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1. Inroduction

Quark-Gluon Plasma in Heavy lon Collisions AdS/CFT Correspondence [2]

e AdS/CFT maps strongly coupled
supersymmetric Yang-Mills (SYM) theory in 4D
to classical gravity on 5D anti-de Sitter (AdS5) space.

e Heavy ion collision experiments at RHIC and LHC
produce a deconfied state of quarks and gluons,
the so-called quark-gluon plasma (QGP).

e The QGP in these experiments behaves like a strongly coupled liquid,
not like a weakly coupled gas.

e We use the plasma in SYM theory as a toymodel for
the experimentally realized QGP.

e The plasma thermalizes on a very short time scale (~102° sec),
which is theoretically not well understood yet.

e Thermalization in the strongly coupled 4D SYM theory
is mapped to black hole formation in AdS5.

* Due to the strong coupling perturbative QCD is not suitable Figure 1: The formation and thermalization of a plasma in the
to study the quantum dynamics of these collisions. field theory is mapped to the formation of a black hole in the
gravity theory via the AdS/CFT correspondence.
2. Shock Wave Collisions in SYM 3. Observables from AdS/CFT
Full-Stopping Transparency Energy-Momentum Tensor AdS/CFT allows to compute expectation va- Non-Local Observables
e Wide shocks e Narrow shocks lues of observables in 4D SYM theory from « Two-point functions of gauge invariant opera-
stop each other pass each other /g 5 00 \ purely geometric objects in the oD gravity tors @ with large conformal weight A are given
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they explode without loosing velocity. <T > — 9.2 00 P, 0 minimal surfaces. y the length of geodesics ~. [3]
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e Outgoing shocks can be negative.
are slowed down, The time evolution of the EMT is o The energy-momen_tum tensor can be ex- e The entanglement entropy of a spatial region A
energy and pressure extracted from a numerical relativ- tracted from the metric g, near the boundary. is given by the area of a minimal surface X. [4]
are positive. . . . - . 1/ 9 5S
ity simulation of colliding gravita- (TH (x)) = — - B _ Area(Y)
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tional shock waves. [5] N
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theory t = const.
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4. Geod.s in AdS ‘ | A
® ®
Finding geodesics is the central point in this work. [1] < b
Both, the two-point function and the entanglement entropy are calculated using the length of ¢ near bdry. X
_ . spacelike geodesics. They are found by solving the geodesic equation (1) numerically. metricg,,
Figure 2: Two Lorentz contracted "nuclei” are modelled 5D gravity
as Gaussian energy distributions in SYM heading to- ) o . theory _ — A
wards each other at the speed of light. Energy density £ XH 4 FﬂaﬁXO‘Xﬁ — —JXH st Xﬂ‘bdry = (t,0,£1/2) (1) geodesic y Q‘J:‘f':;‘:ae'z
for wide (left) and narrow (right) shocks. Length(~) = [ d \/ X0 () X7 (o) 2) Figure 7: Geometric description of the EMT, 2PF and
CLHEUIY) = ” T4/ Ypv g o EE in terms of the near boundary metric, geodesics and

extremal surfaces.

8. Null Energylondition (NEC)

The NEC is given by the projection of the EMT 6. TWO-POI Function

onto lightlike vectors.
Time Evolution of Two-Point Functions [1]

(FEYT)) >0 ¥V k=0

e Narrow shocks can violate the NEC. [7]

¢ In-going shocks destroy the initial correlations.
e During the collision, new correlations are formed.

2.0 10

e For wide shocks the correlations start to
grow earlier (¢t < 0).
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e For narrow shocks the correlations start to grow
later (¢ = 0) and overshoot their initial values.
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Figure 3: NEC for wide (left) and narrow (right) shocks. geodesics (green) and energy contours at z=0 for wide (left) and narrow shocks R -
Violation in the black area. (right). Spes - =1
Figure 8: Time evolution of 2PF for various system sizes
9. Quarllm NEC d. Entangl.nt Entropy L; wide shocks (left) and narrow shocks (right).
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The quantum null energy condition (QNEC) is con- . gl Sreg/M* 7. Looking BeI'Id the Horizon
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Figure 6: Time evolution of entanglement entropy for various system sizes L; wide shocks (left) and 1-‘fz/ ol
narrow shocks (right). o 1_0/
Time Evolution of Entanglement Entropy [1] vﬁa ~X—=
[ 0.6
> o000 000000000 00000000t 0000000000000000 e As the shocks enter the entangling region the entanglement entropy grows rapidly. Zj 04
| e After this rapid initial growth follows a regime of linear growth approx. until the shocks collide. 2 2
3 e Narrow shocks reach a global maximum close to the collision time (¢ = 0), for wide shocks -0 05 00 05 10 15 20 241 -0 <05 00 05 10 s zo 2f
the maximum is clearly delayed. _ | _ |
Figure 4: Preliminary results for the QNEC (red), e For the narrow shocks there is an additional local minimum after the collision, which does not Fh'g‘r‘]re.g' GeOdeS'Ch“?l probing ”}e ZTF can res.Ch br?h'é‘g
compared with the NEC for wide (orange) and nar- appear for the wide shocks. the horizon (top), while extremal surfaces probing the
row (blue) shocks. cannot (bottom). [1]
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