms of T;T. Such a proof
exists if and only if F' holds in the ¥-term algebra. This proof
procedure can even be turned into a superposition-based decision
procedure for Trr, which is based on attempting to prove F' and
—F' in parallel, until one of them is proved, which is guaranteed by
the completeness of 7Trr from Theorem 1.

It is interesting that, while proving a formula F' with quanti-
fier alternations in this way, first-order theorem provers will first
skolemize F', introducing uninterpreted functions. While the first-
order theory of term algebras with arbitrary uninterpreted func-
tions is incomplete, our results guarantee completeness on formu-
las with uninterpreted functions obtained by skolemization. This is
so because skolemization preserves validity and hence, using The-
orem 3, we conclude completeness on skolemized formulas with
uninterpreted functions.

While it is hard to expect that proving term algebra formulas
by superposition will result in a better decision procedure com-
pared to those described in the literature, see e.g. (Colmerauer et al.
2000), our approach has the advantage that it can be combined with
other theories and can be used for proving formulas in undecidable
fragments of the full first-order theory of term algebras. Given a
formula containing both constructors, uninterpreted symbols and
possible theory symbols, we can attempt to prove this formula by

Fy(z = leaf (y)) V Jy1, y2,ys (z = node(ys, y2, y3))

node(x1,x2,x3) # leaf (y1)

leaf () =~ leaf (y) >z =~y

node(x1,x2,x3) = node(yi,y2,ys) = T1 R y1 A T2 X y2 A3 X Y3

z % node(z,y1,y2)

T % node(y1,y2, ©

)

z 7% node(node(z, y1,y2), ys, ya)

Figure 2. The instantiation of the theory axioms for the signature ¥ gy, .

adding the axioms of ’TF+T and then use a superposition theorem
prover. The results of this section show that this method is strong
enough to prove all (pure) term algebra theorems. Our experimen-
tal results described in Section 7 give an evidence that it is also
efficient in practice.

The conservative extension 7, presented above thus allows
one to encode problems in the theory of term algebras and reason
about them using any tool for automated reasoning in first-order
logic. However the transitive nature of the predicate Sub can impact
the performance of provers negatively. Note that the transitivity
axiom can also be replaced by axioms of the form:

Sub(z, x;) — Sub(z, f(z1, .. Sy Tn)).

Using these new axioms will result in fewer inferences during proof
search and a slower growth of the subterm relation, which are
important parameters for the provers’ performance.

3 Lgy e

6. An Extended Calculus

In this section we describe an alternative way to use superposition
theorem provers to reason about term algebras. Instead of including
theory axioms in the initial set of clauses, we extend the calculus
with inferences rules. This is similar to the way paramodulation is
used to replace the axiomatization of equality, apart from the fact
that we cannot obtain a calculus that is complete.

6.1 A naive calculus

In this section we will consider alternatives and improvements to
axiomatizing term algebras. The idea is to add simplification rules
specific to term algebras and replace the troublesome acyclicity
axiom by special purpose inference rules.

The superposition calculus uses term and clause orderings to
orient equalities, restrict the number of possible inferences, and
simplification. The general rule is that a clause in the search space
can be deleted if it is implied by strictly smaller clauses in the
search space.

One obvious idea is to add several simplification rules, corre-
sponding to applications of resolution and/or superposition to term
algebra axioms. For example, a clause f(s) ~ s V C can be re-
placed by a simpler, yet equivalent, clause C. Likewise, the clause
f(s) = f(t) Vv C is equivalent, by injectivity of the constructors,
to the clause s = t V .S. The clause s ~ ¢ V S is also smaller than
f(s) = f(t) v C, so it can replace this clause.

Let us start with examples showing that replacing axioms by
rules can result in incompleteness even in very simple cases.

Take for example two ground unit clauses f(a) =~ band g(a) ~
b, where all symbols apart from b are constructors. This set of
clauses is unsatisfiable in the theory of term algebras. However,
if we replace the axiom f(x) % g(y) by a simplification rule, there

~
~

265

are no inferences that can be done between these clauses (assuming
we are using the standard Knuth-Bendix ordering).

Another example showing that the acyclicity axiom can be hard
to drop or replace is the set of two ground unit clauses f(a) =~ band
f(b) = a, where f is a constructor. This set of clauses is also unsat-
isfiable in the theory of term algebras, since it implies f(f(b)) = b.
Similar to the previous example, there is no superposition inference
between these two clauses.

6.2 The Distinctness Rule

We implemented an extra simplification and a deletion rule. Such
rules will be denoted using a double line, meaning that the clauses
in the premise are replaced by the clauses in the conclusion.

The simplification rule is

fle)=g(H)vA
A

where f and g are different constructors. Essentially, it removes
from the clause a literal false in the theory of term algebras.
The deletion rule is

fls)#glt)vA
0

where f and g are different constructors. It deletes a theory tautol-
ogy.
6.3 The Injectivity Rule

There is a simplification rule based on the injectivity axiom (A3).
Suppose that f is a constructor of arity » > 0. Then we can use the
simplification rule

f(Sl...Sn)%f(tl,...
tivC

Dist-ST,

Dist-S™,

Jtn)VC

~

S1 =~

Sn Xty VC

One can also note that under some additional restrictions the
following inference

f(sl...sn)%f(tl,...,tn)\/C
817’”5t1V...\/Sn$étn\/C

can be considered as a simplification rule too. The restriction is the
clause ordering condition {s1 % t1 V...V s, # ¢} < C.

Note that in both rules the premise is logically equivalent to the
conjunction of the formulas in the conclusion in the theory of term
algebras and all formulas in the conclusion are smaller than the
formula in the premise (subject to the ordering condition for the
second rule).

6.4 The Acyclicity Rule

Similar to the distinctness axiom and rules, we can introduce a
simplification and a deletion rule based on the acyclicity axiom.
First, we introduce a notion of a constructor subterm as the smallest
transitive relation that each of the terms ¢; is a constructor subterm
of f(t1,...,tn), where f is a constructor and n > ¢ > 1. For
example, if f is a binary constructor, and g is not a constructor, then
all constructor subterms of the term f(f(z,a), g(y)) are f(z,a),
x, a and g(y). Its subterm y is not a constructor subterm. One can
easily show that any inequality s % ¢, where s is a constructor
subterm of ¢ is false in any extension of term algebras.
The simplification rule for acyclicity is

s~tVA
A
where s is a constructor subterm of ¢. It deletes from a clause its

literal false in all term algebras.
The deletion rule is

s

s%tVA
0

where s is a constructor subterm of ¢. It deletes a theory tautology.
Further, if we wish to get rid of the subterm relation Sub, we can
use various rules to treat special cases of acyclicity. If we do this,
we will lose completeness even for pure term algebra formulas, but
such a replacement can deal with some formulas more efficiently,
while still covering a sufficiently large set of problems.
One example of such a special acyclicity rule is the following:

)

t~uVA
sEuVA

where s is a constructor subterm of ¢. Note that this rule is not a
simplification rule, so we do not delete the premise after applying
this rule.

7. Experimental Results
7.1 Implementation

We implemented the subterm relation of Section 5 and simplifi-
cation rules of Section 6 in the first-order theorem prover Vam-
pire (Kovacs and Voronkov 2013). Note that Vampire behaves well
on theory problems with quantifiers both at the SMT and first-order
theorem proving competitions, winning respectively 5 divisions in
the SMT-COMP 2016 competition of SMT solvers' and the quan-
tified theory division of the CASC 2016 competition of first-order
provers 2. With our implementation, Vampire becomes the first su-
perposition theorem prover able to prove properties of term alge-
bras. Moreover, our experiments described later show that Vampire
outperforms state-of-the-art SMT solvers, such as CVC4 and Z3,
on existing benchmarks.

Our implementation required altogether about 2,500 lines of
C++ code. The new version of Vampire, together with our bench-
mark suite, is available for download”.

7.2 Input Syntax and Tool Usage

In our work, we used an extended SMTLIB syntax (Barrett et al.
2016) to describe term constructors. Although not yet part of the
official SMTLIB standard, this syntax is already supported by the

'http://smtcomp.sourceforge.net/2016/
2http://www.cs.miami.edu/~tptp/CASC/JT8/

3http://www.cse.chalmers.se/~simrob/tools.html

266

SMT solvers Z3 and CVC4, and its standardization is under con-
sideration.

Our input syntax uses declare—-datatypes for declaring an
abstract data type corresponding to a term algebra sort. This decla-
ration simultaneously adds the term algebra symbols and the Sub
predicate to the problem signature, adds the distinctness, injectiv-
ity, domain closure and subterm axioms to the input set of formulas,
and activates the additional inferences rules from Section 6. Alter-
natively, the user can choose not to activate the inference rules in
our implementation. The inclusion of the Sub predicate and its ax-
ioms, as presented in Section 5, can also be deactivated.

Note that the SMTLIB syntax also provides the not yet stan-
dardized command declare-codatatypes to declare types
of potentially cyclic or infinite data structures. The theory under-
lying the semantics of such types is almost identical to that of fi-
nite term algebras, except that the acyclicity axiom is replaced by
a uniqueness rule that asserts that observationally equal terms are
indeed equal (Reynolds and Blanchette 2015). Therefore our cal-
culus minus the acyclicity axioms/rules is an incomplete but sound
inference system for that theory, and users can declare co-algebraic
data types in their problems as well. Like acyclicity, the uniqueness
principle of co-algebras is not finitely axiomatizable.

7.3 Benchmarks

We evaluated our implementation on two sets of problems. These
problems included all publicly available benchmarks, as mentioned
below.

e A (parametrized) game theory problem originally described
in (Colmerauer et al. 2000). This problem relies on the term
algebra of natural numbers to describe winning and losing po-
sitions of a game. It is possible to encode, for a given posi-
tive integer k, a predicate winning, over positions, such that
winning,, (p) holds iff there exists a winning strategy from the
position p in k or fewer moves. The satisfiability of the result-
ing first-order formula can be checked by term algebra decision
procedures, since it does not use symbols other than those of
the term algebra, but it includes 2k alternating universal and
existential quantifiers. This heavy use of quantifiers makes it
an interesting and challenging problem for provers. An exam-
ple of this problem encoded in the SMTLIB syntax is given in
Figure 3.

Problems about functional programs, generated by the Isabelle
interactive theorem prover (Nipkow et al. 2002) and translated
by the Sledgehammer system (Blanchette et al. 2013). The re-
sulting SMTLIB problems include algebraic and co-algebraic
data types as well as arbitrary types and function symbols, and
also some quantified formulas. Some of these problems are
taken from the Isabelle distribution (Distro) and the Archive
of Formal Proofs (AFP), others from a theory about Bird and
Stern—Brocot trees by Peter Gammie and Andreas Lochbihler
(G&L). They are representative of the kind of problems corre-
sponding to program analysis and verification goals. This set
of problems originally appeared in (Reynolds and Blanchette
2015) and, to the best of our knowledge, represent the set of all
publicly available benchmarks on algebraic data types.

7.4 Evaluation

Our experiments were carried out on a cluster on which each node
is equipped with two quad core Intel processors running at 2.4 GHz
and 24GiB of memory. To compare our work to other state-of-the-
art systems, we include the results of running the SMT solvers
Z3 and CVC4 on the Isabelle problems, as previously reported
in (Reynolds and Blanchette 2015), and also add the results of
running these two solvers on the game theory problem.

()
(pred Nat)))))

(declare-datatypes
((Nat (z) (s

(assert
(not
(exists
((wl Nat))
(and
(or
(s wl))
(s (s wl)))

z)
z)

(forall
((10 Nat))
(=>
(or
(= wl
(= wl
)
false))))))

(s 10))
(s (s 10)))

(check-sat)

Figure 3. An instance of the game theory problem from (Colmer-
auer et al. 2000), encoded in SMTLIB syntax. The first command
declares a term algebra with a constant z and a unary function s;
note that the projection function pred must also be named. The
assertion (starting with assert) is a formula corresponding to the
negation of the predicate winning, (s(z)).

Game theory problems. The times required to solve the game the-
ory problem for different values of the parameter k£ are shown in
Table 1. The first column indicates the time required by Vampire
using the theory axioms (A) described in Section 5, and the sec-
ond and third columns give the time needed when the simplifica-
tion rules (R) are also activated in Vampire (Section 6). For this
particular problem, the acyclicity rule plays no role in the proof,
but in order to assess its impact on performance, the third column
shows the times needed to solve the problem when the subterm
relation axioms (S) are also included in the input. The fourth and
fifth columns of Table 1 respectively indicate the times needed by
CVC4 and Z3 for solving the corresponding problem. Where no
value is given, the prover was unable to solve the problem. Despite
belonging to a decidable class, this problem is quite challenging
for theorem provers and SMT solvers, which is easily explained by
the presence of a formula with many quantifier alternations. The
SMT solver CVC4 is able to disprove the negated conjecture only
for k = 1, and Z3 can disprove it only for k = 1 or k = 2.
SMT solvers can also consider the (non-negated) conjecture and
try to satisfy it, but this does not produce better results. In com-
parison, our implementation in Vampire can solve the problem for
k = 6, that is for formulas with 12 alternated existential and uni-
versal quantifiers, in 8.19 seconds. In (Colmerauer et al. 2000), the
authors are able to solve the problem for k as high as 80, using an
implementation of the decision procedure presented in (Dao 2000).
However such a decision procedure would not be able to reason
in the presence of uninterpreted symbols, and therefore its usage is
much more restricted. The results of Table 1 confirm that first-order
provers can be better suited than SMT solvers for reasoning about
formulas with many quantifiers, despite the various strategies used
for quantifier reasoning in SMT solvers (for example, by using E-
matching (De Moura and Bjgrner 2007)). Table 1 also shows that
adding simplification rules as described in Section 6 improves the
behavior of the theorem prover.

267

Vampire | Vampire | Vampire
AN (A+R) | (A+R+S) | CVC4 | 723
001 0.0 0.0 001 | 0.01
2| o001 0.01 0.01 001 | 0.01
3| 4098 0.18 0.66 _ _
4| 221 032 0.63 - -
5| 3516 | 11.17 15.40 _ _
6| 3157 8.19 11.33 - -
7 — — — — —

Table 1. Time required to prove unsatisfiability of different in-
stances of the game theory problem from (Colmerauer et al. 2000).

Isabelle problems about functional programs. Our results on
evaluating Vampire on the Isabelle problems are shown in Table 2.
The problems were translated by Sledgehammer by selecting some
lemmas possibly relevant to a given proof goal in Isabelle and trans-
lating them to SMTLIB along with the negation of the goal. While
the intent of this translation is to produce unsatisfiable first-order
problems, this is not the case for all of the problems tested here. A
few problems are satisfiable and it is likely that many are unprov-
able, for example because the lemmas selected by Sledgehammer
are not sufficiently strong to prove the goal. The set of problems
originally included 4170 problems, of which 2869 include at least
one algebraic data type and 2825 include at least one co-algebraic
data type, some problems containing both. In the presence of co-
algebraic data types, CVC4 has a special decision procedure which
replaces the acyclicity rule by a uniqueness rule. In our implemen-
tation, Vampire simply does not add the acyclicity axiom, but the
remaining axioms are added as they hold for co-algebraic data types
as well. Unlike CVC4, Z3 does not support reasoning about co-
algebraic data types.

In order to test the efficiency of our acyclicity techniques on
more examples, we considered problems containing co-algebraic
data types: by replacing them with algebraic data types with similar
constructors, we obtained different problems where the acyclicity
principle applies. Note that not all co-algebraic data type definitions
correspond to a well-founded definition for an algebraic data type:
after leaving these out, we obtained 2112 new problems.

Table 2 summarizes our results on this set of benchmarks, using
a single best strategy in Vampire. For each solver, we also show the
number of problems solved uniquely only by that solver.

We also ran Vampire with a combination of strategies with a
total time limit of 120 seconds. Table 3 shows the total number
of solved problems, with details on whether the problems contain
only algebraic data types, co-algebraic data types, or both. Overall,
Vampire is able to solve 1785 problems, that is 4,2% more that
CVC4 and 7,3% more than Z3, which is a significant improvement.
50 problems are uniquely solved by Vampire, as listed in column
six Table 3. When compared to Vampire, only 4 problems were
proved by CVC4 alone, while Z3 cannot prove any problem that
was not proved by Vampire — see columns seven and eight of
Table 3. Summarizing, Table 2 shows that Vampire outperforms the
best existing solvers so far. The experimental results of Tables 1-
2 provide an evidence that our methods for proving properties of
algebraic data types outperform methods currently used by SMT
solvers.

7.5 Comparison of Option Values

We were also interested in comparing how various proof option
values affect the performance of a theorem prover. For the purpose
of this research, the options that we considered are:

1. the Boolean value selecting whether term algebra rules are
used;

Prover Solved | Unique
Z3 1665 5
CvVC4 1711 12
Vampire (Best strategy) 1720 31

Table 2. Number of problems solved among the 6282 Isabelle
problems translated by SledgeHammer.

2. the value selecting how acyclicity is treated (axioms, rules, or
none, that is, no acyclicity axioms or rules).

Making such a comparison is hard, since there is no obvious
methodology for doing so, especially considering that Vampire has
64 options commonly used in experiments. The majority of these
options are Boolean, some are finitely-valued, some integer-valued
and some range over other infinite domains. The method we used
was based on the following ideas. Suppose we want to compare
values for an option 7. Then:

1. we use a set of problems obtained by discarding problems that
are too easy or currently unsolvable;

2. we repeatedly select a random problem P in this set, a random
strategy .S and run P on variants of .S obtained by choosing all
possible values for 7 using the same time limit.

We discovered that the results for the term algebra rules are incon-
clusive (turning them on or off makes little effect on the results)
and will present the results for the acyclicity option.

Our selected set of problems consisted of 262 term algebra
problems. We made 90,000 runs for each value (off, theory axioms,
and the acyclicity rules), that is, 270,000 tests all together, with the
time limit of 30 seconds. While interpreting the results, it is worth
mentioning the following.

1. When neither acyclicity rules nor acyclicity axioms are used,
problems that require acyclicity reasoning become unsolvable.
On the other hand, for other problems, this setting results in a
smaller search space.

2. When the acyclicity rules are used, the resulting calculus is in-
complete even for pure term algebra problems, but the subterm
relation is not used, which generally means that fewer clauses
should be generated.

The results of these experiments are shown in Table 4. We show
the total number of successful runs (out of 90,000) and the number
of runs where only one value for this option solved the problem.
Probably the most interesting observation is that using acyclicity
simplification rules (Section 6) instead of theory axioms (Section 5)
results in many more problems solved. This gives us an evidence
that the axiomatization based on the subterm relation results in
much larger search spaces. This also means that the value resulting
in an incomplete strategy in this case generally behaves better.

One should also note the 50 problems solved only when turning
acyclicity off. This means that even the light-weight rule-based
treatment of acyclicity sometimes results in a large overhead.
Moreover, out of these 50 problems 10 were solved in less than
1 second.

8. Related Work

The problem of reasoning over term algebras first appears in the
restricted form of syntactic unification, mentioned in (Herbrand
1930). The algorithm for syntactic unification was later described
in (Robinson 1965), and later refined into quasi-linear (Baxter
1976; Huet 1976; Martelli and Montanari 1982) and linear algo-
rithms (Paterson and Wegman 1976).

268

The full-first order theory of term algebras over a finite sig-
nature was first studied in (Mal’cev 1962), where its decidability
was proved by quantifier elimination. Other quantifier elimination
procedures appeared in (Comon 1988; Maher 1988; Hodges 1993;
Rybina and Voronkov 2001). (Ferrante and Rackoff 1979) proved
a result implying that the first-order theory of term algebras is non-
elementary. There is a large body of research on decidability of var-
ious extensions of term algebras, which we do not describe here.

In this paper we do not prove decidability of new theories. How-
ever, we present a new superposition-based decision procedure for
first-order theories of term algebras using a finitely axiomatizable
theory.

Probably the first implementation of a decision procedure for
term algebras is described in (Colmerauer et al. 2000). The theory
of finite or infinite trees is also studied in (Dao 2000) and a practical
decision procedure is given based on rewriting.

Due to recent applications of program analysis, there is now a
growing interest in the automated reasoning community for practi-
cal implementation of term algebras and their combinations with
other theories. A decision procedure for algebraic data types is
given in (Barrett et al. 2007) and later extended to a decision
procedure for co-algebraic data types in (Reynolds and Blanchette
2015). These decision procedures exploit SMT-style reasoning and
are supported by CVC4. Z3 also supports proving properties about
algebraic data types (Bjorner et al. 2013). Unlike these techniques,
our work targets the full first-order theory of term algebras, with
arbitrary use of quantifiers. Our proof search procedure is based on
the superposition calculus and allows one to prove properties with
both theories and quantifiers.

9. Conclusion

We presented two different ways to reason in the presence of the
theory of finite term algebras with a superposition-based first-order
theorem prover. Our first approach is based on a finitely axiomati-
zable conservative extension of the theory and can be implemented
in any first-order theorem prover. The second technique extends the
first with the addition of extra inference and simplification rules
having two aims:

1. simplifying more clauses;

2. replacing expensive subterm-based reasoning about acyclicity
by light-weight inference rules (though incomplete even with-
out uninterpreted functions).

While not as efficient as specialized decision procedures for this
theory, both our techniques allow us to reason about problems that
includes the theory of finite terms algebras and other predicate or
function symbols. We evaluated our work on game theory con-
straints and properties of functional program manipulating alge-
braic data types.

The next natural development would be to extend our approach
to the theories of rational (finite but possibly cyclic) and infinite
term algebras. The notion of co-algebras is also closely related to
possibly infinite terms, with the addition of a uniqueness principle
for cyclic terms. A decision procedure for this theory was included
in the SMT solver CVC4 to decide problems involving co-algebraic
data types (Reynolds and Blanchette 2015). Co-algebras are also
best suited to express the semantics of processes and structures
involving a notion of state. Unlike term algebras, co-algebras have
been studied almost exclusively from the point of view of category
theory, rather than that of first-order logic, so that many theoretical
and practical applications remain to be explored there.

An even more interesting avenue to exploit is inductive reason-
ing about algebraic data types in first-order theorem proving, also
based on extensions of the superposition calculus.

Total | Vampire | CVC4 | Z3 Unique-Vampire | Unique-CVC4 | Unique-Z3
Data types only 3457 999 956 947 23 0 0
Co-data types only | 1301 430 415 382 16 2 0
Both 1524 356 341 334 11 2 0
Union 6282 1785 1712 | 1663 50 4 0

Table 3. Distribution of solved problems according to the data types they feature

off | axioms | rules
Total solved 2030 | 9086 | 9602
Solved by only this value 50 70 566

Table 4. Comparison of proof option values for acyclicity in Vam-
pire.

The work presented here should be a useful development for the
verification of functional programs. For example it would benefit
the tool HALO (Vytiniotis et al. 2013), which expresses the deno-
tational semantics of Haskell programs in first-order logic, before
using automated theorem provers to verify some of their proper-
ties. Our work not only makes the translation easier but also modi-
fies the prover to make it more efficient on the generated problems.
This also applies to other tools that already use first-order theorem
provers to discharge their proof obligations, such as inductive theo-
rem provers, e.g. HipSpec (Claessen et al. 2013) and automated rea-
soning tools for higher-order logic, e.g. Sledgehammer (Blanchette
et al. 2013).

More generally, our work makes an important step towards clos-
ing the gap between SMT solvers and first-order theorem provers.
The former are traditionally used for problems involving theories,
while the latter are better at dealing with quantifiers. Problems that
include both quantifiers and theories are very common in practi-
cal applications and represent a big challenge due to their intrinsic
complexity, both in theory and in practice. Our results show that
first-order theorem provers can perform efficient reasoning in the
presence of theories, solving many problems previously unsolvable
by other tools.

Acknowledgments

We acknowledge funding from the ERC Starting Grant 2014 SYM-
CAR 639270, the Wallenberg Academy Fellowship 2014 TheP-
roSE, the Swedish VR grant GenPro D0497701, the Austrian FWF
research project RiSE S11409-N23, and the EPSRC grant ReVeS:
Reasoning for Verification and Security.

References

C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure
for a theory of inductive data types. Journal on Satisfiability, Boolean
Modeling and Computation, 3:21-46, 2007.

. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In CAV, volume 6806 of LNCS.
Springer, 2011.

. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2016.

. D. Baxter. The complexity of unification. PhD thesis, University of
Waterloo Waterloo, Ontario, 1976.

. Bjorner, K. McMillan, and A. Rybalchenko. Higher-order program
verification as satisfiability modulo theories with algebraic data-types.
arXiv preprint arXiv:1306.5264, 2013.

J. C. Blanchette, S. Bohme, and L. C. Paulson. Extending Sledgehammer
with SMT solvers. Automated Deduction—Cade-23, 6803:116-130,
2013.

269

K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating
inductive proofs using theory exploration. In Automated Deduction—
CADE-24, volume 7898 of LNCS, pages 392—406. Springer, 2013.

. L. Clark. Negation as failure. In Logic and data bases, pages 293-322.
Springer, 1978.

. Colmerauer et al. Expressiveness of full first order constraints in
the algebra of finite or infinite trees. In Principles and Practice of
Constraint Programming—CP 2000, volume 1894 of LNCS, pages 172—
186. Springer, 2000.

Comon. Unification et disunification: Théorie et applications. PhD
thesis, Institut National Polytechnique de Grenoble-INPG, 1988.

Courcelle. Fundamental properties of infinite trees.
computer science, 25(2):95-169, 1983.

T. B. H. Dao. Résolution de contraintes du premier ordre dans la théorie
des arbres finis ou infinis. PhD thesis, Université Aix-Marseille 2, 2000.

De Moura and N. Bjgrner. Efficient e-matching for smt solvers. In
International Conference on Automated Deduction, volume 4603 of
LNCS, pages 183-198. Springer, 2007.

L. M. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In TACAS,
volume 4963 of LNCS, pages 337-340. Springer, 2008.

J. Ferrante and C. W. Rackoff. The computational complexity of logical
theories, volume 718 of Lecture Notes in Mathematics. Springer-Verlag,
1979.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. Journal of the ACM (JACM), 24(1):
68-95, 1977.

J. Herbrand. Recherches sur la théorie de la démonstration. PhD thesis,
Université de Paris, 1930.

W. Hodges. Model Theory. Cambridge University Press, 1993.

G. Huet. Résolution d’équations dans des langages d’ordre 1, 2... PhD
thesis, Université Paris VII, 1976.

K. Korovin and A. Voronkov. Integrating linear arithmetic into superpo-
sition calculus. In Computer Science Logic, volume 4646 of Lecture
Notes in Computer Science, pages 223-237. Srpinger, 2007.

H.

B. Theoretical

L.

L. Kovécs and A. Voronkov. First-Order Theorem Proving and Vampire. In
Proceedings of CAV, volume 8044 of LNCS, pages 1-35, 2013.

M. J. Maher. Complete axiomatizations of the algebras of finite, rational
and infinite trees. In Proceedings of the Third Annual Symposium
onLogic in Computer Science, pages 348-357. IEEE Computer Society,
1988.

. I. Mal’cev. Axiomatizable classes of locally free algebras of certain
types. Sibirsk. Mat. Zh, 3:729-743, 1962.

. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(2):
258-282, 1982.

. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving.
In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 7, pages 371-443. Elsevier Science, 2001.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

M. S. Paterson and M. N. Wegman. Linear unification. In Proceedings
of the eighth annual ACM symposium on Theory of computing, pages
181-186. ACM, 1976.

A. Reynolds and J. C. Blanchette. A decision procedure for (co)datatypes
in SMT solvers. In Automated Deduction—-CADE-25, volume 9195 of
LNCS, pages 197-213. Springer, 2015.

J. A. Robinson. A machine-oriented logic based on the resolution principle.

Journal of the ACM (JACM), 12(1):23-41, 1965.

T. Rybina and A. Voronkov. A decision procedure for term algebras with
queues. ACM Transactions on Computational Logic, 2(2):155-181,
2001. doi: 10.1145/371316.371494.

S. Schulz. E - a brainiac theorem prover. Al Communications, 15(2-3):
111-126, 2002.

K. Venkataraman. Decidability of the purely existential fragment of the
theory of term algebras. Journal of the ACM (JACM), 34(2):492-510,
1987.

270

S. G. Vorobyov and A. Voronkov. Complexity of nonrecursive logic
programs with complex values. In Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 244-253. ACM Press, 1998.

D. Vytiniotis, S. Peyton Jones, K. Claessen, and D. Rosén. HALO:
Haskell to logic through denotational semantics. In Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, pages 431-442. ACM, 2013.

