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a b s t r a c t 

Direct Numerical Simulation (DNS) is used to analyze the wave-decay process in a countercurrent 

air/water turbulent flow. Three dimensionless numbers describe the problem: the Reynolds number Re τ
(which measures the importance of inertia compared to viscosity), the Weber number We (which mea- 

sures the importance of inertia compared to surface tension) and the Froude number Fr (which measures 

the importance of inertia compared to gravity). We keep Re τ constant and we vary We and Fr . Regardless 

of the values of the physical parameters, we observe an initial exponential decay followed by the achieve- 

ment of a new statistically stationary condition. The parameters characterizing this exponential decay do 

depend on the specific values of Re, Fr and We . Wavenumber spectra computed at different time instants 

during the wave decay process reveal that the spectral properties of waves change in time: starting from 

a condition characterized by the predominance of low-wavenumber waves, we observe a “blue shift” of 

the energy spectra towards higher wavenumbers, indicating the emergence of a strong capillary behavior. 

At the new asymptotic steady state condition, wave energy spectra are in fair agreement with the predic- 

tions given by the Wave Turbulence Theory. We also characterize the statistical behavior of the interface 

deformation to highlight the interplay between gravity and surface tension in determining the interface 

structure. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Understanding the physics of the deformable interface separat-

ng air and water in two phase turbulent flows is of great impor-

ance in many industrial and environmental flows, from the de-

ign of condensers/evaporators to the prediction of air-sea interac-

ion for climate studies. Most of the previous theoretical ( Zakharov

t al., 1992 ), experimental ( Falcon et al., 2007a ) and numerical

 Dyachenko et al., 2004 ) studies of wave dynamics in two-phase

ir/water flows considered statistically-stationary state conditions.

uch less is known about nonstationary wave turbulence, which

owever occurs in any transient situation from a stationary state to

nother due to a change in the external forcing condition of waves.

his is the case of wave decay, developing when the external forc-

ng applied to maintain the wave dynamics is suddenly reduced or

emoved (sudden change of wind conditions). 

Despite its importance, experimental studies on the wave decay

rocess of surface waves are only a few. Deike et al. (2012) an-

lyzed the free decay of capillary waves on a fluid surface and
∗ Corresponding author. 
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ound that the average amplitude of the free surface deformation

ecays exponentially in time as the wave maker is stopped. Dur-

ng the decay process, the authors observed that the wave spec-

rum maintains a self-similar slope consistent with that charac-

erizing the steady state regime. These findings support the idea

hat each instantaneous realization of freely decaying capillary tur-

ulence is similar to the steady state capillary turbulence, though

ith a decreasing energy content in time. Recently, Bedard et al.

2013) studied the raising and decaying process of surface grav-

ty waves in a large laboratory flume. Relevant to the present

tudy is the observation that the entire decay process is made of

 short initial power-law decay followed by an exponential decay

due to viscous friction). The above-mentioned experimental stud-

es confirm previous theoretical predictions made in the frame-

ork of Wave Turbulence Theory (WTT) on the decay rate of grav-

ty and capillary waves and on the self similarity of the wave

pectrum ( Falkovich et al., 1995; Kolmakov, 2006; Zakharov et al.,

992 ). However, experimental results (with only few exception, see

erhanu and Falcon, 2013 ) are usually limited to local measure-

ents of the interface displacements. Obtaining a time-resolved

escription of the entire interface deformation in space (distribu-

ion of the interface displacement and of the interface curvature)

s still an open issue. 

http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.06.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijhff
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In this context, Direct Numerical Simulation (DNS) can help

providing the time evolution of the interface deformation together

with a detailed description of the flow above and below the in-

terface. This is extremely important for non-stationary wave con-

ditions, where it is essential to record the coupled fluid/interface

interaction in time and space. Unfortunately, direct numerical sim-

ulations of the wave decay process have never been performed in

a coupled air/water flow systems. 

To fill this gap, we propose here a DNS-based study on the wave

decay process. We consider a countercurrent flow configuration,

where air and water are driven by an imposed pressure gradient

and flow in opposite directions. We employ the numerical tech-

nique already used in Zonta et al. (2015) to study the wave gen-

eration process. We start from an initial wavy interface and we let

the system evolve by reducing the interfacial shear. After a tran-

sient exponential decay, a new asymptotic steady state condition is

observed. We try to characterize the statistical properties of waves

both during the transient decay and at the new asymptotic condi-

tion. We finally highlight the role of gravity and surface tension in

determining the interface deformation. 

2. Governing equations and numerical modeling 

With reference to the schematics of Fig. 1 , we consider a turbu-

lent air-water two-phase flow. The air and water phases are sep-

arated by a deformable interface and flow in opposite directions

under the influence of an imposed pressure gradient. We use a

cartesian coordinate system, with the streamwise, spanwise and

interface-normal directions being denoted by x −, y − and z− re-

spectively. Assuming newtonian and incompressible fluids, the di-

mensionless continuity and Navier–Stokes equations are: 

∇ · u = 0 , (1)

∂u 

∂t 
+ u · ∇u = −∇ p + 

1 

Re τ
∇ 

2 u , (2)

where u is velocity, p is pressure and Re τ is the shear Reynolds

number (properly defined later). The reference quantities em-

ployed to obtain dimensionless variables in each subdomain (air

and water) are the shear velocity u τ = 

√ 

τint /ρ ( τ int being the

shear stress at the interface and ρ the fluid density), the kinematic

viscosity ν and the half depth of each subdomain h . 

The numerical methodologies available to capture the interface

dynamics belong to two different categories. The interface can be

described using an approximate approach (where the interface is

considered a thin transition layer) or using an exact sharp ap-

proach (where the interface is a zero-thickness layer). Examples
Fig. 1. Sketch of the physical domain: water (resp. air) flows below (resp. above) 

the interface. Water and air are driven by a fixed pressure gradient and flow 

in opposite directions. Note that the interface deformation has been magnified 

 × 100). 

F

i

c

f approximate numerical approaches include Level Set (LS), Phase

ield (PF), Volume of Fluid (VOF) and Front Tracking (FT) meth-

ds. We will briefly discuss only VOF, due to their widespread use

n the description of surface waves. VOF methods are based on a

oncentration field C defined at the center of each computational

ell. The concentration C assumes uniform values C = 1 and C = 0

n the bulk fluids, whereas 0 < C < 1 in the cells crossed by the

nterface. Suitable reconstruction algorithms are required to obtain

he correct shape of the interface from the value of C . The accu-

acy/efficiency of these algorithms is crucial to avoid a wrong esti-

ate of the local normal vector n and of the local curvature (which

re indeed important in the computation of capillary forces). 

In the exact sharp approach, the fluid properties change sharply

rom one fluid to the other when crossing the zero-thickness inter-

ace. Differently from the approximate methods mentioned above,

n this case boundary conditions must be prescribed at the moving

nterface. The only numerical method that can be used to obtain a

harp description of the interface is a fully resolved boundary fit-

ed method (as the one employed in the present work). Boundary

tted methods are based on the advection of interfacial points sub-

ect to an external velocity (and stress) field. Once the position of

he interfacial points is updated, the domain is deformed. A do-

ain mapping technique must be used to transform the deformed

omain into a cartesian one when a Fourier/Chebyshev pseudo-

pectral solver is adopted to solve the governing equations of the

ow (as in the present case). Note that this combined approach

aintains a spectral accuracy with negligible numerical dissipa-

ion/dispersion. A detailed presentation of the numerical method

s provided in the following. 

In the present case, the distorted physical domain ( x, y, z, t )

s mapped into a rectangular parallelepiped in the computational

omain ( ψ 1 , ψ 2 , ψ 3 , τ ) using an algebraic mapping ( De Angelis

t al., 1997 ) 

ψ 1 = x , ψ 2 = y , ψ 3 = 

z 

h + η(x, y, t) 
, τ = t , (3)

here η is the function describing the deformed interface bound-

ry (see Fig. 2 ). Governing equations can be transformed from

he physical space X = ( x, y, z, t ) to the computational space
ig. 2. Physical and computational domain: the deformed physical domain ( x, y, z ) 

s transformed into a cartesian computational domain ( ψ 1 , ψ 2 , ψ 3 ) using a proper 

oordinate transformation (mapping). 
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Table 1 

Wave decay in a countercurrent air-water flow: summary of the simulations param- 

eters. 

S 1 S 2 S 3 

h [ m ] 0 .04 0 .05 0 .06 

u τ L [ m / s ] 1 . 29 × 10 −3 1 . 03 × 10 −3 0 . 86 × 10 −3 

u τG [ m / s ] 3 . 86 × 10 −2 3 . 09 × 10 −2 2 . 58 × 10 −2 

Re τ 170 170 170 

Fr 4 . 23 × 10 −6 2 . 17 × 10 −6 1 . 25 × 10 −6 

We 9 . 52 × 10 −4 7 . 62 × 10 −4 6 . 35 × 10 −4 √ 

F r /We 2 .16 1 .93 1 .4 

Grid 256 × 128 × 129 256 × 128 × 129 256 × 128 × 129 
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= ( ψ 1 , ψ 2 , ψ 3 , τ ) through the Jacobian of the transformation 

 = 

∂�

∂X 

. (4) 

erivatives in the physical space can therefore be computed

s ∂ X = J · ∂ �, with ∂ X = ( ∂ /∂ x, ∂ /∂ y, ∂ /∂ z ) 
T 

and ∂ ψ 

= (∂ /∂ ψ 1 ,

 /∂ ψ 2 , ∂ /∂ ψ 3 ) 
T . A two-stage fractional-step method is used to

iscretize the governing balance equations in time. In the first step,

 provisional velocity field ˜ u is obtained by solving the reduced

omentum equation (without the pressure contribution) 

˜ u − u 

n 

	t 
+ 

M−1 ∑ 

q =0 

αq ∇ · (uu ) n −q − 1 

2 Re τ
∇ 

2 ( ̃  u + u 

n ) = 0 , (5)

here the superscripts n and n − 1 indicate two previous time

evels. The convective term is treated explicitly using an Adams–

ashfort scheme ( M = 2 , α0 = 3 / 2 , α1 = −1 / 2 ), whereas an im-

licit Crank–Nicolson scheme is used for the viscous term. The pro-

isional velocity field ˜ u is then corrected using the equation 

u 

n +1 − ˜ u 

	t 
+ ∇p n +1 = 0 , (6)

ith the superscript n + 1 indicating the variables at the new time

tep (unknown). Taking the divergence of Eq. (6) and imposing that

he velocity field at the new time step ( u 

n +1 ) must be divergence-

ree, we obtain 

 

2 p n +1 = 

1 

	t 
∇ · ˜ u , (7)

hich can be solved to give p n +1 and, from Eq. (6) , u 

n +1 . For

he spatial discretization of the governing balance equations, we

mployed a pseudospectral technique, based on transforming a

eneric field variable �( ψ i ) into wavenumber space using Fourier

ransform in the ψ 1, 2 directions and Chebyshev transform in the

 3 direction: 

(ψ i ) = 

∑ 

k 1 ,k 2 ,n 3 

ˆ �(k 1 , k 2 , n 3 ) e 
i (k 1 ψ 1 + k 2 ψ 2 ) T n 3 (ψ 3 ) , (8)

here ˆ � indicates the spectral amplitude of the variable, and T n 3 =
os [ n 3 cos −1 (ψ 3 /h )] are Chebyshev polynomials. The discretized

overning equations for ˆ ˜ u are: 

d 2 

dξ 2 
3 

− β

)
ˆ ˜ u i = 

ˆ H i 

δ
− F 

(∇ 

2 
of f u 

n 
i 

)
, (9) 

here ˆ H i is given by 

ˆ 
 i = 	t 

(
3 

2 

ˆ S n 
i 

− 1 

2 

ˆ S n −1 
i 

)
+ F (δ∇ 

2 
diag u 

n 
i ) + 

ˆ u 

n 
i , (10)

 

n 
i 

are the convective terms, whereas β = 

1+ δk 2 

δ
and δ = 

	t 
2 Re τ

( 	t

s the time-step). Terms F ( ·) represent the Fourier-Chebyshev trans-

orm of a function in the computational space � . The terms ∇ 

2 
diag 

nd ∇ 

2 
of f 

arise from the mapping procedure and indicate, respec-

ively, the diagonal and the off-diagonal terms of the Laplacian op-

rator ∇ 

2 . For the pressure field ˆ p n +1 we have: 

d 2 

dξ 2 
3 

− β

)
ˆ p n +1 = 

F 
(∇ · ˆ u 

)
	t 

− F 
(∇ 

2 
of f p 

n 
)
. (11) 

he discretized equations ( Eqs. (9) –( 11 )) are solved using a

hebyshev-Tau method after imposing appropriate boundary con-

itions ( Soldati and Banerjee, 1998; Zonta et al., 2012 ). Periodicity

s employed in the streamwise ( ξ 1 ) and spanwise ( ξ 2 ) directions.

t the interface, both a kinematic and a dynamic boundary condi-

ion must be enforced ( Zonta et al., 2015 ). A kinematic boundary

ondition for the interface prescribes that the interface is material,

∂η

∂t 
+ u x 

∂η

∂x 
+ u y 

∂η

∂y 
= u z , (12)
ith η representing the interface amplitude with respect to the

ean fluid height h . This equation is integrated in time to track the

nterface motion and to compute the mapping coefficients. A dy-

amic boundary condition prescribes the continuity of the velocity

ector and of the normal/shear components of the stress tensor

 Fulgosi et al., 2003; Lombardi et al., 1996 ) 
 

 

 

 

 

 

 

 

 

1 

Reτ
( ( τL − τG ) · n ) · n + p G − p L + 

1 

W e 
∇ · n − 1 

F r 
η = 0 

((τL − τG ) · n ) · t i = 0 , i = 1 , 2 

u G = 

1 

R 

u L , 

(13) 

here the subscripts G and L are for gas and liquid respectively, τ
s the viscous stress tensor, n and t i are the normal and the two

angential unit vectors to the interface and R = 

√ 

ρL /ρG is the den-

ity ratio. The Weber ( We ), Froude ( Fr ) and Reynolds ( Re τ ) numbers

re defined as: 

W e = 

ρL hu 

2 
τ L 

γ
, F r = 

ρL u 

2 
τ L 

gh (ρL − ρG ) 
, Re τ = 

u τG 2 h 

νG 

= 

u τ L 2 h 

νL 

, 

(14) 

here γ is the surface tension, g is the acceleration due to grav-

ty and u τ is evaluated at the beginning of the simulation. At the

uter boundaries in the interface-normal direction ( ψ 3 ), free-slip

oundary conditions are applied. 

.1. Simulations 

The coupled air/water flow is assumed at atmospheric pressure

nd at a mean temperature θ = 50 ◦C (typical of industrial/chemical

ystems). The physical properties of the system (air and water) are

valuated at these reference conditions: the density ratio is R =
9 . 9 and the surface tension is γ = 0 . 0679 N/m. The computa-

ional domain, whose size is 4 πh × 2 πh × 2 h , is discretized using

56 × 128 × 129 nodes (for each phase) in the x, y and z direction,

espectively. We run three different simulations, keeping Re τ con-

tant ( Re τ = 170 ) and varying Fr and We : F r = 2 . 1 × 10 −6 and W e =
 . 7 × 10 −4 for simulation S 1; F r = 1 . 1 × 10 −6 and W e = 3 . 8 × 10 −4 

or simulation S 2; F r = 6 . 25 × 10 −7 and W e = 3 . 2 × 10 −4 for simu-

ation S 3. An overview of the simulation parameters is provided in

able 1 . 

. Results 

We consider the transient decay of waves due to a sudden

hange of the external wave forcing. To do this, we run a pre-

iminary simulation to obtain a fully-developed wave field. This

imulation is characterized by an interfacial shear velocity u τG =
 . 42 × 10 −2 (quantifying the strength of the wind shear) and by

aves having a root mean square (rms) of the interface displace-

ent η0 = 2 × 10 −3 . Starting from this initial condition, we reduce

he shear at the interface (i.e. we change the flow parameters to
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Fig. 3. Panel a: Time behavior of root mean square (rms) of the surface elevation, 

〈 η( t ) 2 〉 1/2 , normalized by its initial amplitude η0 ; the analytical results obtained 

with the exponential model of the wave decay ( 〈 η(t) 2 〉 1 / 2 = η0 exp (−t/τ ) + η∞ ) are 

also shown (thin lines). Panel b: Time behavior of 〈 ηt ( t ) 
2 〉 1/2 made dimensionless 

by g/u 2 τG . The theoretical values predicted by the simplified model ( Eq. (18) ) are 

labeled as ηth . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E  

E

 

w  

3  

λ  

o  

v  

t

〈  

T  

g

 

m  

〈  

o  

c  

(  

e

 

c  

s  

〈  

i  

n  

i  

i  

w  

m  

1  

o  

w  √
 

a  

p  

〈  

i  

t  

(  

a  

a  

〈  

s  

a  

e  

t  

i  

s  

f  

2  

c  

a  

u  

e  

u  
obtain a reduction of the wind shear at the interface). The wave

decay process is quantified in Fig. 3 a by computing the behavior of

the rms of the interface elevation, 〈 η( t ) 2 〉 1/2 , normalized by the ini-

tial values η0 . Starting from η0 , 〈 η( t ) 2 〉 1/2 decays rapidly ( t < 30 s)

before attaining a new statistically stationary condition. The wave

decay process can be modeled as an exponential decay given by

〈 η(t) 2 〉 1 / 2 = η0 exp (−t/τ ) + η∞ 

(thin lines in Fig. 3 a), where τ is a

characteristic relaxation time of the wave decay process, whereas

η∞ 

is the asymptotic value of the wave amplitude. The two param-

eters η∞ 

and τ of the exponential model do depend on the specific

values of 
√ 

F r /W e ( η0 being the same for each simulation): τ = 10

and η∞ 

= 0 . 12 for 
√ 

F r /W e = 2 . 16 (S1), τ = 4 and η∞ 

= 0 . 02 for√ 

F r /W e = 1 . 93 (S2) while τ = 3 and η∞ 

= 0 . 01 for 
√ 

F r /W e = 1 . 4

(S3). At the new steady state condition, waves with larger values

of 
√ 

F r /W e are characterized by larger amplitudes. The wave am-

plitude 〈 η( t ) 2 〉 1/2 can be conveniently rescaled ( Alves et al., 2003;

Janssen, 2004 ) as 〈 η(t) 2 〉 1 / 2 g/u 2 τG 
to identify possible scaling laws

(see Fig. 3 b). We try to estimate the asymptotic amplitude of waves

considering an energetic balance at the air/water interface. The en-

ergy of the interface is stored into kinetic ( E k ) and potential energy

( E p ). Potential energy consists of two different contributions, one

due to gravity, E p, g , and one due to surface tension, E p, γ ( Guo and

Shen, 2010; Kundu et al., 2012 ): 

E k = 

1 

SρL g〈 η2 〉 (15)

2 c  
 p,g = 

1 

S 

∫ 
S 

ρL gη
2 dS − 1 

S 

∫ 
S 

ρG gη
2 dS 	 

1 

2 

SρL g〈 η2 〉 (16)

 p,γ = 

γ

S 

∫ 
S 

⎡ 

⎣ 

√ 

1 + 

(
∂η

∂x 

)2 

+ 

(
∂η

∂y 

)2 

− 1 

⎤ 

⎦ dS 	 

1 

2 

γ Sk 2 c 〈 η2 〉 

(17)

here the wave number associated to capillary effects is k c = 

2 π
λc 

	
70 m 

−1 and is linked to the inverse of the capillary wave length

c = 

√ 

4 π2 γ
gρ 	 1 . 7 × 10 −2 m on a water interface. The total energy

f the interface E t = E k + E g + E γ = SρL g〈 η2 〉 + 

1 
2 Sγ k 2 c / 2 〈 η2 〉 is pro-

ided by the shear stress acting on it E shear = τs S = ρG u 
2 
τG 

S. From

he energy balance, E shear = E t , we obtain: 

 η2 〉 1 / 2 
th 

= 

⎡ 

⎣ 

ρG u 

2 
τG 2 πh (

ρL g + 

γ k 2 c 

2 

)
⎤ 

⎦ 

1 / 2 

. (18)

he dimensionless values 〈 η2 〉 1 / 2 
th 

(g/u 2 τG 
) are reported in Fig. 3 b to-

ether with the computational results. 

The theoretical predictions are in fair agreement with the nu-

erical results, indicating that Eq. (18) can be used to estimate

 η2 〉 1/2 in sheared air/water flows. Larger deviations from the the-

retical values are observed for S2 and S3, likely due to a more

omplex interface morphology and interface/turbulence interaction

viscous dissipation) which prevents from assuming the simplified

xpressions provided in Eq. (15) –( 17 ). 

To deepen the analysis of the transient decay of interfa-

ial waves, we compute the time behavior of the root mean

quare (rms) of the interface curvatures along the streamwise

 ηxx ( t ) 
2 〉 1/2 and spanwise 〈 ηyy ( t ) 

2 〉 1/2 directions. The time behav-

or of 〈 ηxx ( t ) 
2 〉 1/2 ( Fig. 4 a) is similar to that of 〈 η( t ) 2 〉 1/2 (expo-

ential decay) and is characterized by an asymptotic value that

ncreases for increasing 
√ 

F r /W e . By contrast, the time behav-

or of 〈 ηyy ( t ) 
2 〉 1/2 has a much shorter transient decay ( Fig. 4 b)

hen compared to that of 〈 ηxx ( t ) 
2 〉 1/2 . The difference between the

agnitude of 〈 ηxx ( t ) 
2 〉 1/2 for 

√ 

F r /W e = 2 . 16 (S1) and 

√ 

F r /W e =
 . 4 (S3) is remarkably reduced for 〈 ηyy ( t ) 

2 〉 1/2 . The prominence

f 〈 ηxx ( t ) 
2 〉 1/2 compared to 〈 ηyy ( t ) 

2 〉 1/2 seems to indicate that

aves propagate essentially along the streamwise direction for
 

F r /W e = 2 . 16 (S1). As 
√ 

F r /W e is decreased, waves propagate

lso in the spanwise direction and 〈 ηyy ( t ) 
2 〉 1/2 becomes com-

arable to 〈 ηxx ( t ) 
2 〉 1/2 . To quantify the increased importance of

 ηyy ( t ) 
2 〉 1/2 compared to 〈 ηxx ( t ) 

2 〉 1/2 and to estimate the complex-

ty of the interface morphology, we compute the ratio between

he streamwise and the spanwise curvature, 〈 ηyy ( t ) 
2 〉 1/2 / 〈 ηxx ( t ) 

2 〉 1/2

 Fig. 4 c). For 
√ 

F r /W e = 2 . 16 (S1), 〈 ηyy ( t ) 
2 〉 1/2 / 〈 ηxx ( t ) 

2 〉 1/2 � 0.2,

nd the interface behaves as a monodimensional wave traveling

long the streamwise direction ( 〈 ηxx ( t ) 
2 〉 1/2 larger compared to

 ηyy ( t ) 
2 〉 1/2 ). For decreasing 

√ 

F r /W e (simulations S2 and S3), the

urface tension becomes more important and the interface behaves

s a two-dimensional rough interface characterized by waves trav-

ling along the x and y directions ( 〈 ηyy ( t ) 
2 〉 1/2 and 〈 ηxx ( t ) 

2 〉 1/2 have

he same order of magnitude). This situation is clearly visualized

n Fig. 5 , where we show the interface deformation and the corre-

ponding interface curvature for each simulation: the interface de-

ormation is larger along the streamwise direction for 
√ 

F r /W e =
 . 16 , whereas it is more isotropic (interface roughness) for de-

reasing 
√ 

F r /W e . We quantify explicitly this behavior by looking

t the two dimensional wavenumber spectrum E ( k x , k y , t ) for sim-

lations S 1 ( Fig. 6 a) and S 3 ( Fig. 6 b). Results are computed consid-

ring the last snapshot of each simulation. It is clear that for sim-

lation S 1 wave energy is concentrated in few small wavenumber

omponents in the range 60 < k x < 100 m 

−1 and for k y = 0 . This
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Fig. 4. Time behavior of the rms of the interface curvature along the streamwise 

direction, 〈 ηxx ( t ) 
2 〉 1/2 (panel a) and along the spanwise direction, 〈 ηyy ( t ) 

2 〉 1/2 . Panel 

c: Time behavior of the ratio 〈 ηyy ( t ) 
2 〉 1/2 / 〈 ηxx ( t ) 

2 〉 1/2 . 

i  

r  

S  

r  

s  

e

Fig. 5. Interface deformation ( η, left) and interface curvature along the streamwise 

direction ( ηxx , right) for each simulation. Panels: (a) simulation S1; (b) simulation 

S2; (c) simulation S3. The amplitude of the interface deformation has been magni- 

fied × 3 for simulation S 1, × 30 for simulation S 2 and × 60 for simulation S 3. 

Fig. 6. Two dimensional wavenumber spectrum E ( k x , k y , t ) computed at the final 

snapshot of simulations S 1 (panel a) and S 3 (panel b). 

 

t  

c  ∫
 

u  

s  

w  

s  
ndicates that waves move preferentially along the streamwise di-

ection ( k x 
 = 0, k y = 0 ). The situation is different for simulation

 3, with wave energy being almost evenly distributed over a broad

ange of wavenumbers along both k x and k y . In particular we ob-

erve a more isotropic spectrum, with the activation of waves trav-

ling also along the spanwise direction ( k y 
 = 0). 
During the wave decay process, the spectral properties of

he interface vary in time. We quantify these variations by

omputing the behavior of the wavenumber spectrum E(k x , t) =
 

k y 
E 
(
k x , k y , t 

)
d k y at the beginning and at the end of the sim-

lation for 
√ 

F r /W e = 2 . 16 (S1) and for 
√ 

F r /W e = 1 . 4 (S3). Re-

ults are shown as a function of the wavenumber in the stream-

ise direction k x in the insets of Fig. 7 . For 
√ 

F r /W e = 2 . 16 (in-

et of Fig. 7 a), we essentially observe an attenuation of the wave
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Fig. 7. Wavenumber spectrum for simulations S 1 (panel a), and S 3 

(panel b). The main panels show the wavenumber spectrum, E(k x ) = 

1 / (	T ) 
∫ 

t 

∫ 
k y 

η(k x , k y , t ) d k y d t , averaged in time over a period 	T = 15 s after 

the wave decay process is completed. Insets show the behavior of the instan- 

taneous wavenumber spectrum E(k x , t) = 

∫ 
k y 

η(k x , k y , t) d k y computed at the 

beginning (solid line) and at the end (dotted line) of the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Probability density function (PDF) of the normalized interface elevation 

η/ 〈 η2 〉 1/2 for simulations S1 and S3. Inset: PDF of the normalized interface curva- 

ture ηxx / 〈 η2 
xx 〉 1 / 2 . Gaussian curve with zero mean and unit standard deviation (dot- 

ted line). 
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amplitude, with the maximum of the spectrum occurring always

at k 	 75 m 

−1 . The situation changes for 
√ 

F r /W e = 1 . 4 ( Fig. 7 b).

In this case, the maximum moves from k 	 75 m 

−1 toward k 	
110 m 

−1 , hence indicating that the wave energy is not only re-

duced (due to the wave decay) but it is also partially transferred

toward small capillary waves. After the entire process of wave

decay, the interface attains a new statistically stationary regime.

We characterize the structure of the interface in this new regime

by computing the time-averaged wavenumber spectrum E(k x ) =
1 / (	T ) 

∫ 
t 

∫ 
k y 

E 
(
k x , k y , t 

)
d k y d t (with 	T = 15 s ). Results are shown

in the main panels of Fig. 7 for simulation S1 ( Fig. 7 a) and for sim-

ulation S3 ( Fig. 7 b). We clearly observe the presence of a k −19 / 4
x 

power law, which is consistent with the theoretical predictions

given by WTT in the capillary regime ( Pushkarev and Zakharov,

1996; Zonta et al., 2015 ). Our spectra in the capillary range scale

as k −19 / 4 
x instead of k −15 / 4 due to the directional averaging over k y .

Recovering of a power-law energy spectrum close to the predic-

tions of WTT has been also observed during the wave-decay pro-

cess in an elastic plate ( Miquel and Mordant, 2011 ). 

The establishment of the energy cascade during and after the

exponential decay can be explained as follows: (i) The most ener-
etic waves decay exponentially in time, due to viscous dissipation;

ii) the energy to sustain capillary waves is small compared to the

nergy contained in the most energetic waves. Therefore, although

 large proportion of energy is damped by viscous dissipation and

ecays exponentially in time, there is still enough energy to feed

he (power law) cascade towards the smallest scales. The observa-

ion that for decreasing 
√ 

F r /W e capillarity increases importance

ompared to gravity can also be assessed by looking at the Bond

umber Bo = ρL g/ (γ k 2 ) ( Deike et al., 2015 ), with the characteristic

avenumber taken here as the wavenumber at which the energy

pectrum develops a peak. Note that the Bond number measures

he relative importance of forces induced by gravity and surface

ension. The smaller is Bo , the larger are capillary effects. In the

resent case, Bo ranges between Bo = 90 (simulation S 1) to Bo = 14

simulation S 3). This suggests that capillary effects become increas-

ngly important for decreasing 
√ 

F r /W e . 

To characterize further the topological properties of the inter-

ace at the steady-state condition, we compute the probability den-

ity function (PDF) of the interface amplitude normalized by the

orresponding standard deviation, 〈 η2 〉 1/2 . Results are shown in the

ain panel of Fig. 8 for simulation with 

√ 

F r /W e = 2 . 16 (S1) and

ith 

√ 

F r /W e = 1 . 4 (S3). Together with the DNS data we show the

DF of a gaussian distribution with zero mean, unit standard devi-

tion and unit integral. Note that the integral of a gaussian distri-

ution is I G = 

∫ ∞ 

−∞ 

exp (−x 2 / 2) d x = 2 ·
√ 

π/ 2 . Although being char-

cterized by a completely different shape, distributions from both

he simulations are roughly symmetric. For 
√ 

F r /W e = 1 . 4 (S3), we

ote that the PDF is close to a gaussian distribution, which sug-

ests that nonlinear effects are not sufficiently strong to break

he symmetrical distribution of wave amplitudes ( Falcon et al.,

007b ). Interestingly, for 
√ 

F r /W e = 2 . 16 (S1) the PDF departs from

aussianity, indicating that the interface deformation is far from

 random distribution. As previously discussed, it is closer to a

onochromatic wave traveling along the streamwise direction pro-

ucing a subgaussian distribution. To quantify the degree of sub-

aussianity, we use the excess kurtosis e = η4 / (〈 η2 〉 1 / 2 )4 − 3 ( e = 0

or a Gaussian distribution). In the present case, we found e = −1 . 6

or S1 and e = −0 . 8 for S3. 

The distribution of the interface deformation influence the dis-

ribution of the interface curvature. In the inset of Fig. 8 we show

he PDF of the streamwise curvature ηxx / 〈 ηxx ( t ) 
2 〉 1/2 for 

√ 

F r /W e =
 . 16 (S1) and for 

√ 

F r /W e = 1 . 4 (S3). As expected, the normal-

zed PDF ( ηxx ) is almost gaussian for 
√ 

F r /W e = 1 . 4 (S3), with the



F. Zonta et al. / International Journal of Heat and Fluid Flow 61 (2016) 137–144 143 

Fig. 9. Joint PDF between the interface elevation η and the capillarity F γ = We −1 ∇ ·
n . Panels: (a) simulation S1; (b) simulation S3. 
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Fig. 10. Coherency spectrum between the interface elevation η and the capillarity 

( F γ ). Each panel corresponds to a different simulation: (a) simulation S1; (b) simu- 

lation S2; (c) simulation S3. 
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ost probable value ηxx / 〈 ηxx (t) 2 〉 1 / 2 = 0 . This reflects the fact that,

hen the surface tension dominates, the interface behaves as a

urface roughness characterized by a gaussian distribution of cur-

atures. The situation is largely different for 
√ 

F r /W e = 2 . 16 (S1). In

his case, we observe two sharp peaks, one positive and one nega-

ive ( ηxx / 〈 ηxx ( t ) 
2 〉 1/2 � ±1), corresponding to crests and throats of

 traveling monochromatic wave. Regions of lower and higher cur-

atures are instead characterized by a remarkably lower frequency

f occurrence. 

The distribution of the interface curvature is directly linked to

he distribution of the capillarity force F γ = W e −1 ∇ · n acting as a

estoring force of interfacial waves. As a consequence, a connec-

ion can be established between the interface elevation η and the

apillarity force F γ . To analyze this connection, we measure the

oint probability distribution function (JPDF) between η and F γ .

he contour maps of the JPDF, shown in Fig. 9 , clearly indicate that

he η − F γ coupling mechanism depends on the values of the phys-

cal parameter 
√ 

F r /W e . For larger 
√ 

F r /W e (simulation S1, Fig. 9 a)

he contour maps of the JPDF are inclined by −π/ 4 , indicating that

here is a strong negative correlation between the interface eleva-

ion and the capillarity force (or the curvature): regions of maxi-

um interface elevation correlate with regions of minimum (neg-

tive) capillarity force. In this case, gravity produces a distribution

f the interface elevation that in turn determines the value of the

nterface curvature and of F γ . For decreasing 
√ 

F r /W e (simulation

3, Fig. 9 b), the JPDF presents a broader area, typical of uncorre-

ated variables ( F γ changes almost independently of η). This sug-
ests that for capillary-dominated waves the interface deformation

ehaves like a random roughness superposed on underlying longer

aves. 

To quantify explicitly the phase correlation between η and F γ ,

e compute the coherency spectrum as 

oh η,F γ (τ ) = 

∫ ∞ 

−∞ 

R η,F γ (s ) exp ( −2 π jsτ ) d s . (19) 

ith R η,F γ the correlation coefficient between η and F γ . Results are

hown in Fig. 10 for all the simulations. The magnitude of the co-

erency spectrum ( 
∣∣coh η,F γ

∣∣, − • − in Fig. 10 ) gives an indication

f the dominant wavenumbers of both signals, whereas the phase

f the coherency spectrum ( φ
(
coh η,F γ

)
, −�− in Fig. 10 ) measures

he phase delay between the two signals. Note that the phase di-

gram φ
(
coh η,F γ

)
is meaningful only when the magnitude of the

ignal 
∣∣coh η,F γ

∣∣, develops a peak. For 
√ 

F r /W e = 2 . 16 (S1), when

coh η,F γ

∣∣ is maximum (i.e for k x � 75), φ
(
coh η,F γ

)
= −π, indicating

 sharp phase opposition between η and F γ . The situation changes

or decreasing 
√ 

F r /W e (simulations S2 and S3). In this case, we

bserve peaks in the coherency spectrum occurring also at larger

avenumbers ( 100 < k x < 300 m 

−1 ). The corresponding phase de-

ay associated to these peaks is different from ± π (dotted lines in

ig. 10 ), indicating that η and F γ are not in opposition of phase.

his situation is due to the emergence of short capillary (parasitic)

aves on top of longer gravity waves: capillarity F γ (or equiva-

ently the curvature ∇ · n ) changes sign even though η is always

ositive, hence introducing a phase decorrelation between η and

 γ . The generation of ripples and the corresponding phase decor-

elation between the interface elevation η and the capillarity F γ is

esponsible for the shift toward larger k , which was observed in

he wavenumber spectrum for 
√ 

F r /W e = 1 . 4 ( Fig. 7 ). 

. Conclusions and future development 

We used direct numerical simulation to analyze the wave-

ecay process in a sheared air/water turbulent flow. Air and water

ere forced by an imposed pressure gradient to flow in opposite
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directions (countercurrent configuration). We employed a bound-

ary fitted technique to track the interface deformation under the

combined effect of shear, pressure, surface tension and gravity. We

let the air/water system evolve starting from an initial wavy inter-

face and reducing the interfacial shear. An initial exponential de-

cay was observed. Depending on the value of the physical param-

eters, chiefly 
√ 

F r /W e, the spectral properties of waves changed in

time during the decay process. In particular, for 
√ 

F r /W e < 2 we

observed that the interfacial energy contained at small wavenum-

bers was partially transferred towards larger wavenumbers (blue

shift). This effect was only visible for small 
√ 

F r /W e (when cap-

illary effects are important compared to gravity). At the end of

the transient decay, a new asymptotic steady state condition was

reached. Wavenumber spectra computed during the transient de-

cay and at the new steady condition were found in fair agreement

with the predictions given by wave turbulence theory. These re-

sults can be explained considering that the energy to sustain cap-

illary waves is small compared to the energy contained in the most

energetic waves. Therefore, although a large proportion of the en-

ergy is damped by viscous dissipation and decays exponentially in

time, there is still enough energy to feed the power law cascade

towards the smallest scales at any time instant. We finally consid-

ered the local interface curvature and related statistics to discuss

the role of gravity and surface tension in determining the inter-

face deformation. For 
√ 

F r /W e > 2 we found that gravity was im-

portant compared to surface tension and the interface deforma-

tion was close to a sinusoidal wave propagating along the direction

imposed by the mean shear. For 
√ 

F r /W e > 2 , capillary effects in-

creased and the interface deformation was more isotropic (surface

roughness). Present results are particularly important because they

open new perspectives to analyze the dynamics of organic mat-

ter ( Lovecchio et al., 2013; 2014 ) in realistic models of terrestrial

water bodies, and to characterize the direct/inverse energy cascade

process ( Lovecchio et al., 2015 ) occurring at a deformable air/water

interface. 
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