
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

A Short Counterexample Property for Safety and Liveness
Verification of Fault-Tolerant Distributed Algorithms

Igor Konnov Marijana Lazić Helmut Veith ∗ Josef Widder
TU Wien, Austria

{konnov, lazic, veith, widder}@forsyte.at

Abstract
Distributed algorithms have many mission-critical applications
ranging from embedded systems and replicated databases to cloud
computing. Due to asynchronous communication, process faults, or
network failures, these algorithms are difficult to design and verify.
Many algorithms achieve fault tolerance by using threshold guards
that, for instance, ensure that a process waits until it has received
an acknowledgment from a majority of its peers. Consequently,
domain-specific languages for fault-tolerant distributed systems
offer language support for threshold guards.

We introduce an automated method for model checking of safety
and liveness of threshold-guarded distributed algorithms in systems
where the number of processes and the fraction of faulty processes
are parameters. Our method is based on a short counterexample
property: if a distributed algorithm violates a temporal specification
(in a fragment of LTL), then there is a counterexample whose
length is bounded and independent of the parameters. We prove
this property by (i) characterizing executions depending on the
structure of the temporal formula, and (ii) using commutativity of
transitions to accelerate and shorten executions. We extended the
ByMC toolset (Byzantine Model Checker) with our technique, and
verified liveness and safety of 10 prominent fault-tolerant distributed
algorithms, most of which were out of reach for existing techniques.

Categories and Subject Descriptors F.3.1 [Logic and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.4.5 [Software]: Operating systems: Fault-tolerance, Veri-
fication

Keywords Parameterized model checking, Byzantine faults, fault-
tolerant distributed algorithms, reliable broadcast

∗We dedicate this article to the memory of Helmut Veith, who passed away
tragically after we finished the first draft together. In addition to contributing
to this work, Helmut initiated our long-term research program on verification
of fault-tolerant distributed algorithms, which made this paper possible.
Supported by: the Austrian Science Fund (FWF) through the National
Research Network RiSE (S11403 and S11405), project PRAVDA (P27722),
and Doctoral College LogiCS (W1255-N23); and by the Vienna Science and
Technology Fund (WWTF) through project APALACHE (ICT15-103).

1. Introduction
Distributed algorithms have many applications in avionic and
automotive embedded systems, computer networks, and the internet
of things. The central idea is to achieve dependability by replication,
and to ensure that all correct replicas behave as one, even if
some of the replicas fail. In this way, the correct operation of the
system is more reliable than the correct operation of its parts. Fault-
tolerant algorithms typically have been used in applications where
highest reliability is required because human life is at risk (e.g.,
automotive or avionic industries), and even unlikely failures of
the system are not acceptable. In contrast, in more mainstream
applications like replicated databases, human intervention to restart
the system from a checkpoint was often considered to be acceptable,
so that expensive fault tolerance mechanisms were not used in
conventional applications. However, new application domains such
as cloud computing provide a new motivation to study fault-tolerant
algorithms: with the huge number of computers involved, faults
are the norm [53] rather than an exception, so that fault tolerance
becomes an economic necessity; and so does the correctness of
fault tolerance mechanisms. Hence, design, implementation, and
verification of distributed systems constitutes an active research
area [7, 23, 41, 42, 48, 57, 67]. Although distributed algorithms
show complex behavior, and are difficult to understand for human
engineers, there is only very limited tool support to catch logical
errors in fault-tolerant distributed algorithms at design time.

The state of the art in the design of fault-tolerant systems is exem-
plified by the recent work on Paxos-like distributed algorithms like
Raft [54] or M2PAXOS [57]. The designers encode these algorithms
in TLA+ [65], and use the TLC model checker to automatically find
bugs in small instances, i.e., in distributed systems containing, e.g.,
three processes. Large distributed systems (e.g., clouds) need guar-
antees for all numbers of processes. These guarantees are typically
given using hand-written mathematical proofs. In principle, these
proofs could be encoded and machine-checked using the TLAPS
proof system [16], PVS [49], Isabelle [15], Coq [48], Nuprl [60],
or similar systems; but this requires human expertise in the proof
checkers and in the application domain, and a lot of effort.

Ensuring correctness of the implementation is an open challenge:
As the implementations are done by hand [54, 57], the connection be-
tween the specification and the implementation is informal, such that
there is no formal argument about the correctness of the implemen-
tation. To address the discrepancy between design, implementation,
and verification, Drăgoi et al. [23] introduced a domain-specific
language PSync which is used for two purposes: (i) it compiles
into running code, and (ii) it is used for verification. Their verifica-
tion approach [24], requires a developer to provide invariants, and
similar verification conditions. While this approach requires less
human intervention than writing machine-checkable proofs, com-
ing up with invariants of distributed systems requires considerable

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

POPL’17, January 15–21, 2017, Paris, France
ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009860

719



1 case c l a s s EchoMsg extends Message
2

3 c l a s s Re l i a b l eB roadca s tOnce
4 extends DSLProtocol {
5 va l n = ALL . s i z e / / n r . p r o c e s s e s
6 va l t = ALL . s i z e / 3 − 1 / / max . f a u l t s
7 var accep t : Boolean = Fa l se
8

9 UPON RECEIVING START WITH v DO {
10 IF v == 1 THEN / / c h e c k t h e i n i t i a l v a l u e
11 SEND EchoMsg TO ALL
12 }
13 UPON RECEIVING EchoMsg TIMES t + 1 DO {
14 SEND EchoMsg TO ALL / / >= 1 c o r r e c t
15 }
16 UPON RECEIVING EchoMsg TIMES n − t DO {
17 accep t = True / / a l m o s t a l l c o r r e c t
18 }
19 }

Figure 1. Code example of a distributed algorithm in DISTAL [7].
A distributed system consists of n processes, at most t < n/3 of
which are Byzantine faulty. The correct ones execute the code, and
no assumptions is made about the faulty processes.

human ingenuity. The Mace [41] framework is based on a similar
idea, and is an extension to C++. While being fully automatic, their
approach to correctness is light-weight in that it uses a tool that
explores random walks to find (not necessarily all) bugs, rather than
actually verifying systems.

In this paper we focus on automatic verification methods for
programming constructs that are typical for fault-tolerant distributed
algorithms. Figure 1 is an example of a distributed algorithm in
the domain-specific language DISTAL [7]. It encodes the core
of the reliable broadcast protocol from [64], which is used as
building block of many fault-tolerant distributed systems. Line 13
and Line 16 use so-called “threshold guards” that check whether
a given number of messages from distinct senders arrived at the
receiver. As threshold guards are the central algorithmic idea for
fault tolerance, domain-specific languages such as DISTAL or PSync
have constructs for them (see [23] for an overview of domain-
specific languages and formalization frameworks for distributed
systems). For instance, the code in Figure 1 works for systems with
n processes among which t can fail, with t < n/3 as required
for Byzantine fault tolerance [56]. In such systems, waiting for
messages from n− t processes ensures that if all correct processes
send messages, then faulty processes cannot prevent progress.
Similarly, waiting for t + 1 messages ensures that at least one
message was sent by a correct process. Konnov et al. [42] introduced
an automatic method to verify safety of algorithms with threshold
guards. Their method is parameterized in that it verifies distributed
algorithms for all values of parameters (n and t) that satisfy a
resilience condition (t < n/3). This work bares similarities to the
classic work on reduction for parallel programs by Lipton [50].
Lipton proves statements like “all P operations on a semaphore are
left movers with respect to operations on other processes.” He proves
that given a run that ends in a given state, the same state is reached
by the run in which the P operation has been moved. Konnov et
al. [42] do a similar analysis for threshold-guarded operations, in
which they analyze the relation between statements from Figure 1
like “send EchoMsg” and “UPON RECEIVING EchoMsg TIMES
t + 1” in order to determine which statements are movable. From
this, they develop an offline partial order reduction that together
with acceleration [6, 44] reduced reachability checking to complete
bounded model checking using SMT. In this way, they automatically
check safety of fault-tolerant algorithms.

However, for fault-tolerant distributed algorithms liveness is as
important as safety: This comes from the celebrated impossibility
result by Fischer, Lynch, and Paterson [32] that states that a fault-
tolerant consensus algorithm cannot ensure both safety and liveness
in asynchronous systems. It is folklore that designing a safe fault-
tolerant distributed algorithm is trivial: just do nothing; e.g., by never
committing transactions, one cannot commit them in inconsistent
order. Hence, a technique that verifies only safety may establish
the “correctness” of a distributed algorithm that never does anything
useful. To achieve trust in correctness of a distributed algorithm, we
need tools that verify both safety and liveness.

As exemplified by [31], liveness verification of parameterized
distributed and concurrent systems is still a research challenge.
Classic work on parameterized model checking by German and
Sistla [35] has several restrictions on the specifications (∀i. φ(i)) and
the computational model (rendezvous), which are incompatible with
fault-tolerant distributed algorithms. In fact, none of the approaches
(e.g., [18, 26, 27, 59]) surveyed in [9] apply to the algorithms we
consider. More generally, in the parameterized case, going from
safety to liveness is not straightforward. There are systems where
safety is decidable and liveness is not [28].

Contributions. We generalize the approach by Konnov et al. [42,
44] to liveness by presenting a framework and a model checking
tool that takes as input a description of a distributed algorithm (in
our variant [36] of Promela [39]) and specifications in a fragment
of linear temporal logic. It then shows correctness for all parameter
values (e.g., n and t) that satisfy the required resilience condition
(e.g., t < n/3), or reports a counterexample:
1. As in the classic result by Vardi and Wolper [66], we observe

that it is sufficient to search for counterexamples that have the
form of a lasso, i.e., after a finite prefix an infinite loop is entered.
Based on this, we analyze specifications automatically, in order
to enumerate possible shapes of lassos depending on temporal
operators F and G and evaluations of threshold guards.

2. We automatically do offline partial order reduction using the
algorithm’s description. For this, we introduce a more refined
mover analysis for threshold guards and temporal properties. We
extend Lipton’s reduction method [50] (re-used and extended
by many others [19, 22, 25, 34, 44, 47]), so that we maintain
invariants, which allows us to go beyond reachability and verify
specifications with the temporal operators F and G .

3. By combining acceleration [6, 44] with Points 1 and 2, we obtain
a short counterexample property, that is, that infinite executions
(which may potentially be counterexamples) have ”equivalent”
representatives of bounded length. The bound depends on the
process code and is independent of the parameters. The equiva-
lence is understood in terms of temporal logic specifications that
are satisfied by the original executions and the representatives,
respectively. We show that the length of the representatives in-
creases mildly compared to reachability checking in [42]. This
implies a so-called completeness threshold [46] for threshold-
based algorithms and our fragment of LTL.

4. Consequently, we only have to check a reasonable number of
SMT queries that encode parameterized and bounded-length
representatives of executions. We show that if the parameterized
system violates a temporal property, then SMT reports a coun-
terexample for one of the queries. We prove that otherwise the
specification holds for all system sizes.

5. Our theoretical results and our implementation push the bound-
ary of liveness verification for fault-tolerant distributed algo-
rithms. While prior results [40] scale just to two out of ten
benchmarks from [42], we verified safety and liveness of all ten.
These benchmarks originate from distributed algorithms [11, 12,
14, 21, 37, 52, 61, 63, 64] that constitute the core of important
services such as replicated state machines.

720



`0

`1

`2 `3

r2 : γ1 7→ x++

r1 : tru
e 7→ x++

r3 : γ2 7→ x++

r4 : γ2

r5 : γ2 7→ x++

r6 r7
r8

Figure 2. The threshold automaton corresponding to Figure 1 with
γ1 : x ≥ (t + 1) − f and γ2 : x ≥ (n − t) − f over parameters
n, t, and f , representing the number of processes, the upper bound
on the faulty processes (used in the code), and the actual number
of faulty processes. The negative number −f in the threshold is
used to model the environment, and captures that at most f of the
received messages may have been sent by faulty processes.

From a theoretical viewpoint, we introduce new concepts and
conduct extensive proofs (the proofs can be found in [43]) for
Points 1 and 2. From a practical viewpoint, we have built a com-
plete framework for model checking of fault-tolerant distributed
algorithms that use threshold guards, which constitute the central
programming paradigm for dependable distributed systems.

2. Representation of Distributed Algorithms
2.1 Threshold Automata
As internal representation in our tool, and in the theoretical work
of this paper, we use threshold automata (TA) defined in [44]. The
TA that corresponds to the DISTAL code from Figure 1 is given in
Figure 2. The threshold automaton represents the local control flow
of a single process, where arrows represent local transitions that are
labeled with ϕ 7→ act: Expression ϕ is a threshold guard and the
action act may increment a shared variable.

Example 2.1. The TA from Figure 2 is quite similar to the code
in Figure 1: if START is called with v = 1 this corresponds to the
initial local state `1, while otherwise a process starts in `0. Initially
a process has not sent any messages. The local state `2 in Figure 2
captures that the process has sent EchoMsg and accept evaluates
to false, while `3 captures that the process has sent EchoMsg
and accept evaluates to true. The syntax of Figure 1, although
checking how many messages of some type are received, hides
bookkeeping details and the environment, e.g., message buffers. For
our verification technique, we need to make such issues explicit:
The shared variable x stores the number of correct processes that
have sent EchoMsg. Incrementing x models that EchoMsg is sent
when the transition is taken. Then, execution of Line 9 corresponds
to the transition r1. Executing Line 13 is captured by r2: the check
whether t+ 1 messages are received is captured by the fact that r2

has the guard γ1, that is, x ≥ (t + 1) − f . Intuitively, this guard
checks whether sufficiently many processes have sent EchoMsg (i.e.,
increased x), and takes into account that at most f messages may
have been sent by faulty processes. Namely, if we observe the guard
in the equivalent form x+f ≥ t+1, then we notice that it evaluates
to true when the total number of received EchoMsg messages from
correct processes (x) and potentially received messages from faulty
processes (at most f ), is at least t + 1, which corresponds to the
guard of Line 13. Transition r4 corresponds to Line 16, r3 captures
that Line 9 and Line 16 are performed in one protocol step, and r5

captures Line 13 and Line 16. /

While the example shows that the code in a domain-specific
language and a TA are quite close, it should be noted that in reality,
things are slightly more involved. For instance, the DISTAL runtime
takes care of the bookkeeping of sent and received messages (waiting

queues at different network layers, buffers, etc.), and just triggers
the high-level protocol when a threshold guard evaluates to true.
This typically requires counting the number of received messages.
While these local counters are present in the implementation, they
are abstracted in the TA. For the purpose of this paper we do not
need to get into the details. Discussions on data abstraction and
automated generation of TAs from code similar to DISTAL can be
found in [45].

We recall the necessary definitions introduced in [44]. A thresh-
old automaton is a tuple TA = (L, I,Γ,Π,R,RC) whose compo-
nents are defined as follows: The local states and the initial states
are in the finite sets L and I ⊆ L, respectively. For simplicity, we
identify local states with natural numbers, i.e., L = {1, . . . , |L|}.
Shared variables and parameter variables range over N0 and are
in the finte sets Γ and Π, respectively. The resilience condition RC
is a formula over parameter variables in linear integer arithmetic,
and the admissible parameters are PRC = {p ∈ N|Π|0 : p |= RC}.
After an example for resilience conditions, we will conclude the
definition of a threshold automaton by definingR as the finite set
of rules.

Example 2.2. The admissible parameters and resilience conditions
are motivated by fault-tolerant distributed algorithms: Let n be the
number of processes, t be the assumed number of faulty processes,
and in a run, f be the actual number of faults. For these parameters,
the famous result by Pease, Shostak and Lamport [56] states that
agreement can be solved iff the resilience condition n > 3t ∧ t ≥
f ≥ 0 is satisfied. Given such constraints, the set PRC is infinite,
and in Section 2.2 we will see that this results in an infinite state
system. /

A rule is a tuple (from, to, ϕ≤, ϕ>,u), where from and to are
from L, and capture from which local state to which a process
moves via that rule. A rule can only be executed if ϕ≤ and ϕ>

are true; both are conjunction of guards. Each guard consists of a
shared variable x ∈ Γ, coefficients a0, . . . , a|Π| ∈ Z, and parameter
variables p1, . . . , p|Π| ∈ Π so that x ≥ a0 +

∑|Π|
i=1 ai ·pi is a lower

guard and x < a0 +
∑|Π|
i=1 ai ·pi is an upper guard. Then, Φrise and

Φfall are the sets of lower and upper guards.1 Rules may increase
shared variables using an update vector u ∈ N|Γ|0 that is added to
the vector of shared variables. Finally,R is the finite set of rules.

Example 2.3. A rule corresponds to an edge in Figure 2. The pair
(from, to) encodes the edge while (ϕ≤, ϕ>,u) encodes the edge
label. For example, rule r2 would be (`0, `2, γ1,>, 1). Thus, a rule
corresponds to a (guarded) statement from Figure 1 (or combined
statements as discussed in Example 2.1). /

The above definition of TAs is quite general. It allows loops,
increase of shared variables in loops, etc. As has been observed
in [44], if one does not restrict increases on shared variables, the
resulting systems may produce runs that visit infinitely many states,
and there is little hope for a complete verification method. Hence,
Konnov et al. [42] analyzed the TAs of the benchmarks [11, 12,
14, 21, 37, 52, 61, 63, 64]: They observed that some states have
self-loops (corresponding to busy-waiting for messages to arrive)
and in the case of failure detector based algorithms [61] there are
loops that consist of at most two rules. None of the rules in loops
increase shared variables. In our theory, we allow more general TAs
than actually found in the benchmarks. In more detail, we make the
following assumption:

1 Compared to [42], we use the more intuitive notation of Φrise and Φfall:
lower guards can only change from false to true (rising), while upper guards
can only change from true to false (falling); cf. Proposition 5.1.

721



Threshold automata for fault-tolerant distributed algorithms.
As in [44], we assume that if a rule r is in a loop, then r.u = 0. In
addition, we use the restriction that all the cycles of a TA are simple,
i.e., between any two locations in a cycle there exists exactly one
node-disjoint directed path (nodes in cycles may have self-loops).
We conjecture that this restriction can be relaxed as in [42], but this
is orthogonal to our work.

Example 2.4. In the TA from Figure 2 we use the shared variable x
as the number of correct processes that have sent a message. One
easily observes that the rules that update x do not belong to loops.
Indeed, all the benchmarks [11, 12, 14, 21, 37, 52, 61, 63, 64] share
this structure. This is because at the algorithmic level, all these
algorithms are based on the reliable communication assumption
(no message loss and no spurious message generation/duplication),
and not much is gained by resending the same message. In these
algorithms a process checks whether sufficiently many processes
(e.g., a majority) have sent a message to signal that they are in some
specific local state. Consequently, a receiver would ignore duplicate
messages from the same sender. In our analysis we exploit this
characteristic of distributed algorithms with threshold guards, and
make the corresponding assumption that processes do not send (i.e.,
increase x) from within a loop. Similarly, as a process cannot make
the sending of a message undone, we assume that shared variables
are never decreased. So, while we need these assumptions to derive
our results, they are justified by our application domain. /

2.2 Counter Systems
A threshold automaton models a single process. Now the question
arises how we define the composition of multiple processes that will
result in a distributed system. Classically, this is done by parallel
composition and interleaving semantics: A state of a distributed
system that consists of n processes is modeled as n-dimensional
vector of local states. The transition to a successor state is then
defined by non-deterministically picking a process, say i, and chang-
ing the ith component of the n-dimensional vector according to the
local transition relation of the process. However, for our domain
of threshold-guarded algorithms, we do not care about the precise
n-dimensional vector so that we use a more efficient encoding: It is
well-known that the system state of specific distributed or concur-
rent systems can be represented as a counter system [2, 44, 51, 59]:
instead of recording for some local state `, which processes are in `,
we are only interested in how many processes are in `. In this way,
we can efficiently encode transition systems in SMT with linear
integer arithmetics. Therefore, we formalize the semantics of the
threshold automata by counter systems.

Fix a threshold automaton TA, a function (expressible as linear
combination of parameters) N : PRC → N0 that determines the
number of modeled processes, and admissible parameter values p ∈
PRC . A counter system Sys(TA) is defined as a transition system
(Σ, I, R), with configurations Σ and I and transition relation R
defined below.

Definition 2.5. A configuration σ = (κ,g,p) consists of a vector
of counter values σ.κ ∈ N|L|0 , a vector of shared variable values
σ.g ∈ N|Γ|0 , and a vector of parameter values σ.p = p. The
set Σ contains all configurations. The initial configurations are
in set I , and each initial configuration σ satisfies σ.g = 0,∑
i∈I σ.κ[i] = N(p), and

∑
i 6∈I σ.κ[i] = 0.

Example 2.6. The safety property from Example 2.2, refers to an
initial configuration that satisfies resilience condition n > 3t ∧ t ≥
f ≥ 0, e.g., 4 > 3 · 1∧ 1 ≥ 0 ≥ 0 such that σ.p = (4, 1, 0). In our
encodings we typically have N is the function (n, t, f) 7→ n− f .
Further, σ.κ[`0] = N(p) = n − f = 4 and σ.κ[`i] = 0, for
`i ∈ L \ {`0}, and the shared variable σ.g = 0. /

A transition is a pair t = (rule, factor) of a rule and a
non-negative integer called the acceleration factor. For t =
(rule, factor) we write t.u for rule.u, etc. A transition t is unlocked
in σ if ∀k ∈ {0, . . . , t.factor − 1}. (σ.κ, σ.g + k · t.u, σ.p) |=
t.ϕ≤ ∧ t.ϕ>. A transition t is applicable (or enabled) in σ, if it is
unlocked, and σ.κ[t.from] ≥ t.factor , or t.factor = 0.

Example 2.7. This notion of applicability contains acceleration
and is central for our approach. Intuitively, the value of the factor
corresponds to how many times the rule is executed by different
processes. In this way, we can subsume steps by an arbitrary
number of processes into one transition. Consider Figure 2. If for
some k, k processes are in location `1, then in classic modeling it
takes k transitions to move these processes one-by-one to `2. With
acceleration, however, these k processes can be moved to `2 in
one step, independently of k. In this way, the bounds we compute
will be independent of the parameter values. However, assuming x
to be a shared variable and f being a parameter that captures the
number of faults, our (crash-tolerant) benchmarks include rules like
“x < f 7→ x++” for local transition to a special “crashed” state.
The above definition ensures that at most f − x of these transitions
are accelerated into one transition (whose factor thus is at most
f − x). This precise treatment of threshold guards is crucial for
fault-tolerant distributed algorithms. The central contribution of this
paper is to show how acceleration can be used to shorten schedules
while maintaining specific temporal logic properties. /

Definition 2.8. The configuration σ′ is the result of applying the
enabled transition t to σ, if
1. σ′.g = σ.g + t.factor · t.u
2. σ′.p = σ.p
3. if t.from 6= t.to then σ′.κ[t.from] = σ.κ[t.from]− t.factor ,
σ′.κ[t.to] = σ.κ[t.to] + t.factor , and
∀` ∈ L \ {t.from, t.to}. σ′.κ[`] = σ.κ[`].

4. if t.from = t.to then σ′.κ = σ.κ.
In this case we use the notation σ′ = t(σ).

Example 2.9. Let us again consider Figure 2 with n = 4, t = 1,
and f = 1. We consider the initial configuration where σ.κ[`1] =
n − f = 3 and σ.κ[`i] = 0, for `i ∈ L \ {`0}. The guard
of rule r5, γ2 : x ≥ (n − t) − f = 2, initially evaluates to
false because x = 0. The guard of rule r1 is true, so that any
transition (r1, factor) is unlocked. As σ.κ[`1] = 3, all transitions
(r1, factor), for 0 ≤ factor ≤ 3 are applicable. If the transition
(r1, 2) is applied to the initial configuration, we obtain that x = 2 so
that, after the application, γ2 evaluates to true. Then r5 is unlocked
and the transitions (r5, 1) and (r5, 0) are applicable as σ.κ[`1] = 1.
Since γ2 checks for greater or equal, once it becomes true it remains
true. Such monotonic behavior is given for all guards, as has already
been observed in [44, Proposition 7], and is a crucial property. /

The transition relation R is defined as follows: Transition (σ, σ′)
belongs to R iff there is a rule r ∈ R and a factor k ∈ N0 such that
σ′ = t(σ) for t = (r, k). A schedule is a sequence of transitions. For
a schedule τ and an index i : 1 ≤ i ≤ |τ |, by τ [i] we denote the ith
transition of τ , and by τ i we denote the prefix τ [1], . . . , τ [i] of τ . A
schedule τ = t1, . . . , tm is applicable to configuration σ0, if there
is a sequence of configurations σ1, . . . , σm with σi = ti(σi−1)
for 1 ≤ i ≤ m. A schedule t1, . . . , tm where ti.factor = 1 for
0 < i ≤ m is called conventional. If there is a ti.factor > 1, then
a schedule is accelerated. By τ · τ ′ we denote the concatenation of
two schedules τ and τ ′.

We will reason about schedules in Section 6 for our mover
analysis, which is naturally expressed by swapping neighboring
transitions in a schedule. To reason about temporal logic properties,
we need to reason about the configurations that are “visited” by a
schedule. For that we now introduce paths.

722



A finite or infinite sequence σ0, t1, σ1, . . . , tk−1, σk−1, tk, . . .
of alternating configurations and transitions is called a path, if for
every transition ti, i ∈ N, in the sequence, holds that ti is en-
abled in σi−1, and σi = ti(σi−1). For a configuration σ0 and
a finite schedule τ applicable to σ0, by path(σ0, τ) we denote
σ0, t1, σ1, . . . , t|τ |, σ|τ | with σi = ti(σi−1), for 1 ≤ i ≤ |τ |. Sim-
ilarly, if τ is an infinite schedule applicable to σ0, then path(σ0, τ)
represents an infinite sequence σ0, t1, σ1, . . . , tk−1, σk−1, tk, . . .
where σi = ti(σi−1), for all i > 0.

The evaluation of the threshold guards solely defines whether
certain rules are unlocked. As was discussed in Example 2.9, along
a path, the evaluations of guards are monotonic. The set of upper
guards that evaluate to false and lower guards that evaluate to true —
called the context — changes only finitely many times. A schedule
can thus be understood as an alternating sequence of schedules
without context change, and context-changing transitions. We will
recall the definitions of context etc. from [42] in Section 5. We
say that a schedule τ is steady for a configuration σ, if every
configuration of path(σ, τ) has the same context.

Due to the resilience conditions and admissible parameters,
our counter systems are in general infinite state. The following
proposition establishes an important property for verification.

Proposition 2.10. Every (finite or infinite) path visits finitely many
configurations.

Proof. By Definition 2.8(3), if a transition t is applied to a configu-
ration σ, then the sum of the counters remains unchanged, that is,∑
`∈L σ.κ[`] =

∑
`∈L t(σ).κ[`]. By repeating this argument, the

sum of the counters remains stable in a path. By Definition 2.8(2)
the parameter values also remain stable in a path.

By Definition 2.8(1), it remains to show that in each path
eventually the shared variable g stop increasing. Let us fix a rule
r = (from, to, ϕ≤, ϕ>,u) that increases g. By the definition of a
transition, applying some transition (r, factor) decreases κ[r.from]
by factor . As by assumption on TAs, r is not in a cycle, κ[r.from] is
increased only finitely often, namely, at most N(p) times. As there
are only finitely many rules in a TA, the proposition follows.

3. Verification Problems: Parameterized
Reachability vs. Safety & Liveness.

In this section we will discuss the verification problems for fault-
tolerant distributed algorithms. A central challenge is to handle
resilience conditions precisely.

Example 3.1. The safety property (unforgeability) of [64] ex-
pressed in terms of Figure 2 means that no process should ever
enter `3 if initially all processes are in `0, given that n > 3t ∧ t ≥
f ≥ 0. We can express this in the counter system: under the re-
silience condition n > 3t ∧ t ≥ f ≥ 0, given an initial con-
figuration σ, with σ.κ[`0] = n − f , to verify safety, we have to
establish the absence of a schedule τ that satisfies σ′ = τ(σ) and
σ′.κ[`3] > 0.

In order to be able to answer this question, we have to deal with
these resilience conditions precisely: Observe that `3 is unreachable,
as all outgoing transitions from `0 contain guards that evaluate to
false initially, and since all processes are in `0 no process ever
increases x. A slight modification of t ≥ f to t + 1 ≥ f in the
resilience condition changes the result, i.e., one fault too many
breaks the system. For example, if n = 4, t = 1, and f = 2, then the
new resilience condition holds, but as the guard γ1 : x ≥ (t+1)−f
is now initially true, then one correct process can fire the rule r2

and increase x. Now when x = 1, the guard γ2 : x ≥ (n− t)− f
becomes true, so that the process can fire the rule r4 and reach the
state `3. This tells us that unforgeability is not satisfied in the system
where the resilience condition is n > 3t ∧ t+ 1 ≥ f ≥ 0. /

ψ ::= pform | Gψ | Fψ | ψ ∧ ψ
pform ::= cform | gform ∨ cform

cform ::=
∨

`∈Locs

κ[`] 6= 0 |
∧

`∈Locs

κ[`] = 0 | cform ∧ cform

gform ::= guard | ¬gform | gform ∧ gform

Table 1. The syntax of ELTLFT-formulas: pform defines proposi-
tional formulas, and ψ defines temporal formulas. We assume that
Locs ⊆ L and guard ∈ Φrise ∪ Φfall.

This is the verification question studied in [42], which can be
formalized as follows:

Definition 3.2 (Parameterized reachability). Given a threshold
automaton TA and a Boolean formula B over {κ[i] = 0 | i ∈ L},
check whether there are parameter values p ∈ PRC , an initial
configuration σ0 ∈ I with σ0.p = p and a finite schedule τ
applicable to σ0 such that τ(σ0) |= B.

As shown in [42], if such a schedule exists, then there is also a
schedule of bounded length. In this paper, we do not limit ourselves
to reachability, but consider specifications of counterexamples to
safety and liveness of FTDAs from the literature. We observe that
such specifications use a simple subset of linear temporal logic that
contains only the temporal operators F and G .

Example 3.3. Consider a liveness property from the distributed
algorithms literature called correctness [64]:

GFψfair → (κ[`0] = 0→ Fκ[`3] 6= 0). (1)

Formula ψfair expresses the reliable communication assumption
of distributed algorithms [32]. In this example, ψfair ≡ κ[`1] =
0∧(x ≥ t+1→ κ[`0] = 0∧κ[`1] = 0)∧(x ≥ n−t→ κ[`0] =
0 ∧ κ[`2] = 0). Intuitively, GFψfair means that all processes
in `1 should eventually leave this state, and if sufficiently many
messages of type x are sent (γ1 or γ2 holds true), then all processes
eventually receive them. If they do so, they have to eventually
fire rules r1, r2, r3, or r4 and thus leave locations `0, `1, and `2.
Our approach is based on possible shapes of counterexamples.
Therefore, we consider the negation of the specification (1), that is,
GFψfair ∧ κ[`0] = 0 ∧Gκ[`3] = 0. In the following we define the
logic that can express such counterexamples. /

The fragment of LTL limited to F and G was studied in [29, 46].
We further restrict it to the logic that we call Fault-Tolerant Temporal
Logic (ELTLFT), whose syntax is shown in Table 1. The formulas
derived from cform — called counter formulas — restrict counters,
while the formulas derived from gform — called guard formulas —
restrict shared variables. The formulas derived from pform are
propositional formulas. The temporal operators F and G follow
the standard semantics [5, 17], that is, for a configuration σ and an
infinite schedule τ , it holds that path(σ, τ) |= ϕ, if:
1. σ |= ϕ, when ϕ is a propositional formula,
2. ∃τ ′, τ ′′ : τ = τ ′ · τ ′′. path(τ ′(σ), τ ′′) |= ψ, when ϕ = Fψ,
3. ∀τ ′, τ ′′ : τ = τ ′ · τ ′′. path(τ ′(σ), τ ′′) |= ψ, when ϕ = Gψ.

To stress that the formula should be satisfied by at least one path,
we prepend ELTLFT-formulas with the existential path quantifier E .
We use the shorthand notation true for a valid propositional formula,
e.g.,

∧
i∈∅ κ[i] = 0. We also denote with ELTLFT the set of all

formulas that can be written using the logic ELTLFT.
We will reason about invariants of the finite subschedules, and

consider a propositional formula ψ. Given a configuration σ, a finite
schedule τ applicable to σ, and ψ, by Cfgs(σ, τ) |= ψ we denote

723



algorithm parameterized_model_checking(TA, ϕ): // see Def. 3.4
G := cut_graph (ϕ) /∗ Sect. 4 ∗/
H := threshold_graph(TA) /∗ Sect. 5 ∗/
for each ≺ in topological_orderings(G ∪H) do // e.g., using [13]
check_one_order(TA, ϕ, G, H, ≺) /∗ Sect. 6−7 ∗/
if SMT_sat() then report the SMT model as a counterexample

Figure 3. A high-level description of the verification algorithm. For
details of check_one_order, see Section 7.2 and Figure 10.

that ψ holds in every configuration σ′ visited by the path path(σ, τ).
In other words, for every prefix τ ′ of τ , we have that τ ′(σ) |= ψ.

Definition 3.4 (Parameterized unsafety & non-liveness). Given a
threshold automaton TA and an ELTLFT formula ψ, check whether
there are parameter values p ∈ PRC , an initial configuration
σ0 ∈ I with σ0.p = p, and an infinite schedule τ of Sys(TA)
applicable to σ0 such that path(σ0, τ) |= ψ.

Complete bounded model checking. We solve this problem by
showing how to reduce it to bounded model checking while guaran-
teeing completeness. To this end, we have to construct a bounded-
length encoding of infinite schedules. In more detail:
• We observe that if path(σ0, τ) |= ψ, then there is an initial

state σ and two finite schedules ϑ and ρ (of unknown length)
that can be used to construct an infinite (lasso-shaped) schedule
ϑ · ρω , such that path(σ, ϑ · ρω) |= ψ (Section 4.1).
• Now given ϑ and ρ, we prove that we can use a ψ-specific

reduction, to cut ϑ and ρ into subschedules ϑ1, . . . , ϑm and
ρ1, . . . , ρn, respectively so that the subschedules satisfy subfor-
mulas of ψ (Sections 4.2, 4.3 and 5).
• We use an offline partial order reduction, specific to the subfor-

mulas of ψ, and acceleration to construct representative sched-
ules rep[ϑi] and rep[ρj ] that satisfy the required ELTLFT for-
mulas that are satisfied ϑi and ρj , respectively for 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Moreover, rep[ϑi] and rep[ρj ] are fixed se-
quences of rules, where bounds on the lengths of the sequences
are known (Section 6).
• These fixed sequence of rules can be used to encode a query

to the SMT solver (Section 7.1). We ask whether there is an
applicable schedule in the counter system that satisfies the
sequence of rules and ψ (Section 7.3). If the SMT solver reports
a contradiction, there exists no counterexample.
Based on these theoretical results, our tool implements the high-

level verification algorithm from Figure 3 (in the comments we give
the sections that are concerned with the respective step):

4. Shapes of Schedules that Satisfy ELTLFT
We characterize all possible shapes of lasso schedules that satisfy an
ELTLFT-formula ϕ. These shapes are characterized by so-called cut
points: We show that every lasso satisfying ϕ has a fixed number of
cut points, one cut point per a subformula ofϕ that starts with F . The
configuration in the cut point of a subformula Fψ must satisfy ψ,
and all configurations between two cut points must satisfy certain
propositional formulas, which are extracted from the subformulas
of ϕ that start with G . Our notion of a cut point is motivated by
extreme appearances of temporal operators [29].

Example 4.1. Consider the ELTLFT formula ϕ ≡ EF (a ∧ F d ∧
F e∧G b∧GF c), where a, . . . , e are propositional formulas, whose
structure is not of interest in this section. Formula ϕ is satisfiable by
certain paths that have lasso shapes, i.e., a path consists of a finite
prefix and a loop, which is repeated infinitely. These lassos may
differ in the actual occurrences of the propositions and the start of the
loop: For instance, at some point, a holds, and since then b always
holds, then d holds at some point, then e holds at some point, then

(a)
A B C D E F

b
a d e c

(b)
A BC D E F

b
a de c

(c)
A B CD E F

b
a d e c

(d)
ABCD E F

b
adec

(e)
A BCD E F

b
a de c

(and 15 more...)

Figure 4. The shapes of lassos that satisfy the formula EF (a ∧
F d∧F e∧G b∧GF c). The crosses show cut points for: (A) formula
F (a ∧ F d ∧ F e ∧ G b ∧ GF c), (B) formula F d, (C) formula F e,
(D) loop start, (E) formula F c, and (F) loop end.

the loop is entered, and c holds infinitely often inside the loop. This
is the case (a) shown in Figure 4, where the configurations in the cut
points A, B, C, and D must satisfy the propositional formulas a, d,
e, and c respectively, and the configurations between A and F must
satisfy the propositional formula b. This example does not restrict
the propositions between the initial state and the cut point A, so that
this lasso shape, for instance, also captures the path where b holds
from the beginning. There are 20 different lasso shapes for ϕ, five
of them are shown in the figure. We construct lasso shapes that are
sufficient for finding a path satisfying an ELTLFT formula. In this
example, it is sufficient to consider lasso shapes (a) and (b), since
the other shapes can be constructed from (a) and (b) by unrolling
the loop several times. /

4.1 Restricting Schedules to Lassos
In the seminal paper [66], Vardi and Wolper showed that if a
finite-state transition system M violates an LTL formula — which
requires all paths to satisfy the formula — then there is a path
in M that (i) violates the formula and (ii) has lasso shape. As our
logic ELTLFT specifies counterexamples to the properties of fault-
tolerant distributed algorithms, we are interested in this result in the
following form: if the transition system satisfies an ELTL formula —
which requires one path to satisfy the formula — then M has a path
that (i) satisfies the formula and (ii) has lasso shape.

As observed above, counter systems are infinite state. Conse-
quently, one cannot apply the results of [66] directly. However, using
Proposition 2.10, we show that a similar result holds for counter
systems of threshold automata and ELTLFT:

Proposition 4.2. Given a threshold automaton TA and an ELTLFT
formula ϕ, if Sys(TA) |= Eϕ, then there are an initial configura-
tion σ1 ∈ I and a schedule τ · ρω with the following properties:
1. the path satisfies the formula: path(σ1, τ · ρω) |= ϕ,
2. application of ρ forms a cycle: ρk(τ(σ1)) = τ(σ1) for k ≥ 0.

Although in [43] we use Büchi automata to prove Proposition 4.2,
we do not use Büchi automata in this paper. Since ELTLFT uses
only the temporal operators F and G , we found it much easier to
reason about the structure of ELTLFT formulas directly (in the spirit
of [29]) and then apply path reductions, rather than constructing the
synchronous product of a Büchi automaton and of a counter system
and then finding proper path reductions.

724



can(ϕ) [0]

a

[0.0]

F (d ∧ G true)

[0.1]

d

[0.1.0]

G true

[0.1.1]

F (e ∧ . . . )

[0.2]

e

[0.2.0]

G true

[0.2.1]

G (b ∧ F (c ∧ G true) ∧ G true)

[0.3]

b

[0.3.0]

F (c ∧ G true)

[0.3.1]

c G true

G true

[0.3.2]

Figure 5. A canonical syntax tree of the ELTLFT formula ϕ ≡
F (a ∧ F d ∧ F e ∧ G b ∧ GF c) considered in Example 4.1. The
labels [w] denote identifiers of the tree nodes.

Although Proposition 4.2 guarantees counterexamples of lasso
shape, it is not sufficient for model checking: (i) counter systems
are infinite state, so that state enumeration may not terminate, and
(ii) Proposition 4.2 does not provide us with bounds on the length of
the lassos needed for bounded model checking. In the next section,
we show how to split a lasso schedule in finite segments and to find
constraints on lasso schedules that satisfy an ELTLFT formula. In
Section 6 we then construct shorter (bounded length) segments.

4.2 Characterizing Shapes of Lasso Schedules
We now construct a cut graph of an ELTLFT formula: Cut graphs
constrain the orders in which subformulas that start with the oper-
ator F are witnessed by configurations. The nodes of a cut graph
correspond to cut points, while the edges constrain the order between
the cut points. Using cut points, we give necessary and sufficient con-
ditions for a lasso to satisfy an ELTLFT formula in Theorems 4.12
and 4.13. Before defining cut graphs, we give the technical defini-
tions of canonical formulas and canonical syntax trees.

Definition 4.3. We inductively define canonical ELTLFT formulas:
• if p is a propositional formula, then the formula p ∧ G true is a

canonical formula of rank 0,
• if p is a propositional formula and formulas ψ1, . . . , ψk are

canonical formulas (of any rank) for some k ≥ 1, then the
formula p ∧ Fψ1 ∧ · · · ∧ Fψk ∧ G true is a canonical formula
of rank 1,
• if p is a propositional formula and formulas ψ1, . . . , ψk are

canonical formulas (of any rank) for some k ≥ 0, and ψk+1 is
a canonical formula of rank 0 or 1, then the formula p ∧ Fψ1 ∧
· · · ∧ Fψk ∧ Gψk+1 is a canonical formula of rank 2.

Example 4.4. Let p and q be propositional formulas. The formulas
p∧G true and true∧F (q∧G true)∧G (p∧G true) are canonical,
while the formulas p, F q, and G p are not canonical. Continuing
Example 4.1, the canonical version of the formula F (a∧F d∧F e∧
G b∧GF c) is the formula F (a∧F (d∧G true)∧F (e∧G true)∧
G (b ∧ F (c ∧ G true) ∧ G true)). /

We will use formulas in the following canonical form in order to
simplify presentation.

Observation 1. The properties of canonical ELTLFT formulas:
1. Every canonical formula consists of canonical subformulas of

the form p∧ Fψ1 ∧ · · · ∧ Fψk ∧Gψk+1 for some k ≥ 0, for a
propositional formula p, canonical formulas ψ1, . . . , ψk, and a
formula ψk+1 that is either canonical, or equals to true .

2. If a canonical formula contains a subformula G (· · · ∧ Gψ),
then ψ equals true .

Proposition 4.5. There is a function can : ELTLFT → ELTLFT
that produces for each formula ϕ ∈ ELTLFT an equivalent canoni-
cal formula can(ϕ).

[0]

[0.1]

[0.2]
loopstart

[0.3.1]

loopend

Figure 6. The cut graph of the canonical syntax tree in Figure 5

For an ELTLFT formula, there may be several equivalent canoni-
cal formulas, e.g., p∧F (q∧G true)∧F (p∧G true)∧G true and
p ∧ F (p ∧ G true) ∧ F (q ∧ G true) ∧ G true differ in the order of
F -subformulas. With the function can we fix one such a formula.

Canonical syntax trees. The canonical syntax tree of the formula
introduced in Example 4.1 is shown in Figure 5. With N∗0 we denote
the set of all finite words over natural numbers — these words are
used as node identifiers.

Definition 4.6. The canonical syntax tree of a formulaϕ ∈ ELTLFT
is the set T (ϕ) ⊆ ELTLFT×N∗0 constructed inductively as follows:
1. The tree contains the root node labeled with the canonical

formula can(ϕ) and id 0, that is, 〈can(ϕ), 0〉 ∈ T (ϕ).
2. Consider a tree node 〈ψ,w〉 ∈ T (ϕ) such that for some

canonical formula ψ′ ∈ ELTLFT one of the following holds:
(a) ψ = ψ′ = can(ϕ), or (b) ψ = Fψ′, or (c) ψ = Gψ′.
If ψ′ is p ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1 for some k ≥ 0, then
the tree T (ϕ) contains a child node for each of the conjuncts
of ψ′, that is, 〈p, w.0〉 ∈ T (ϕ), as well as 〈Fψi, w.i〉 ∈ T (ϕ)
and 〈Gψj , w.j〉 ∈ T (ϕ) for 1 ≤ i ≤ k and j = k + 1.

Observation 2. The canonical syntax tree T (ϕ) of an ELTLFT
formula ϕ has the following properties:
• Every node 〈ψ,w〉 has the unique identifier w, which encodes

the path to the node from the root.
• Every intermediate node is labeled with a temporal operator F

or G over the conjunction of the formulas in the children nodes.
• The root node is labeled with the formula ϕ itself, and ϕ is

equivalent to the conjunction of the root’s children formulas,
possibly preceded with a temporal operator F or G .

The temporal formulas that appear under the operator G have
to be dealt with by the loop part of a lasso. To formalize this, we
say that a node with id w ∈ N∗0 is covered by a G -node, if w can
be split into two words u1, u2 ∈ N∗0 with w = u1.u2, and there is a
formula ψ ∈ ELTLFT such that 〈Gψ, u1〉 ∈ T (ϕ).

Cut graphs. Using the canonical syntax tree T (ϕ) of a formula ϕ,
we capture in a so-called cut graph the possible orders in which
formulas Fψ should be witnessed by configurations of a lasso-
shaped path. We will then use the occurrences of the formula ψ to
cut the lasso into bounded finite schedules.

Example 4.7. Figure 6 shows the cut graph of the canonical syntax
tree in Figure 5. It consists of tree node ids for subformulas starting
with F , and two special nodes for the start and the end of the loop.
In the cut graph, the node with id 0 precedes the node with id 0.1,
since at least one configuration satisfying (a ∧ F (d ∧ . . . ) ∧ . . . )
should occur on a path before (or at the same moment as) a state
satisfying (d∧ . . . ). Similarly, the node with id 0 precedes the node
with id 0.2. The nodes with ids 0.1 and 0.2 do not have to precede
each other, as the formulas d and e can be satisfied in either order.
Since the nodes with the ids 0, 0.1, and 0.2 are not covered by a
G -node, they both precede the loop start. The loop start precedes
the node with id 0.3.1, as this node is covered by a G -node. /

Definition 4.8. The cut graph G(ϕ) of an ELTLFT formula is a
directed acyclic graph (VG , EG) with the following properties:

725



1. The set of nodes VG = {loopstart, loopend} ∪ {w ∈ N∗0 |
∃ψ. 〈Fψ,w〉 ∈ T (ϕ)} contains the tree ids that label F -
formulas and two special nodes loopstart and loopend, which
denote the start and the end of the loop respectively.

2. The set of edges EG satisfies the following constraints:
(a) Each tree node 〈Fψ,w〉 ∈ T (ϕ) that is not covered by a

G -node precedes the loop start, i.e., (w, loopstart) ∈ EG .
(b) For each tree node 〈Fψ,w〉 ∈ T (ϕ) covered by a G -node:

• the loop start precedes w, i.e., (loopstart, w) ∈ EG , and
• w precedes the loop end, i.e., (w, loopend) ∈ EG .

(c) For each pair of tree nodes 〈Fψ1, w〉 , 〈Fψ2, w.i〉 ∈ T (ϕ)
not covered by a G -node, we require (w,w.i) ∈ EG .

(d) For each pair of tree nodes 〈Fψ1, w1〉 , 〈Fψ2, w2〉 ∈ T (ϕ)
that are both covered by a G -node, we require either
(w1, w2) ∈ EG , or (w2, w1) ∈ EG (but not both).

Definition 4.9. Given a lasso τ · ρω and a cut graph G(ϕ) =
(VG , EG), we call a function ζ : VG → {0, . . . , |τ |+ |ρ| − 1} a cut
function, if the following holds:
• ζ(loopstart) = |τ | and ζ(loopend) = |τ |+ |ρ| − 1,
• if (v, v′) ∈ EG , then ζ(v) ≤ ζ(v′).

We call the indices {ζ(v) | v ∈ VG} the cut points. Given a
schedule τ and an index k : 0 ≤ k < |τ | + |ρ|, we say that the
index k cuts τ into π′ and π′′, if τ = π′ · π′′ and |π′| = k.

Informally, for a tree node 〈Fψ,w〉 ∈ T (ϕ), a cut point
ζ(w) witnesses satisfaction of Fψ, that is, the formula ψ holds
at the configuration located at the cut point. It might seem that
Definitions 4.8 and 4.9 are too restrictive. For instance, assume that
the node 〈Fψ,w〉 is not covered by a G -node, and there is a lasso
schedule τ · ρω that satisfies the formula ϕ at a configuration σ. It is
possible that the formulaψ is witnessed only by a cut point inside the
loop. At the same time, Definition 4.9 forces ζ(w) ≤ ζ(loopstart).
We show that this problem is resolved by unwinding the loop K
times for some K ≥ 0, so that there is a cut function for the lasso
with the prefix τ · ρK and the loop ρ:

Proposition 4.10. Let ϕ be an ELTLFT formula, σ be a configu-
ration and τ · ρω be a lasso schedule applicable to σ such that
path(σ, τ · ρω) |= ϕ holds. There is a constant K ≥ 0 and a cut
function ζ such that for every 〈Fψ,w〉 ∈ G(T (ϕ)) if ζ(w) cuts
(τ · ρK) · ρ into π′ and π′′, then ψ is satisfied at the cut point, that
is, path(π′(σ), π′′ · ρω) |= ψ.

Proof sketch. The detailed proof is given in [43]. We will present the
required constant K ≥ 0 and the cut function ζ. To this end, we use
extreme appearances of F -formulas (cf. [29, Sec. 4.3]) and use them
to find ζ. An extreme appearance of a formula Fψ is the furthest
point in the lasso that still witnesses ψ. There might be a subformula
that is required to be witnessed in the prefix, but in τ · ρωit is only
witnessed by the loop. To resolve this, we replace τ by a a longer
prefix τ · ρK , by unrolling the loop ρ several times; more precisely,
K times, where K is the number of nodes that should precede the
lasso start. In other words, if all extreme appearances of the nodes
happen to be in the loop part, and they appear in the order that is
against the topological order of the graph G(T (ϕ)), we unroll the
loop K times (the number of nodes that have to be in the prefix)
to find the prefix, in which the nodes respect the topological order
of the graph. In the unrolled schedule we can now find extreme
appearances of the required subformulas in the prefix.

We show that to satisfy an ELTLFT formula, a lasso should
(i) satisfy propositional subformulas of F -formulas in the respective
cut points, and (ii) maintain the propositional formulas of G -
formulas from some cut point on. This is formalized as a witness.

In the following definition, we use a short-hand notation for
propositional subformulas: given an ELTLFT-formula ψ and its

canonical form can(ψ) = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, we
use the notation prop(ψ) to denote the formula ψ0.

Definition 4.11. Given a configuration σ, a lasso τ · ρω applicable
to σ, and an ELTLFT formula ϕ, a cut function ζ of G(T (ϕ)) is a
witness of path(σ, τ · ρω) |= ϕ, if the three conditions hold:
(C1) For can(ϕ) ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1:

(a) σ |= ψ0, and
(b) Cfgs(σ, τ · ρ) |= prop(ψk+1).

(C2) For 〈Fψ, v〉 ∈ T (ϕ) with ζ(v) < |τ |, if ζ(v) cuts τ · ρ into
π′ and π′′ and ψ ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, then:
(a) π′(σ) |= ψ0, and
(b) Cfgs(π′(σ), π′′) |= prop(ψk+1).

(C3) For 〈Fψ, v〉 ∈ T (ϕ) with ζ(v) ≥ |τ |, if ζ(v) cuts τ · ρ into
π′ and π′′ and ψ ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, then:
(a) π′(σ) |= ψ0, and
(b) Cfgs(τ(σ), ρ) |= prop(ψk+1).

Conditions (a) require that propositional formulas hold in a con-
figuration, while conditions (b) require that propositional formulas
hold on a finite suffix. Hence, to ensure that a cut function consti-
tutes a witness, one has to check the configurations of a fixed number
of finite paths (between the cut points). This property is crucial for
the path reduction (see Section 6). Theorems 4.12 and 4.13 show
that the existence of a witness is a sound and complete criterion for
the existence of a lasso satisfying an ELTLFT formula.

Theorem 4.12 (Soundness). Let σ be a configuration, τ · ρω be a
lasso applicable to σ, and ϕ be an ELTLFT formula. If there is a
witness of path(σ, τ · ρω) |= ϕ, then the lasso τ · ρω satisfies ϕ,
that is path(σ, τ · ρω) |= ϕ.

Theorem 4.13 (Completeness). Let ϕ be an ELTLFT formula, σ
be a configuration and τ · ρω be a lasso applicable to σ such that
path(σ, τ · ρω) |= ϕ holds. There is a witness of path(σ, (τ · ρK) ·
ρω) |= ϕ for some K ≥ 0.

Theorem 4.12 is proven for subformulas of ϕ by structural
induction on the intermediate nodes of the canonical syntax tree.
In the proof of Theorem 4.13 we use Proposition 4.10 to prove the
points of Definition 4.11. (The detailed proofs are given in [43].)

4.3 Using Cut Graphs to Enumerate Shapes of Lassos
Proposition 4.2 and Theorem 4.13 suggest that in order to find a
schedule that satisfies an ELTLFT formula ϕ, it is sufficient to look
for lasso schedules that can be cut in such a way that the config-
urations at the cut points and the configurations between the cut
points satisfy certain propositional formulas. In fact, the cut points
as defined by cut functions (Definition 4.9) are topological order-
ings of the cut graph G(T (ϕ)). Consequently, by enumerating the
topological orderings of the cut graph G(T (ϕ)) we can enumerate
the lasso shapes, among which there is a lasso schedule satisfying ϕ
(if ϕ holds on the counter system). These shapes differ in the order,
in which F -subformulas of ϕ are witnessed. For this, one can use
fast generation algorithms, e.g., [13].

Example 4.14. Consider the cut graph in Figure 6. The order-
ing of its vertices 0, 0.1, 0.2, loopstart, 0.3.1, loopend corresponds
to the lasso shape (a) shown in Figure 4, while the ordering
loopstart, 0, 0.2, 0.1, loopstart, 0.3.1, loopend corresponds to the
lasso shape (b). These are the two lasso shapes that one has to
analyze, and they are the result of our construction using the cut
graph. The other 18 lasso shapes in the figure are not required, and
not constructed by our method. /

From this observation, we conclude that given a topological
ordering v1, . . . , v|VG | of the cut graph G(T (ϕ)) = (VG , EG), one
has to look for a lasso schedule that can be written as an alternating

726



sequence of configurations σi and schedules τj :

σ0, τ0, σ1, τ1, . . . , σ`, τ`, . . . , σ|VG |−1, τ|VG |, σ|VG |, (2)

where v` = loopstart, v|VG | = loopend, and σ` = σ|VG |. Moreover,
by Definition 4.11, the sequence of configurations and schedules
should satisfy (C1)–(C3), e.g., if a node vi corresponds to the for-
mula F (ψ0∧· · ·∧Gψk+1) and this formula matches Condition (C2),
then the following should hold:
1. Configuration σi satisfies the propositional formula: σi |= ψ0.
2. All configurations visited by the schedule τi · . . . · τ|VG | from the

configuration σi satisfy the propositional formula prop(ψk+1).
Formally, Cfgs(σi, τi · . . . · τ|VG |) |= prop(ψk+1).
One can write an SMT query for the sequence (2) satisfying

Conditions (C1)–(C3). However, this approach has two problems:
1. The order of rules in schedules τ0, . . . , τ|VG | is not fixed. Non-

deterministic choice of rules complicates the SMT query.
2. To guarantee completeness of the search, one requires a bound

on the length of schedules τ0, . . . , τ|VG |.
For reachability properties these issues were addressed in [42]

by showing that one only has to consider specific orders of the rules;
so-called representative schedules. To lift this technique to ELTLFT,
we are left with two issues:
1. The shortening technique applies to steady schedules, i.e., the

schedules that do not change evaluation of the guards. Thus, we
have to break the schedules τ0, . . . , τ|VG | into steady schedules.
This issue is addressed in Section 5.

2. The shortening technique preserves state reachability, e.g., after
shortening of τi, the resulting schedule still reaches configura-
tion σi+1. But it may violate an invariant such as Cfgs(σi, τi ·
. . . · τ|VG |) |= prop(ψk+1). This issue is addressed in Section 6.

5. Cutting Lassos with Threshold Guards
We introduce threshold graphs to cut a lasso into steady schedules,
in order to apply the shortening technique of Section 6. Then,
we combine the cut graphs and threshold graphs to cut a lasso
into smaller finite segments, which can be first shortened and then
checked with the approach introduced in Section 4.3.

Given a configuration σ, its context ω(σ) is the set that consists
of the lower guards unlocked in σ and the upper guards locked in σ,
i.e., ω(σ) = Ωrise ∪ Ωfall, where Ωrise = {g ∈ Φrise | σ |= g}
and Ωfall = {g ∈ Φfall | σ 6|= g}. As discussed in Example 2.9 on
page 4, since the shared variables are never decreased, the contexts
in a path are monotonically non-decreasing:

Proposition 5.1 (Prop. 3 of [42]). If a transition t is enabled in a
configuration σ, then ω(σ) ⊆ ω(t(σ)).

Example 5.2. Continuing Example 2.9, which considers the TA in
Figure 2. Both threshold guards γ1 and γ2 are false in the initial
state σ. Thus, ω(σ) = ∅. The transition t = (r1, 1) unlocks the
guard γ1, i.e., ω(t(σ)) = {γ1}. /

As the transitions of the counter system Sys(TA) never decrease
shared variables, the loop of a lasso schedule must be steady:

Proposition 5.3. For each configuration σ and a schedule τ · ρω ,
if ρk(τ(σ)) = τ(σ) for k ≥ 0, then the loop ρ is steady for τ(σ),
that is, ω(ρ(τ(σ))) = ω(τ(σ)).

In [42], Proposition 5.1 was used to cut a finite path into
segments, one per context. We introduce threshold graphs and their
topological orderings to apply this idea to lasso schedules.

Definition 5.4. A threshold graph isH(TA) = (VH, EH) such that:
• The vertices set VH contains the threshold guards and the special

node loopstart, i.e., VH = Φrise ∪ Φfall ∪ {loopstart}.

(a)

κ[`3] = 0
γ1 γ2 ψfair

(b)

κ[`3] = 0
γ1 ψfair

(c)

κ[`3] = 0
ψfair

Figure 7. The shapes of lassos to check the correctness property in
Example 3.3. Recall that γ1 and γ2 are the threshold guards, defined
as x ≥ t+ 1− f and x ≥ n− t− f respectively.

• There is an edge from a guard g1 ∈ Φrise to a guard g2 ∈ Φrise,
if g2 cannot be unlocked before g1, i.e., (g1, g2) ∈ EH, if for
each configuration σ ∈ Σ, σ |= g2 implies σ |= g1.
• There is an edge from a guard g1 ∈ Φfall to a guard g2 ∈ Φfall,

if g2 cannot be locked before g1, i.e., (g1, g2) ∈ EH, if for each
configuration σ ∈ Σ, σ 6|= g2 implies σ 6|= g1.

Note that the conditions in Definition 5.4 can be easily checked
with an SMT solver, for all configurations.

Example 5.5. The threshold graph of the TA in Figure 2 has the
vertices VH = {γ1, γ2, loopstart} and the edges EH = {(γ1, γ2)}.
/

Similar to Section 4.3, we consider a topological ordering
g1, . . . , g`, . . . , g|VH| of the vertices of the threshold graph. The
node g` = loopstart indicates the point where a loop should start, and
thus by Proposition 5.3, after that point the context does not change.
Thus, we consider only the subsequence g1, . . . , g`−1 and split the
path path(σ, τ · ρ) of a lasso schedule τ · ρω into an alternating
sequence of configurations σi and schedules τ0 and tj · τj , for
1 ≤ j < `, ending up with the loop ρ (starting in σ`−1 and ending
in σ` = σ`−1):

σ0, τ0, σ1, (t1 · τ1), . . . , σ`−2, (t`−1 · τ`−1), σ`−1, ρ, σ` (3)

In this sequence, the transitions t1, . . . , t`−1 change the context,
and the schedules τ0, τ1, . . . , τ`−1, ρ are steady. Finally, we inter-
leave a topological ordering of the vertices of the cut graph with a
topological ordering of the vertices of the threshold graph. More
precisely, we use a topological ordering of the vertices of the union
of the cut graph and the threshold graph. We use the resulting se-
quence to cut a lasso schedule following the approach in Section 4.3
(cf. Equation (2)). By enumerating all such interleavings, we obtain
all lasso shapes. Again, the lasso is a sequence of steady schedules
and context-changing transitions.

Example 5.6. Continuing Example 1 given on page 5, we consider
the lasso shapes that satisfy the ELTLFT formula GFψfair∧κ[`0] =
0 ∧ Gκ[`3] = 0. Figure 7 shows the lasso shapes that have to be
inspected by an SMT solver. In case (a), both threshold guards γ1

and γ2 are eventually changed to true, while the counter κ[`3] is
never increased in a fair execution. For n = 3t, this is actually
a counterexample to the correctness property explained in Exam-
ple 1. In cases (b) and (c) at most one threshold guard is eventually
changed to true, so these lasso shapes cannot produce a counterex-
ample. /

In the following section, we will show how to shorten steady
schedules, while maintaining Conditions (C1)–(C3) of Defini-
tion 4.11, required to satisfy the ELTLFT formula.

727



τup: σ1 σ2 σ3

κ[`]++ κ[`]--

τdown: σ1 σ′2 σ3

κ[`]-- κ[`]++

Figure 8. Changing the order of transitions can violate ELTLFT
formulas. If σ1.κ[`] = 1, then for the upper schedule τup holds that
Cfgs(σ1, τup) |= κ[`] > 0, while for the lower one this is not the
case, because σ′2 6|= κ[`] > 0.

6. The Short Counterexample Property
Our verification approach focuses on counterexamples, and as
discussed in Section 3, negations of specifications are expressed
in ELTLFT. In the case of reachability properties, counterexamples
are finite schedules reaching a bad state from an initial state. An
efficient method for finding counterexamples to reachability can
be found in [42]. It is based on the short counterexample property.
Namely, it was proven that for each threshold automaton, there is a
constant d such that if there is a schedule that reaches a bad state,
then there must also exist an accelerated schedule that reaches that
state in at most d transitions (i.e., d is the diameter of the counter
system). The proof in [42] is based on the following three steps:
1. each finite schedule (which may or may not be a counterexam-

ple), can be divided into a few steady schedules,
2. for each of these steady schedules they find a representative,

i.e., an accelerated schedule of bounded length, with the same
starting and ending configurations as the original schedule,

3. at the end, all these representatives are concatenated in the same
order as the original steady schedules.
This result guarantees that the system is correct if no counterex-

ample to reachability properties is found using bounded model
checking with bound d. In this section, we extend the technique
from Point 2 from reachability properties to ELTLFT formulas. The
central result regarding Point 2 is the following proposition which
is a specialization of [42, Prop. 7]:

Proposition 6.1. Let TA = (L, I,Γ,Π,R,RC) be a threshold
automaton. For every configuration σ and every steady schedule τ
applicable to σ, there exists a steady schedule srep[σ, τ ] with the
following properties: srep[σ, τ ] is applicable to σ, srep[σ, τ ](σ) =
τ(σ), and |srep[σ, τ ]| ≤ 2 · |R|.

We observe that the proposition talks about the first configura-
tion σ and the last one τ(σ), while it ignores intermediate config-
urations. However, for ELTLFT formulas, one has to consider all
configurations in a schedule, and not just the first and the last one.

Example 6.2. Figure 8 shows the result of swapping transitions.
The approaches by [50] and [42] are only concerned with the first
and last configurations: they use the property that after swapping
transitions, σ3 is still reached from σ1. The arguments used in [42,
50] do not care about the fact that the resulting path visits a different
intermediate state (σ′2 instead of σ2). However, if σ1.κ[`] = 1, then
σ2.κ[`] > 0, while σ′2.κ[`] = 0. Hence, swapping transitions may
change the evaluation of ELTLFT formulas, e.g., G (κ[`] > 0). /

Another challenge in verification of ELTLFT formulas is that
counterexamples to liveness properties are infinite paths. As dis-
cussed in Section 4, we consider infinite paths of lasso shape ϑ · ρω .
For a finite part of a schedule, ϑ · ρ, satisfying an ELTLFT formula,
we show the existence of a new schedule, ϑ′ · ρ′, of bounded length
satisfying the same formula as the original one. Regarding the short-
ening, our approach uses a similar idea as the one from [42]. We
follow modified steps from reachability analysis:

1. We split ϑ · ρ into several steady schedules, using cut points
introduced in Sections 4 and 5. The cut points depend not
only on threshold guards, but also on the ELTLFT formula ϕ
representing the negation of a specification we want to check.
Given such a steady schedule τ , each configuration of τ satisfies
a set of propositional subformulas of ϕ, which are covered by
the operator G in ϕ.

2. For each of these steady schedules we find a representative, that
is, an accelerated schedule of bounded length that satisfies the
necessary propositional subformulas as in the original schedule
(i.e., not just that starting and ending configurations coincide).

3. We concatenate the obtained representatives in the original order.
In [43], we present the mathematical details for obtaining these

representative schedules, and prove different cases that taken to-
gether establish our following main theorem:

Theorem 6.3. Let TA = (L, I,Γ,Π,R,RC) be a threshold
automaton, and let Locs ⊆ L be a set of locations. Let σ be a
configuration, let τ be a steady conventional schedule applicable
to σ, and let ψ be one of the following formulas:∨

`∈Locs

κ[`] 6= 0, or
∧

`∈Locs

κ[`] = 0.

If all configurations visited by τ from σ satisfy ψ, i.e., Cfgs(σ, τ) |=
ψ, then there is a steady representative schedule repr[ψ, σ, τ ] with
the following properties:
a) The representative is applicable, and ends in the same final state:

repr[ψ, σ, τ ] is applicable to σ, and repr[ψ, σ, τ ](σ) = τ(σ),
b) The representative has bounded length: |repr[ψ, σ, τ ]| ≤ 6 · |R|,
c) The representative maintains the formula ψ. In other words,

Cfgs(σ, repr[ψ, σ, τ ]) |= ψ,
d) The representative is a concatenation of three representative

schedules srep from Proposition 6.1:
there exist τ1, τ2 and τ3, (possibly empty) subschedules of τ ,
such that τ1 · τ2 · τ3 is applicable to σ, and it holds that
(τ1 · τ2 · τ3)(σ) = τ(σ), and repr[ψ, σ, τ ] = srep[σ, τ1] ·
srep[τ1(σ), τ2] · srep[(τ1 · τ2)(σ), τ3].

Our approach is slightly different in the case when the formula ψ
has a more complex form:

∧
1≤m≤n

∨
`∈Locsm κ[`] 6= 0, for

Locsm ⊆ L, where 1 ≤ m ≤ n and n ∈ N. In this case, our
proof requires the schedule τ to have sufficiently large counter
values. To ensure that there is an infinite schedule with sufficiently
large counter values, we first prove that if a counterexample exists
in a small system, there also exists one in a larger system, that is,
we consider configurations where each counter is multiplied with
a constant finite multiplier µ. For resilience conditions that do not
correspond to parameterized systems (i.e., fix the system size to,
e.g., n = 4) or pathological threshold automata, such multipliers
may not exist. However, all our benchmarks have multipliers, and
existence of multipliers can easily be checked using simple queries
to SMT solvers in preprocessing. This additional restriction leads to
slightly smaller bounds on the lengths of representative schedules:

Theorem 6.4. Fix a threshold automaton TA = (L, I,Γ,Π,R,RC)
that has a finite multiplier µ, and a configuration σ. For an
n ∈ N, fix sets of locations Locsm ⊆ L for 1 ≤ m ≤ n. If
ψ =

∧
1≤m≤n

∨
`∈Locsm κ[`] 6= 0, then for every steady conven-

tional schedule τ , applicable to σ, with Cfgs(σ, τ) |= ψ, there
exists a schedule repr∧∨[ψ, µσ, µτ ] with the following properties:
a) The representative is applicable and ends in the same final state:

repr∧∨[ψ, µσ, µτ ] is a steady schedule applicable to µσ, and
repr∧∨[ψ, µσ, µτ ](µσ) = µτ(µσ),

b) The representative has bounded length: |repr∧∨[ψ, µσ, µτ ]| ≤
4 · |R|,

c) The representative maintains the formula ψ. In other words,
Cfgs(µσ, repr∧∨[ψ, µσ, µτ ]) |= ψ,

728



`0

`1

`2 `3

r2

r1

r3

r4

r5

r6

r7 r8

Configuration σ1

`0

`1

`2 `3

r2

r1

r3

r4

r5

r6

r7 r8

Configuration σ2

r1 r6 r4 r2 r4

r6 r2 r1 r4 r4

One thread All other threads

Figure 9. Example of constructing a representative schedule by moving a thread to the beginning. The number of dots in the local states
correspond to counter values, i.e., σ1.κ[`0] = σ1.κ[`1] = σ1.κ[`2] = 1 and σ1.κ[`3] = 0.

d) The representative is a concatenation of two representative
schedules srep from Proposition 6.1:
repr∧∨[ψ, µσ, µτ ] = srep[µσ, τ ] · srep[τ(µσ), (µ− 1)τ ].

The main technical challenge for proving Theorems 6.3 and 6.4
is that we want to swap transitions and maintain ELTLFT formulas
at the same time. As discussed in Example 6.2, simply applying the
ideas from the reachability analysis in [42, 50] is not sufficient.

We address this challenge by more refined swapping strategies
depending on the property ψ of Theorem 6.3. For instance, the
intuition behind

∨
`∈Locs κ[`] 6= 0 is that in a given distributed

algorithm, there should always be at least one process in one of
the states in Locs . Hence, we would like to consider individual
processes, but in the context of counter systems. Therefore, we
introduce a mathematical notion we call a thread, which is a
schedule that can be executed by an individual process. A thread
is then characterized depending on whether it starts in Locs , ends
in Locs , or visits Locs at some intermediate step. Based on this
characterization, we show that ELTLFT formulas are preserved if we
move carefully chosen threads to the beginning of a steady schedule
(intuitively, this corresponds to τ1, and τ2 from Theorem 6.3). Then,
we replace the threads, one by one, by their representative schedules
from Proposition 6.1, and append another representative schedule
for the remainder of the schedule. In this way, we then obtain the
representative schedules in Theorem 6.3(d).

Example 6.5. We consider the TA in Figure 2, and show how
a schedule τ = (r1, 1), (r6, 1), (r4, 1), (r2, 1), (r4, 1) applicable
to σ1, with τ(σ1) = σ2 can be shortened. Figure 9 follows this
example where τ is the upper schedule. Assume that Cfgs(σ1, τ) |=
κ[`2] 6= 0, and that we want to construct a shorter schedule that
produces a path that satisfies the same formula.

In our theory, subschedule (r1, 1), (r4, 1) is a thread of σ1 and τ
for two reasons: (1) the counter of the starting local state of (r1, 1)
is greater than 0, i.e., σ1.κ[`0] = 1, and (2) it is a sequence of rules
in the control flow of the threshold automaton, i.e., it starts from `0,
then uses (r1, 1) to go to local state `2 and then (r4, 1) to arrive
at `3. The intuition of (2) is that a thread corresponds to a process
that executes the threshold automaton. Similarly, (r6, 1), (r2, 1) and
(r4, 1) are also threads of σ1 and τ . In fact, we can show that each
schedule can be decomposed into threads. Based on this, we analyze
which local states are visited when a thread is executed.

Our formula Cfgs(σ1, τ) |= κ[`2] 6= 0 talks about `2. Thus, we
are interested in a thread that ends at `2, because after executing this
thread, intuitively there will always be at least one process in `2, i.e.,
the counter κ[`2] will be nonzero, as required. Such a thread will be
moved to the beginning. We find that thread (r6, 1), (r2, 1) meets
this requirement. Similarly, we are also interested in a thread that
starts from `2. Before we execute such a thread, at least one process
must always be in `2, i.e., κ[`2] will be nonzero. For this, we single
out the thread (r4, 1), as it starts from `2.

Independently of the actual positions of these threads within a
schedule, our condition κ[`2] 6= 0 is true before (r4, 1) starts, and af-
ter (r6, 1), (r2, 1) ends. Hence, we move the thread (r6, 1), (r2, 1)
to the beginning, and obtain a schedule that ensures our condition in
all visited configurations; cf. the lower schedule in Figure 9. Then we
replace the thread (r6, 1), (r2, 1), by a representative schedule from
Proposition 6.1, and the remaining part (r1, 1), (r4, 1), (r4, 1), by
another one. Indeed in our example, we could merge (r4, 1), (r4, 1)
into one accelerated transition (r4, 2) and obtain a schedule which
is shorter than τ while maintaining κ[`2] 6= 0. /

7. Application of the Short Counterexample
Property and Experimental Evaluation

7.1 SMT Encoding
We use the theoretical results from the previous section to give
an efficient encoding of lasso-shaped executions in SMT with
linear integer arithmetic. The definitions of counter systems in
Section 2.2 directly tell us how to encode paths of the counter
system. Definition 2.5 describes a configuration σ as tuple (κ,g,p),
where each component is encoded as a vector of SMT integer
variables. Then, given a path σ0, t1, σ1, . . . , tk−1, σk−1, tk, . . . σk
of length k, by κi, gi, and pi we denote the values of the vectors
that correspond to σi, for 0 ≤ i ≤ k. As the parameter values do not
change, we use one copy of the variables p in our SMT encoding.
By κi`, for 1 ≤ ` ≤ |L|, we denote the `th component of κi, that is,
the counter corresponding to the number of processes in local state `
after the ith iteration. Definition 2.5 also gives us the constraint on
the initial states, namely:

init(0) ≡
∑
`∈I

κ0
` = N(p)∧

∑
` 6∈I

κ0
` = 0∧g0 = 0∧RC(p) (4)

Example 7.1. The TA from Figure 2 has four local states `0, `1,
`2, `3 among which `0 and `1 are the initial states. In this example,
N(p) is n− f , and the resilience condition requires that there are
less than a third of the processes faulty, i.e., n > 3t. We obtain
init(0) ≡ κ0

0 + κ0
1 = n − f ∧ κ0

2 + κ0
3 = 0 ∧ x0 = 0 ∧ n >

3t ∧ t ≥ f ∧ f ≥ 0. The constraint is in linear integer arithmetic. /

Further, Definition 2.8 encodes the transition relation. A tran-
sition is identified by a rule and an acceleration factor. A rule is
identified by threshold guards ϕ≤ and ϕ>, local states from and to
between which processes are moved, and by u, which defines the
increase of shared variables. As according to Section 5 only a fixed
number of transitions change the context and thus may change the
evaluation of ϕ≤ and ϕ>, we do not encode ϕ≤ and ϕ> for each
rule. In fact, we check the guards ϕ≤ and ϕ> against a fixed number
of configurations, which correspond to the cut points defined by
the threshold guards. The acceleration factor δ is indeed the only
variable in a transition, and the SMT solver has to find assignments

729



of these factors. Then this transition from the ith to the (i + 1)th
configuration is encoded using rule r = (from, to, ϕ≤, ϕ>,u) as
follows:

T (i, r) ≡ Move(from, to, i) ∧ IncShd(u, i) (5)

Move(`, `′, i) ≡ ` 6= `′ → κi` − κi+1
` = δi+1 = κi+1

`′ − κi`′

∧ ` = `′ →
(
κi` = κi+1

` ∧ κi+1
`′ = κi`′

)
∧

∧
s∈L\{`,`′}

κis = κi+1
s

IncShd(u, i) ≡ gi+1 − gi = δi+1 · u
Given a schedule τ , we encode in linear integer arithmetic the

paths that follow this schedule from an initial state as follows:

E(τ) ≡ init(0) ∧ T (0, r1) ∧ T (1, r2) ∧ . . .
We can now ask the SMT solver for assignments of the parameters as
well as the factors δ1, δ2, . . . in order to check whether a path with
this sequence of rules exists. Note that some factors can be equal
to 0, which means that the corresponding rule does not have any
effect (because no process executes it). If τ encodes a lasso shape,
and the SMT solver reports a satisfying assignment, this assignment
is a counterexample. If the SMT solver reports unsat on all lassos
discussed in Section 5, then there does not exists a counterexample
and the algorithm is verified.

Example 7.2. In Example 3.3 we have seen the fairness requirement
ψfair, which is a property of a configuration that can be encoded as
fair(i) ≡ κi1 = 0 ∧ (xi ≥ t + 1 → κi0 = 0 ∧ κi1 = 0) ∧ (xi ≥
n − t → κi0 = 0 ∧ κi2 = 0), which is a formula in linear integer
arithmetic. Then, e.g., fair(5) encodes that the fifth configuration
satisfies the predicate. Such state formulas can be added as conjunct
to the formula E(τ) that encodes a path. /

As discussed in Sections 4 and 5 we have to encode lassos of the
form ϑ · ρω starting from an initial configuration σ. We immediately
obtain a finite representation by encoding the fixed length execution
E(ϑ · ρ) as above, and adding the constraint that applying ρ returns
to the start of the lasso loop, that is, ϑ(σ) = ρ(ϑ(σ)). In SMT this
is directly encoded as equality of integer variables.

7.2 Generating the SMT Queries
The high-level structure of the verification algorithm is given in
Figure 3 on page 6. In this section, we give the details of the
procedure check_one_order, whose pseudo code is given in
Figure 10. It receives as the input the following parameters: a
threshold automaton TA, an ELTLFT formula ϕ, a cut graph G
of ϕ, a threshold graphH of TA, and a topological order ≺ on the
vertices of the graph G ∪ H.

The procedure check_one_order constructs SMT assertions
about the configurations of the lassos that correspond to the order≺.
As explained in Section 7.1, an ith configuration is defined by the
vectors of SMT variables (κi,gi,p). We use two global variables:
the number fn of the configuration under construction, and the
number fs of the configuration that corresponds to the loop start.
Thus, with the expressions κfn and gfn we refer to the SMT variables
of the configuration whose number is stored in fn.

In the pseudocode in Figure 10, we call SMT_assert(κfn, gfn,
p |= ψ) to add an assertion ψ about the configuration (κfn,gfn,p)
to the SMT query. Finally, the call SMT_sat() returns true, only if
there is a satisfying assignment for the assertions collected so far.
Such an assignment can be accessed with SMT_model() and gives
the values for the configurations and acceleration factors, which
together constitute a witness lasso.

The procedure check_one_order creates the assertions about
the initial configurations. The assertions consist of: the assump-

1 variables fn, fs; // the current configuration number and the loop start
2 // Try to find a witness lasso for: a threshold automaton TA,
3 // an ELTLFT formula ϕ, a cut graph G, a threshold graphH, and
4 // a topological order ≺ on the nodes of G ∪H.
5 procedure check_one_order(TA, ϕ, G, H, ≺):
6 fn := 0; fs := 0;
7 SMT_start(); // start (or reset) the SMT solver
8 assume(can(ϕ) = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1);
9 SMT_assert(κ0,g0,p |= init(0) ∧ ψ0 ∧ ψk+1); // see Equation 4

10 v0 := min≺(VG ∪ VH); // the minimal node w.r.t. the linear order ≺
11 check_node(G, H, ≺, v0, ψk+1, ∅);
12
13 // Try to find a witness lasso starting with the node v and the context Ω,
14 // while preserving the invariant ψinv .
15 recursive procedure check_node(G, H, ≺, v, ψinv , Ω):
16 if not SMT_sat() then:
17 return no_witness;
18 case (a) v ∈ VG \ {loopstart, loopend}:
19 find ψ s.t. 〈Fψ, v〉 ∈ T (ϕ); // v labels a formula in the syntax tree
20 assume(ψ = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1);
21 SMT_assert(κfn,gfn,p |= ψ0);
22 push_segment(ψinv ∧ ψk+1);
23 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
24 check_node(G, H, ≺, v′, ψinv ∧ ψk+1, Ω);
25 case (b) v ∈ VH \ {loopstart, loopend}: // v is a threshold guard
26 if v ∈ Φrise then: // v is an unlocking guard, e.g., x ≥ t+ 1− f
27 push_segment(ψinv); // one rule unlocks v
28 SMT_assert(κfn,gfn,p |= v); // v is unlocked
29 push_segment(ψinv); // execute all unlocked rules
30 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
31 check_node(G, H, ≺, v′, ψinv , Ω ∪ {v});
32 else: /∗ v ∈ Φfall, e.g., x < f , similar to the locking case: use ¬v ∗/
33 case (c) v = loopstart:
34 fs := fn; // the loop starts at the current configuration
35 push_segment(ψinv); // execute all unlocked rules
36 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
37 check_node(G, H, ≺, v′, ψinv , Ω);
38 case (d) v = loopend:
39 SMT_assert(κfn = κfs ∧ gfn = gfs); // close the loop
40 if SMT_sat() then:
41 return witness(SMT_model())
42
43 // Encode a segment of rules as prescribed by [42] and Theorems 6.3–6.4.
44 procedure push_segment(ψinv):
45 // find the number of schedules to repeat in (d) of Theorems 6.3, 6.4
46 nrepetitions := compute_repetitions(ψinv);
47 r1, . . . , rk := compute_rules(Ω); // use sschemaΩ from [42]
48 for _ from 1 to nrepetitions:
49 for j from 1 to k:
50 SMT_assert(κfn,gfn,p |= ψinv);
51 SMT_assert(T (fn, rj)); // modify the counters as in Equation 5
52 fn := fn + 1; // move to the next configuration

Figure 10. Checking one topological order with SMT.

tions init(0) about the initial configurations of the threshold automa-
ton, the top-level propositional formula ψ0, and the invariant propo-
sitional formula ψk+1 that should hold from the initial configuration
on. By writing assume(ψ = ψ0 ∧ F ∧ψ1 . . .Fψk ∧Gψk+1), we
extract the subformulas of a canonical formula ψ (see Section 4.2).
The procedure finds the minimal node in the order ≺ on the nodes
of the graph G ∪ H and calls the procedure check_node for the
initial node, the initial invariant ψk+1, and the empty context ∅.

The procedure check_node is called with a node v of the graph
G ∪ H as a parameter. It adds assertions that encode a finite path
and constraints on the configurations of this path. The finite path
leads from the configuration that corresponds to the node v to the
configuration that corresponds to v’s successor in the order ≺.

730



10^0

10^1

10^2

10^3

10^4

10^5

10^6

FRB STRB
NBACC

NBACG
NBAC

BOSCO
BOSCO

BOSCO
BOSCO

BOSCO
ABA ABA C1CS

C1CS
C1CS

CF1S
CF1S

CF1S
CBC CBC CBC CBC

Time to verify an instance, sec. (logscale)

Safety1 Safety2 Liveness1 Liveness2

10^2

10^3

10^4

10^5

10^6

FRB STRB
NBACC

NBACG
NBAC

BOSCO
BOSCO

BOSCO
BOSCO

BOSCO
ABA ABA C1CS

C1CS
C1CS

CF1S
CF1S

CF1S
CBC CBC CBC CBC

Memory to verify an instance, MB (logscale)

Safety1 Safety2 Liveness1 Liveness2

10^0

10^1

10^2

10^3

10^4

10^5

FRB STRB
NBACC

NBACG
NBAC

BOSCO
BOSCO

BOSCO
BOSCO

BOSCO
ABA ABA C1CS

C1CS
C1CS

CF1S
CF1S

CF1S
CBC CBC CBC CBC

Number of lassos (logscale)

Safety1 Safety2 Liveness1 Liveness2

10^0

10^1

10^2

10^3

10^4

10^5

 0  5  10  15  20  25

Number of checked benchmarks (safety only)

Time to verify an instance, sec. (logscale)

This paper KVW15

Figure 11. The plots summarize the following results of running our implementation on all benchmarks: used time in seconds (top left), used
memory in megabytes (top right), the number of checked lassos (bottom left), time used both by our implementation and [42] to check safety
only (bottom right). Several occurrences of the same benchmark correspond to different cases, such as f > 1, f = 1, and f = 0. Symbols �
and � correspond to the safety properties of each benchmark, while symbols � and ♦ correspond to the liveness properties.

The constraints depend on v’s origin: (a) v labels a formula Fψ
in the syntax tree of ϕ, (b) v carries a threshold guard from the
set Φrise ∪ Φfall, (c) v denotes the loop start, or (d) v denotes the
loop end. In case (a), we add an SMT assertion that the current
configuration satisfies the propositional formula prop(ψ) (line 21),
and add a sequence of rules that leads to v’s successor while
maintaining the invariants ψinv of the preceding nodes and the v’s
invariant ψk+1 (line 22). In case (b), in line 27, we add a sequence
of rules, one of which should unlock (resp. lock) the threshold guard
in v ∈ Φrise (resp. v ∈ Φfall). Then, in line 29, we add a sequence
of rules that leads to a configuration of v’s successor. All added
configurations are required to satisfy the current invariant ψinv . As
the threshold guard in v is now unlocked (resp. locked), we include
the guard (resp. its negation) in the current context Ω. In case (c), we
store the current configuration as the loop start in the variable fs and,
as in (a) and (b), add a sequence of rules leading to v’s successor.
Finally, in case (d), we should have reached the ending configuration
that coincides with the loop start. To this end, in line 39, we add
the constraint that forces the counters of both configurations to be
equal. At this point, all the necessary SMT constraints have been
added, and we call SMT_sat to check whether there is an assignment
that satisfies the constraints. If there is one, we report it as a lasso
witnessing the ELTLFT-formula ϕ that consists of: the concrete
parameter values, the values of the counters and shared variables
for each configuration, and the acceleration factors. Otherwise, we
report that there is no witness lasso for the formula ϕ.

The procedure push_segment constructs a sequence of cur-
rently unlocked rules, as in the case of reachability [42]. However,
this sequence should be repeated several times, as required by The-

orems 6.3 and 6.4. Moreover, the freshly added configurations are
required to satisfy the current invariant ψinv .

7.3 Experiments
We extended the tool ByMC [42] with our technique and conducted
experiments2 with the freely available benchmarks from [42]: folk-
lore reliable broadcast (FRB) [14], consistent broadcast (STRB) [64],
asynchronous Byzantine agreement (ABA) [11], condition-based
consensus (CBC) [52], non-blocking atomic commitment (NBAC
and NBACC [61] and NBACG [37]), one-step consensus with
zero degradation (CF1S [21]), consensus in one communication
step (C1CS [12]), and one-step Byzantine asynchronous consensus
(BOSCO [63]). These threshold-guarded fault-tolerant distributed
algorithms are encoded in a parametric extension of Promela.

Negations of the safety and liveness specifications of our bench-
marks — written in ELTLFT — follow three patterns: unsafety
E (p∧ F q), non-termination E (p∧GF r ∧G q), and non-response
E (GF r ∧ F (p ∧ G q)). The propositions p, q, and r follow the
syntax of pform (cf. Table 1), e.g., p ≡

∧
`∈Locs1 κ[`] = 0 and

q ≡
∨
`∈Locs2 κ[`] 6= 0 for some sets of locations Locs1 and Locs2.

The results of our experiments are summarized in Figure 11.
Given the properties of the distributed algorithms found in the lit-
erature, we checked for each benchmark one or two safety prop-
erties (depicted with � and �) and one or two liveness properties
(depicted with � and ♦). For each benchmark, we display the run-
ning times and the memory used together by ByMC and the SMT

2 The details on the experiments and the artifact are available at:
http://forsyte.at/software/bymc/popl17-artifact

731

http://forsyte.at/software/bymc/popl17-artifact


solver Z3 [20], as well as the number of exercised lasso shapes as
discussed in Section 5.

For safety properties, we compared our implementation against
the implementation of [42]. The results are summarized the bottom
right plot in Figure 11, which shows that there is no clear winner.
For instance, our implementation is 170 times faster on BOSCO for
the case n > 5t. However, for the benchmark ABA we experienced
a tenfold slowdown. In our experiments, attempts to improve the
SMT encoding for liveness usually impaired safety results.

Our implementation has verified safety and liveness of all ten
parameterized algorithms in less than a day. Moreover, the tool
reports counterexamples to liveness of CF1S and BOSCO exactly
for the cases predicted by the distributed algorithms literature, i.e.,
when there are not enough correct processes to reach consensus
in one communication step. Noteworthy, liveness of only the two
simplest benchmarks (STRB and FRB) had been automatically
verified before [40].

8. Conclusions
Parameterized verification approaches the problem of verifying
systems of thousands of processes by proving correctness for all
system sizes. Although the literature predominantly deals with
safety, parameterized verification for liveness is of growing interest,
and has been addressed mostly in the context of programs that
solve mutual exclusion or dining philosophers [4, 30, 31, 59]. These
techniques do not apply to fault-tolerant distributed algorithms that
have arithmetic conditions on the fraction of faults, threshold guards,
and typical specifications that evaluate a global system state.

Parameterized verification is in general undecidable [3]. As
recently surveyed by Bloem et al. [9], one can escape undecidability
by restricting, e.g., communication semantics, local state space, the
local control flow, or the temporal logic used for specifications.
Hence, we make explicit the required restrictions. On the one hand,
these restrictions still allow us to model fault-tolerant distributed
algorithms and their specifications, and on the other hand, they give
rise to a practical verification method. The restrictions are on the
local control flow (loops) of processes (Section 2.1), as well as
on the temporal operators and propositional formulas (Section 3).
We conjecture that lifting these restrictions quite quickly leads to
undecidability again. In addition, we justify our restrictions with the
considerable number of benchmarks [11, 12, 14, 21, 37, 52, 61, 63,
64] that fit into our fragment, and with the convincing experimental
results from Figure 11.

Our main technical contribution is to combine and extend several
important techniques: First, we extend the ideas by Etessami et
al. [29] to reason about shapes of infinite executions of lasso
shape. These executions are counterexample candidates. Then we
extend reductions introduced by Lipton [50] to deal with ELTLFT
formulas. (Techniques that extend Lipton’s in other directions can
be found in [19, 22, 25, 34, 44, 47].) Our reduction is specific
to threshold guards which are typical for fault-tolerant distributed
algorithms and are found in domain-specific languages. Using on
our reduction we apply acceleration [6, 44] in order to arrive at our
short counterexample property.

Our short counterexample property implies a completeness
threshold, that is, a bound b that ensures that if no lasso of length up
to b is satisfying an ELTLFT formula, then there is no infinite path
satisfying this formula. For linear temporal logic with the F and G
operators, Kroening et al. [46] prove bounds on the completeness
thresholds on the level of Büchi automata. Their bound involves the
recurrence diameter of the transition systems, which is prohibitively
large for counter systems. Similarly, the general method to transfer
liveness with fairness to safety checking by Biere et al. [8] leads
to an exponential growth of the diameter, and thus to too large
values of b. Hence, we decided to conduct an analysis on the level

of threshold automata, accelerated counter systems, and a fragment
of the temporal logic, which allows us to exploit specifics of the
domain, and get bounds that can be used in practice.

Acceleration has been applied for parameterized verification by
means of regular model checking [1, 10, 58, 62]. As noted by Fisman
et al. [33], to verify fault-tolerant distributed algorithms, one would
have to intersect the regular languages that describe sets of states
with context-free languages that enforce the resilience condition
(e.g., n > 3t). Our approach of reducing to SMT handles resilience
conditions naturally in linear integer arithmetic.

There are two reasons for our restrictions in the temporal
logic: On one hand, in our benchmarks, there is no need to find
counterexamples that contain a configuration that satisfies κ[`] =
0 ∨ κ[`′] = 0 for some `, `′ ∈ L. One would only need such
a formula to specify requirement that at least one process is at
location ` and at least one process is at location `′ (the disjunction
would be negated in the specification), which is unnatural for fault-
tolerant distributed algorithms. On the other hand, enriching our
logic with

∨
i∈Locs κ[i] = 0 allows one to express tests for zero in

the counter system, which leads to undecidability [9]. For the same
reason, we avoid disjunction, as it would allow one to indirectly
express test for zero: κ[`] = 0 ∨ κ[`′] = 0.

The restrictions we put on threshold automata are justified from
a practical viewpoint of our application domain, namely, threshold-
guarded fault-tolerant algorithms. We assumed that all the cycles
in threshold automata are simple (while the benchmarks have only
self-loops or cycles of length 2). As our analysis already is quite
involved, these restrictions allow us to concentrate on our central
results without obfuscating the notation and theoretical results. Still,
from a theoretical viewpoint it might be interesting to relax the
restrictions on cycles in the future.

More generally, these restrictions allowed us to develop a com-
pletely automated verification technique. In general, there is a trade-
off between degree of automation and generality. Our method is
completely automatic, but our input language cannot compete in gen-
erality with mechanized proof methods that rely heavily on human
expertise, e.g., IVY [55], Verdi [68], IronFleet [38], TLAPS [16].

References
[1] P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of

systems with unbounded, lossy FIFO channels. In CAV, LNCS, pages
305–318, 1998.

[2] F. Alberti, S. Ghilardi, and E. Pagani. Counting constraints in flat array
fragments. In IJCAR, volume 9706 of LNCS, pages 65–81, 2016.

[3] K. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. IPL, 15:307–309, 1986.

[4] M. F. Atig, A. Bouajjani, M. Emmi, and A. Lal. Detecting fair non-
termination in multithreaded programs. In CAV, pages 210–226, 2012.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press,
2008.

[6] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: acceleration from
theory to practice. STTT, 10(5):401–424, 2008.

[7] M. Biely, P. Delgado, Z. Milosevic, and A. Schiper. Distal: a framework
for implementing fault-tolerant distributed algorithms. In DSN, pages
1–8, 2013.

[8] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety
checking. Electronic Notes in Theoretical Computer Science, 66(2):
160–177, 2002.

[9] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith,
and J. Widder. Decidability of Parameterized Verification. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[10] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In CAV, LNCS, pages 372–386, 2004.

732



[11] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. J. ACM, 32(4):824–840, 1985.

[12] F. V. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. Consensus
in one communication step. In PaCT, volume 2127 of LNCS, pages
42–50, 2001.

[13] E. R. Canfield and S. G. Williamson. A loop-free algorithm for
generating the linear extensions of a poset. Order, 12(1):57–75, 1995.

[14] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[15] B. Charron-Bost and S. Merz. Formal verification of a consensus
algorithm in the heard-of model. IJSI, 3(2–3):273–303, 2009.

[16] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying safety
properties with the TLA+ proof system. In IJCAR, volume 6173 of
LNCS, pages 142–148, 2010.

[17] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[18] E. Clarke, M. Talupur, and H. Veith. Proving Ptolemy right: the
environment abstraction framework for model checking concurrent
systems. In TACAS’08/ETAPS’08, pages 33–47. Springer, 2008.

[19] E. Cohen and L. Lamport. Reduction in TLA. In CONCUR, volume
1466 of LNCS, pages 317–331, 1998.

[20] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
volume 1579 of LNCS, pages 337–340. 2008.

[21] D. Dobre and N. Suri. One-step consensus with zero-degradation. In
DSN, pages 137–146, 2006.

[22] T. W. Doeppner. Parallel program correctness through refinement. In
POPL, pages 155–169, 1977.

[23] C. Drăgoi, T. A. Henzinger, and D. Zufferey. PSync: a partially
synchronous language for fault-tolerant distributed algorithms. In
POPL, pages 400–415, 2016.

[24] C. Drăgoi, T. A. Henzinger, H. Veith, J. Widder, and D. Zufferey. A
logic-based framework for verifying consensus algorithms. In VMCAI,
volume 8318 of LNCS, pages 161–181, 2014.

[25] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In
POPL, pages 2–15, 2009.

[26] E. Emerson and K. Namjoshi. Reasoning about rings. In POPL, pages
85–94, 1995.

[27] E. A. Emerson and V. Kahlon. Model checking guarded protocols. In
LICS, pages 361–370. IEEE, 2003.

[28] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast
protocols. In LICS, pages 352–359. IEEE Computer Society, 1999.

[29] K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two
variables and unary temporal logic. Inf. Comput., 179(2):279–295,
2002.

[30] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with invisible
ranking. STTT, 8(3):261–279, 2006.

[31] A. Farzan, Z. Kincaid, and A. Podelski. Proving liveness of parameter-
ized programs. In LICS, pages 185–196, 2016.

[32] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[33] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault tolerance
of distributed protocols. In TACAS, volume 4963 of LNCS, pages
315–331. Springer, 2008.

[34] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for
atomicity. IEEE Trans. Softw. Eng., 31(4):275–291, 2005.

[35] S. M. German and A. P. Sistla. Reasoning about systems with many
processes. J. ACM, 39:675–735, 1992.

[36] A. Gmeiner, I. Konnov, U. Schmid, H. Veith, and J. Widder. Tutorial on
parameterized model checking of fault-tolerant distributed algorithms.
In Formal Methods for Executable Software Models, LNCS, pages
122–171. Springer, 2014.

[37] R. Guerraoui. Non-blocking atomic commit in asynchronous dis-
tributed systems with failure detectors. Distributed Computing, 15
(1):17–25, 2002.

[38] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill. Ironfleet: proving practical
distributed systems correct. In SOSP, pages 1–17, 2015.

[39] G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[40] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Parameterized
model checking of fault-tolerant distributed algorithms by abstraction.
In FMCAD, pages 201–209, 2013.

[41] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace:
language support for building distributed systems. In ACM SIGPLAN
PLDI, pages 179–188, 2007.

[42] I. Konnov, H. Veith, and J. Widder. SMT and POR beat counter ab-
straction: Parameterized model checking of threshold-based distributed
algorithms. In CAV (Part I), volume 9206 of LNCS, pages 85–102,
2015.

[43] I. Konnov, M. Lazić, H. Veith, and J. Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed
algorithms. CoRR, abs/1608.05327, 2016. URL http://arxiv.org/
abs/1608.05327.

[44] I. Konnov, H. Veith, and J. Widder. On the completeness of bounded
model checking for threshold-based distributed algorithms: Reacha-
bility. Information and Computation, 2016. Accepted manuscript
available online: 10-MAR-2016. http://dx.doi.org/10.1016/j.
ic.2016.03.006.

[45] I. Konnov, H. Veith, and J. Widder. What you always wanted to know
about model checking of fault-tolerant distributed algorithms. In PSI
2015, Revised Selected Papers, volume 9609 of LNCS, pages 6–21.
Springer, 2016.

[46] D. Kroening, J. Ouaknine, O. Strichman, T. Wahl, and J. Worrell. Linear
completeness thresholds for bounded model checking. In CAV, volume
6806 of LNCS, pages 557–572, 2011.

[47] L. Lamport and F. B. Schneider. Pretending atomicity. Technical
Report 44, SRC, 1989.

[48] M. Lesani, C. J. Bell, and A. Chlipala. Chapar: certified causally
consistent distributed key-value stores. In POPL, pages 357–370, 2016.

[49] P. Lincoln and J. Rushby. A formally verified algorithm for interactive
consistency under a hybrid fault model. In FTCS, pages 402–411, 1993.

[50] R. J. Lipton. Reduction: A method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[51] B. D. Lubachevsky. An approach to automating the verification of
compact parallel coordination programs. I. Acta Informatica, 21(2):
125–169, 1984.

[52] A. Mostéfaoui, E. Mourgaya, P. R. Parvédy, and M. Raynal. Evaluating
the condition-based approach to solve consensus. In DSN, pages 541–
550, 2003.

[53] Netflix. 5 lessons we have learned using AWS. 2010. re-
trieved on Nov. 7, 2016. http://techblog.netflix.com/2010/
12/5-lessons-weve-learned-using-aws.html.

[54] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In USENIX ATC, pages 305–320, 2014.

[55] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham. Ivy:
safety verification by interactive generalization. In PLDI, pages 614–
630, 2016.

[56] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[57] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravindran. Making
fast consensus generally faster. In DSN, pages 156–167, 2016.

[58] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized
verification. In CAV, LNCS, pages 328–343, 2000.

[59] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,∞)- counter
abstraction. In CAV, volume 2404 of LNCS, pages 93–111. 2002.

733

http://arxiv.org/abs/1608.05327
http://arxiv.org/abs/1608.05327
http://dx.doi.org/10.1016/j.ic.2016.03.006
http://dx.doi.org/10.1016/j.ic.2016.03.006
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html


[60] V. Rahli, D. Guaspari, M. Bickford, and R. L. Constable. Formal
specification, verification, and implementation of fault-tolerant systems
using EventML. ECEASST, 72, 2015.

[61] M. Raynal. A case study of agreement problems in distributed systems:
Non-blocking atomic commitment. In HASE, pages 209–214, 1997.

[62] V. Schuppan and A. Biere. Liveness checking as safety checking for
infinite state spaces. Electronic Notes in Theoretical Computer Science,
149(1):79–96, 2006.

[63] Y. J. Song and R. van Renesse. Bosco: One-step Byzantine asyn-
chronous consensus. In DISC, volume 5218 of LNCS, pages 438–450,
2008.

[64] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Dist. Comp., 2:80–94, 1987.

[65] TLA. TLA+ toolbox. http://research.microsoft.com/en-us/
um/people/lamport/tla/tools.html.

[66] M. Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In LICS, pages 322–331, 1986.

[67] K. von Gleissenthall, N. Bjørner, and A. Rybalchenko. Cardinalities
and universal quantifiers for verifying parameterized systems. In PLDI,
pages 599–613, 2016.

[68] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. E. Anderson. Verdi: a framework for implementing and formally
verifying distributed systems. In PLDI, pages 357–368, 2015.

734

http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html

	Introduction
	Representation of Distributed Algorithms
	Threshold Automata
	Counter Systems

	Verification Problems: Parameterized Reachability vs. Safety & Liveness.
	Shapes of Schedules that Satisfy ELTLFT
	Restricting Schedules to Lassos
	Characterizing Shapes of Lasso Schedules
	Using Cut Graphs to Enumerate Shapes of Lassos

	Cutting Lassos with Threshold Guards
	The Short Counterexample Property
	Application of the Short Counterexample Property and Experimental Evaluation
	SMT Encoding
	Generating the SMT Queries
	Experiments

	Conclusions

