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1. Introduction

• Heavy Ion Collisions and Quark-Gluon Plasma

– Quark-gluon plasma (QGP), a deconfined state of quarks and glu-
ons, is produced in heavy ion collision at RHIC and LHC.

– The QGP in these experiments behaves like a strongly coupled
liquid, not like a weakly coupled gas.

– The plasma thermalizes on a very short time scale of ≈10-23 sec,
which is theoretically not well understood yet.

– Due to strong coupling perturbative QCD is not suitable to study
the quantum dynamics of these collisions.

• AdS/CFT Correspondence [1]

– AdS/CFT maps strongly coupled supersymmetric Yang-Mills (SYM)
theory in 4D to classical gravity on 5D anti-de Sitter (AdS5) space .

– We use SYM theory as a toymodel for QCD.
– Thermalization in the strongly coupled 4D SYM theory is mapped

to black hole formation in AdS5. Figure 1: AdS/CFT maps ther-
malization in the 4D gauge the-
ory (top) to black hole formation
in a 5D gravity theory (bottom).

2. Local and Non-Local Observables from AdS/CFT

Within AdS/CFT it is possible to compute expectation values of observables in 4D SYM theory from purely
geometric objects in the 5D gravity theory such as the metric, geodesics and minimal surfaces.

• Local Observables

– The energy-momentum tensor can be ex-
tracted from the metric gµν near the boundary.

〈Tµν(x)〉 = − 2
detg

δS
δgµν(x)

• Non-Local Observables

– Two-point functions for gauge invariant opera-
tors O of large conformal weight ∆ are given by
the length of geodesics γ. [2]

〈O(t, ~x)O(t, ~x′)〉 ≈ e−∆Length(γ)

– Entanglement entropy of a spatial region A is
given by the area of a minimal surface Σ. [3]

SA = −TrAρAlogρA =
Area(Σ)
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Figure 2: Geometric description of the energy mo-
mentum tensor, two-point functions and entangle-
ment entropy in terms of the near boundary metric,
geodesics and minimal surfaces.

3. Shock Wave Collisions in SYM theory

The Lorentz contracted ”nuclei” in SYM are modelled as two Gaussian energy distributions approaching
each other at the speed of light. The time evolution of the energy-momentum tensor is extracted from a
numerical relativity simulation of colliding gravitational shock waves in the 5D gravity theory. [4]

Figure 3: Energy density E (left) and longitudinal pressure P‖
(right) for wide (top) and narrow shocks (bottom).

• Energy-Momentum Tensor

〈Tµν〉 =
N 2
c

2π2


E S 0 0
S P‖ 0 0

0 0 P⊥ 0
0 0 0 P⊥


– Wide and narrow shocks show qualita-

tively different behavior. [5]

•Wide Shocks: Full-Stopping

– Wide shocks stop each other at the col-
lision when the plasma is formed which
then explodes hydrodynamically.

– Energy and pressure stay positive.

• Narrow Shocks: Transparency

– Narrow shocks pass each other al-
most ”transparently” and the plasma is
formed only after the collision.

– Energy and pressure can be negative
for a short time period after the collision.

4. Geodesics in AdS5

In the calculation of two-point functions we need the length of spacelike geodesics that are attached to
the boundary at z=0 and extend into the 5D shock wave geometry.
These geodesics can be found by numerically solving the geodesic equation (1) subject to boundary
conditions (2) that fix the endpoints at the boundary at some spatial separation L. [6]

Ẍµ + ΓµαβẊ
αẊβ = −JẊµ (1)

Xµ(σ±) ≡ (V (σ±), Z(σ±), Y (σ±)) = (t, zcut,±L/2) (2)

During the collision a black hole horizon is formed in the 5D shock wave geometry. The horizon has
different shape for wide and narrow shock waves. The geodesics tend not to cross the horizon which
leads to distortions in their shape and length that is characteristic for wide and narrow shocks.

Figure 4: Black hole horizon (black), geodesics (red) and energy contours at z=0 for wide (left) and narrow
shocks (right).

5. Two-Point Functions

Time Evolution Two-Point Functions

• The system starts in some correlated state.

• As the shocks approach each other without interaction they destroy these initial correlations.

• After the collision correlations are restored because of the interactions during the collisions new
correlations are formed.

• For the narrow shocks these new correlations grow significantly beyond their initial value.

• The shock wave system follows a top-down thermalization pattern where short range correlations
(small L) reach the equilibrium first.

Figure 5: Two-point function of various separations L for wide shocks (left) and narrow shocks (right).

6. Entanglement Entropy

Time Evolution of Entanglement Entropy

•We start with zero entanglement by construction.

• As the shocks enter the entangling region the entanglement entropy rapidly grows.

• After the rapid initial growth follows a regime of linear growth which goes approx. until the shocks collide.

• Right after the collision the wide shocks show a smooth fall of where the narrow shocks have a pro-
nounced minimum which is related to the minima in the energy density and the longitudinal pressure.

• As the two-point function the entanglement entropy shows a top-down thermalization pattern.

Figure 6: Entanglement entropy of various system sizes L for wide shocks (left) and narrow shocks (right).

7. Summary

•We use collisions of shock waves in SYM theory as toymodel for real (QCD) heavy
ion collisions.
•Using the AdS/CFT correspondence the dynamics in these collisions can be extracted

from numerical relativity simulations of colliding gravitational shock waves.
•Within AdS/CFT non-local observables such as two-point functions and entangle-

ment entropy can be computed from geodesics and minimal surfaces in the gravity
theory.
• From our numerical simulation we find that both, two-point functions and entanglement

entropy, show qualitatively different behavior for narrow and wide shocks.
• A Mathematica code for shock wave collisions is available at Wilke van der Schees home-

page: www.sites.google.com/site/wilkevanderschee/phd-thesis
• A Mathematica code for the entanglement entropy and the two-point function can be

downloaded from: www.christianecker.com
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