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1. Introduction

Quark-Gluon Plasma in Heavy Ion Collisions

• Heavy ion collision experiments at RHIC and LHC
produce a deconfied state of quarks and gluons,
the so-called quark-gluon plasma (QGP).

• The QGP in these experiments behaves like a strongly coupled liquid,
not like a weakly coupled gas.

• The plasma thermalizes on a very short time scale (≈10-23 sec),
which is theoretically not well understood yet.

• Due to the strong coupling perturbative QCD is not suitable
to study the quantum dynamics of these collisions.

Figure 1: The formation and thermalization of a plasma in the
field theory is mapped to the formation of a black hole in the
gravity theory via the AdS/CFT correspondence.

AdS/CFT Correspondence [2]

• AdS/CFT maps strongly coupled
supersymmetric Yang-Mills (SYM) theory in 4D
to classical gravity on 5D anti-de Sitter (AdS5) space.

•We use the plasma in SYM theory as a toymodel for
the experimentally realized QGP.

• Thermalization in the strongly coupled 4D SYM theory
is mapped to black hole formation in AdS5.

2. Shock Wave Collisions in SYM

Full-Stopping

•Wide shocks
stop each other
in the collision before
they explode
hydrodynamically.

• Outgoing shocks
are slowed down,
energy and pressure
are positive.

Transparency

• Narrow shocks
pass each other
almost ”transparently”
without loosing velocity.

• Energy and pressure
can be negative.

Energy-Momentum Tensor

〈Tµν〉 =
N 2
c

2π2


E S 0 0
S P‖ 0 0

0 0 P⊥ 0
0 0 0 P⊥


The time evolution of the EMT is
extracted from a numerical relativ-
ity simulation of colliding gravita-
tional shock waves. [5]

3. Observables from AdS/CFT

AdS/CFT allows to compute expectation va-
lues of observables in 4D SYM theory from
purely geometric objects in the 5D gravity
theory such as the metric, geodesics and
minimal surfaces.

Local Observables

• The energy-momentum tensor can be ex-
tracted from the metric gµν near the boundary.

〈Tµν(x)〉 = − 2
detg

δS
δgµν(x)

Non-Local Observables

• Two-point functions of gauge invariant opera-
tors O with large conformal weight ∆ are given
by the length of geodesics γ. [3]

〈O(t, ~x)O(t, ~x′)〉 ≈ e−∆Length(γ)

• The entanglement entropy of a spatial region A
is given by the area of a minimal surface Σ. [4]

SA = −TrAρAlogρA =
Area(Σ)

4GN

Figure 2: Two Lorentz contracted ”nuclei” are modelled
as Gaussian energy distributions in SYM heading to-
wards each other at the speed of light. Energy density E
for wide (left) and narrow (right) shocks.

8. Null Energy Condition (NEC)

The NEC is given by the projection of the EMT
onto lightlike vectors.

〈kµkνTµν〉 ≥ 0 ∀ k2 = 0

• Narrow shocks can violate the NEC. [7]
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Figure 3: NEC for wide (left) and narrow (right) shocks.
Violation in the black area.

9. Quantum NEC

The quantum null energy condition (QNEC) is con-
jectured to give an upper bound for this violation. [9]

〈Tµνkµkν〉 ≥
1

2π
S ′′
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Figure 4: Preliminary results for the QNEC (red),
compared with the NEC for wide (orange) and nar-
row (blue) shocks.

4. Geodesics in AdS

Finding geodesics is the central point in this work. [1]
Both, the two-point function and the entanglement entropy are calculated using the length of
spacelike geodesics. They are found by solving the geodesic equation (1) numerically.

Ẍµ + ΓµαβẊ
αẊβ = −JẊµ, s.t. Xµ|bdry = (t, 0,±l/2) (1)

Length(γ) =

∫
γ

dσ
√
gµνXµ(σ)Xν(σ) (2)

Figure 5: Black hole horizon (black), ansatz geodesics (red), time evolved
geodesics (green) and energy contours at z=0 for wide (left) and narrow shocks
(right).

5. Entanglement Entropy
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Figure 6: Time evolution of entanglement entropy for various system sizes L; wide shocks (left) and
narrow shocks (right).

Time Evolution of Entanglement Entropy [1]

• As the shocks enter the entangling region the entanglement entropy grows rapidly.

• After this rapid initial growth follows a regime of linear growth approx. until the shocks collide.

• Narrow shocks reach a global maximum close to the collision time (t = 0), for wide shocks
the maximum is clearly delayed.

• For the narrow shocks there is an additional local minimum after the collision, which does not
appear for the wide shocks.

Figure 7: Geometric description of the EMT, 2PF and
EE in terms of the near boundary metric, geodesics and
extremal surfaces.

6. Two-Point Function

Time Evolution of Two-Point Functions [1]

• In-going shocks destroy the initial correlations.

• During the collision, new correlations are formed.

• For wide shocks the correlations start to
grow earlier (t < 0).

• For narrow shocks the correlations start to grow
later (t = 0) and overshoot their initial values.
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Figure 8: Time evolution of 2PF for various system sizes
L; wide shocks (left) and narrow shocks (right).

7. Looking Behind the Horizon
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Figure 9: Geodesics probing the 2PF can reach behind
the horizon (top), while extremal surfaces probing the EE
cannot (bottom). [1]

10. Summary

Conclusion

•We use collisions of shock waves in SYM theory as toymodel for heavy ion collisions.

•Within AdS/CFT non-local observables such as two-point functions and entanglement entropy
can be computed from geodesics and minimal surfaces in the gravity theory.

•We study the time evolution of two-point functions and entanglement entropy and find qualitatively
different behavior for narrow and wide shocks.

• Narrow shocks show overshooting in the two-point function and a local minimum in the entang-
lement entropy after the collision. These features do not appear in the wide shocks.

Outlook

• The geometric probes for the two-point function reach behind the horizon, while the probes for
the entanglement entropy do not. We are currently investigating this further.

• For narrow shocks we observe a violation of the NEC.
The question if the conjectured QNEC is satisfied, is currently under investigation
and first (preliminary) results suggest that this is the case.
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