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§Institut für Anorganische Chemie (IAC), RWTH-Aachen, Landoltweg 1. 52074 Aachen, Germany
∥Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria

ABSTRACT: We present first-principles calculations of the isotropic
NMR Ga shielding in metallic MGa2 with M = Ca, Sr, Ba and MGa4
with M = Na, Ca, Sr and Ba. We show that the experimentally observed
trend of Ga NMR shifts is as expected driven mainly by the spin part of
the response, but the orbital contribution must not be neglected. For all
analyzed compounds the spin contact term constitute the major
component of the response, except for BaGa2, where the spin-dipolar
contribution is unusually large. This spin-dipolar contribution is related
to the difference of the Ga-4pz and 4px,y partial density of states (PDOS)
at the Fermi level, which is large only for BaGa2. It is related to the
honeycomb-like Ga-lattice and the distances between Ga atoms. The spin-contact term is determined to a large extend by Ga-4s
PDOS at the Fermi level, because the magnetic field leads to a small spin-splitting and a reoccupation of spin-up and spin-down
states. This Ga-4s PDOS is related to the local atomic structure around the Ga atoms and results in fact from an overlap with the
neighboring Ga-4p orbitals, therefore more symmetric local arrangements of atoms around Ga result in higher Ga-4s PDOS.
However, we noticed that for very low Ga-4s PDOS the spin contact term does not tend to zero but changes sign and becomes
diamagnetic. This can be explained by the energy dependence of the Ga-4s radial wave function near the nucleus, leading to a
contraction/expansion of 4s densities, respectively. This effect is also present in all insulating materials; however, it has been
neglected so far in literature.

■ INTRODUCTION

First-principles calculations of NMR shielding for insulating
solids are now relatively easy and routinely carried out to aid
the interpretation of measured spectra.1−3 Such calculations are
much more complicated for metallic systems and therefore less
common. In this case, the nuclear spin interacts not only with
the electron orbit but also with its spin. So far only shieldings
for metallic elements have been computed.4,5 The difficulty is,
however, not related to the more complicated nature of the
screening of the nuclear spin, but mainly to technical issues like
slow convergence of the shielding with respect to the Brillouin
zone sampling and the sensitivity to the approach applied to
determine the occupancy of the electronic states close to the
Fermi level.5 If these facts are carefully considered, reliable
parameters can be computed.
In this work we focus on computing the isotropic shielding at

the Ga nucleus in intermetallic MGa2, with M = Ca, Sr, Ba, and
MGa4, with M = Na, Ca, Sr and Ba compounds. Ga, residing
near the Zintl border in the Periodic Table of Elements, forms
compounds with electropositive elements characterized by
attractive Ga−Ga interactions with short Ga−Ga contacts, as
proposed by the Zintl concept.6 They possess metallic
conductivity. The Ga local atomic structure and the number
of Ga−Ga contacts interlinking the Ga atoms proves to be
quite flexible. The degree of the interlinking increases with Ga
content. For instance, isolated Ga atoms are found in

Ca28Ga11,
7 2- or 3-fold bonded Ga clusters are observed in

Sr8Ga7 or Ba8Ga7.
8 3-fold coordinated Ga atoms, forming two-

dimensional networks, are seen in various MGa2,
9 whereas 4-

and 5-fold bonded atoms and three-dimensional interlinking
are characteristic in MGa4.

10 To reflect this flexibility, Ga atoms
are referred to as Ga(3b), Ga(4b), and Ga(5b), indicating 3-,
4-, and 5-fold coordination. Here, the term bonded is not used
in the sense of two-electron−two-center bonds, but describe
interatomic distances that are smaller than the average Ga−Ga
distance in elemental a-Ga (2.70 Å).11 MGa4, with M = Na, Sr,
and Ba, crystallizes in the BaAl4 structure (Table 1), with one
Ga(4b) and one Ga(5b) site, shown in Figure 1a,b. The Ga(4b)
sites are coordinated by four equidistant Ga(5b), forming a
distorted tetrahedron with two angles slightly different from
ideal tetrahedral 109.5°. The Ga(5b) local atomic structure is a
pyramid with a square base of Ga(4b) and a Ga(5b) at the top.
The atomic structure of CaGa4 is a monoclinic distortion of the
BaAl4 type.12 For the Ga(4b) site the four Ga(5b) are not
equidistant but slightly split into two shorter and two longer
distances. MGa2 crystallize in the AlB2-type structure with a 2D
honeycomb-like Ga layer shown in Figure 1c. The layer is flat
showing some corrugation for CaGa2.

13 Considering the
different interatomic distances within and between the layers,
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the Ga atoms are 3 + 1-fold coordinated leading to Ga(3b+1b)
in CaGa2.
NMR spectroscopy is sensitive to the local arrangements of

atoms and their bonding situations. However, the relation
between the NMR parameters and the structure is, in general,
not well understood in solids. This is particularly the case for
metals. Considering both the flexibility of Ga forming various
local structures and the metallic character, the intermetallic
gallides present a valuable opportunity for studying such
relations. In this paper we compute spin and orbital
components of the isotropic shielding for Ga in various di-
and tetragallides. We discuss the relation between the spin
component of the shielding and the atomic structure, which
determines to a large extent the trends of the measured NMR
signal shifts.

■ EXPERIMENTALLY ACCESSIBLE NMR
PARAMETERS

Line shape analysis is usually performed to determine the
experimental coupling parameters of solid state NMR signals.
This attempt describes the shape of the signals with
phenomenological parameters being related to the various
interactions. For 71,69Ga with I = 3/2, the signal is often
dominated by the so-called quadrupole coupling resulting from
the interaction of the nuclear quadrupole moment and the
surrounding charge distribution.9,10,15,16 The latter is described
by the electric field gradient (EFG) with its main principal axis
VZZ and the asymmetry parameter ηQ.
While the isotropic NMR signal shift influences only the

position of the signal the anisotropic NMR signal shift has
some impact on the line shape of the signal. Both the isotropic
and the anisotropic signal shift can be derived by careful data
analysis. For low symmetry sites, also, the relative orientation of
the principal axis systems of both quadrupole coupling and shift
interactions can be determined by analysis of field-dependent
experiments.17

Two main contributions to the NMR signal shift have to be
distinguished. These are the chemical shift (δ) resulting from
the orbital motions of the electrons and the Knight shift
( ).18−21 The latter is due to the interaction of the nuclear
magnetic moment with the spins of electrons in metallic
materials. Since and δ cannot be experimentally separated,
the complete shift parameters Δiso, Δaniso, and ηΔ seem to be
appropriate to emphasize the various contributions.22 The
complete isotropic signal shift of metallic materials is given by

δΔ = +iso iso iso (1)

To obtain further insights into the atomistic origin of the NMR
coupling parameters theoretical investigations have to be
performed.

Table 1. Structural Parameters9,10,33 for MGa4 and MGa2
a

NaGa4 CaGa4 SrGa4 BaGa4

lattice I4/mmm C2/m I4/mmm I4/mmm
a 4.226 6.181 4.447 4.566
b 6.248
c 11.228 6.130 10.745 10.775
γ 121.036
d[Ga(4b)−Ga(5b)] 2.626 2.584 2.643 2.675

2.651
d[Ga(5b)−Ga(5b)] 2.497 2.478 2.514 2.598

∠[Ga(5b),Ga(4b),Ga(5b)] 110.8 112.3 114.5 117.2
106.8 107.5 107.0 105.8

∠[Ga(4b),Ga(5b),Ga(4b)] 69.1 72.5 73.0 74.2
CaGa2 SrGa2 BaGa2

lattice P63/mmc P6/mmm P6/mmm
4.4627 4.3484 4.4322
7.3640 4.7360 5.0824

Ga−Ga 2.650 2.511 2.559
corrugation 0.621

aIn the lattice section, we show a, b, c (in Å), and γ for CaGa4, and only a and c for the rest of tetragallides. d[Ga(4b)−Ga(5b)] and d[Ga(5b)−
Ga(5b)] stands for distance between Ga atoms. ∠[Ga(5b),Ga(4b),Ga(5b)] represent the angles between Ga(4b)−Ga(5b) bonds on Ga(4b) local
atomic structure (see Figure 1a), ∠[Ga(4b),Ga(5b),Ga(4b)] stands for the angle between Ga(5b)−Ga(4b) in Ga(5b) local structure (Figure 1b).
For CaGa2 the corrugation (in Å) of the Ga layer is given, which is zero for the rest of the digallides.

Figure 1. Local atomic structure for (a) Ga(4b) in MGa4, (b) Ga(5b)
in MGa4, and (c) Ga(3b) in MGa2.
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■ DETAILS OF THE COMPUTATIONAL APPROACH

The NMR shielding σ ⃡ tensor describes a response of a system
to an external magnetic field. It is defined as a proportionality
between the induced magnetic field Bind at the nucleus at site R
and the external uniform field B:

σ= − ⃡B R R B( ) ( )ind (2)

It can be measured only with respect to a reference compound,
as a δ(R) = σref − σ(R), and often only its isotropic part
σ σ= ⃡R R( ) Tr[ ( )] is known.
The external magnetic field is a relatively weak perturbation

compared to the typical energy scale of the electronic structure,
therefore, its effect on the spin and orbit of an electron can be
separated in the theoretical calculations. The orbital part of the
shielding, that is, orbital component of the induced field Bind is
obtained directly from the Biot-Savart law (in atomic units,
with c as speed of light):

∫= × −
| − |c

d rB R j r
R r
r R

( )
1

( )ind
3

3 (3)

where j(r) is the induced orbital current. The method for
computing j(r) is based on a linear response approach23−25

originally developed by Mauri, Pfrommer, and Louie (MPL).23

It has been adapted and implemented within the all-electron,
full potential augmented plane wave (APW) WIEN2k code.26,27

The details of the implementation are described in our previous
publications.28,29 Formally our approach belongs to a set of
gauge transformation methods, often referred to as IGCV
(individual gauge for core and valence) with a “d(r) = r” gauge
choice for the valence electrons.30

In order to compute the induced spin density and the spin
part of the NMR shielding tensor we use a direct approach,5

instead of applying the linear response formalism proposed for
instance in ref 4. We perform self-consistent spin polarized
calculations with a finite external magnetic field (Bext) acting on
the electron spin only. The interaction with the external field
can be cast into a spin-dependent potential leading to a spin
splitting of eigenstates and a finite spin magnetization. It does
not break the symmetry of the solid and therefore such
calculations are straightforward. The induced magnetic field at a
given nucleus is computed using an expression for the magnetic
hyperfine field:31

∫π= + ̂ ̂ −S r
r

r r r r d rB m m m
8
3

( )
[3( ( ) ) ( )]hf av 3

3

(4)

where the first term is the Fermi contact term (Bc), and the
second captures the spin-dipolar contribution (Bsd) to the
hyperfine field. The spin contribution (σs), for example, the
Knight shift ( ) to the shielding is then simply given by two
terms:

σ σ σ= + = − −B B B B/ /s c sd c ext sd ext (5)

The Fermi contact term (σc) is related to the average spin
density (mav(r) = ρup(r) − ρdn(r)) in a region near the nucleus
with a diameter equal to the Thomson radius.31 The value of
the spin-dipolar component (σsd) comes almost entirely from
within the atomic sphere, which simplifies the calculations. The
details and benchmarks of our approach can be found in ref 5.
In order to obtain a sizable response and evaluate the NMR
shielding with a numerical precision at the level of 1 ppm we
apply in our calculations a field Bext of 100 T, which induces a

spin-splitting of approximately 1 mRy. We have checked the
linearity of the induced field with respect to the external field.
Within the APW method the unit cell is decomposed into

nonoverlapping atomic spheres and an interstitial region. The
unperturbed wave functions as well as their first order
perturbations are expressed using plane waves augmented
with an atomic like angular momentum expansion inside the
atomic spheres Sα:

∑

∑
Ψ =

Ω
∈

̂ ∈α
α

+ ·⎧
⎨
⎪⎪

⎩
⎪⎪

C e I

W r Y r S
r
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r
( )

1
,

( ) ( ),
n
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lm
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lm
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G

k G k r

k
,

, ( )

, ,

(6)

Inside the atomic spheres APW uses numerical radial functions
Wlm

n,α,k(r) computed at predefined linearization energies,26 which
are chosen to match the energies of the corresponding
occupied bands. This approach yields basically the exact radial
wave functions for the occupied and shallow conduction band
states. However, it is not a complete basis and not well suited to
expand the perturbation of the wave function due to an external
magnetic field. To remedy this problem, we supply eight
additional local orbitals (NMR-LO) for l ≤ 3, with radial wave
functions evaluated at higher energies,28 set such that an
additional radial node is introduced for each NMR-LO.
Moreover, we augment the perturbed wave function with

radial functions proportional to ∂
∂r u r( )

r
(DUDR).29 This makes

the method basically numerically exact within a given DFT
functional.29 Besides that the NMR calculations within our
APW method do not require any other computational
parameters considerably different from generally accepted
defaults. For the sake of analysis we keep the atomic sphere
radii for Ga atoms constant at 2.3 au. The plane wave cut off
Kmax for the APW basis set is determined by RKmax = 8.0, where
R represents the smallest atomic radius in a calculation. The
Brillouin zone was sampled with a regular mesh of up to 106 k-
points for the spin component of the NMR shielding and 0.512
× 106 for its orbital part. The calculations have been carried out
with the Perdew, Burke, Ernzerhof (PBE)32 version of the
generalized gradient approximation (GGA) to the DFT
exchange-correlation functional.
The internal atomic positions have been optimized; however,

we kept the experimental lattice parameters.9,10,33 The basic
structural parameters are listed in Table 1. For MGa4, both
Ga(4b)−Ga(5b) and Ga(5b)−Ga(5b) distances scale roughly
with the atomic number of M. CaGa4 may be seen as a slight
exception: it crystallizes in spacegroup C2/m instead of I4/
mmm and has a deformed tetrahedral Ga(4b) environment with
two different Ga(4b)−Ga(5b) distances. For all compounds,
the Ga(5b)−Ga(5b) distance is shorter than Ga(5b)−Ga(4b)
by roughly 0.1 Å. For MGa2, the Ga(3b)−Ga(3b) distance
increases between SrGa2 and BaGa2. CaGa2 crystallizess in a
lover symmetry structure with considerably puckered Ga nets.
Within these nets it possesses the largest Ga−Ga distances in
the MGa2 group. The distances between the layers are about
14% larger.13 As we will show later, the difference in the
coordination numbers for the Ga(3b), Ga(3b+1b), Ga(4b), and
Ga(5b) sites, as well as small differences in interatomic
distances influence the corresponding NMR shielding.
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■ RESULTS AND DISCUSSION

The calculated NMR shielding and its decomposition into
orbital components, spin contact and dipolar terms for the Ga
sites are listed in Table 2. We have noticed that for some cases
(SrGa4, BaGa2) the dependence of the calculated shielding
parameters on the Fermi broadening parameter is very large.
The numbers quoted in Table 2 are computed with a small
value of kBT = 2 mRy (close to room temperature) and 106 k-
points for the spin component and 0.512 × 106 for its orbital
part (corresponding to full BZ). In addition, we show in
parentheses the parameters quantifying the dependency with
respect to the Fermi-level smearing and the uncertainty related
to k-point convergence (the change when reducing the k-mesh
by a factor of 1/2). Most values are converged within a few
ppm; only BaGa2 needed special care, because the Fermi energy
coincides with a sharp peak in the DOS (see Figure 4).
Fortunately, the huge and nonlinear dependency of σc and σsd
on the smearing parameter cancels almost completely and σs is
fairly independent of it.
Figure 2 compares the calculated shielding and the measured

isotropic shifts.9,10 The theoretical and measured values
correlate reasonably well, however, using a linear regression,
the slope of 1.32 is considerably different from the ideal 1.0.
The constant coefficient of the linear regression is equal to
−2312 ppm. The standard errors for slope and constant are
equal to 0.09 and 164 ppm, respectively. The deviation of the
slope from the ideal 1.0 value is one of the shortcomings of
DFT34 related to the band gap problem, at least for insulating
materials, where the GGA computed slopes are higher than 1.0.
It has been observed that the Becke-Johnson DFT potential35

usually leads to much improved results;1,34 however, this
method is not applicable to metallic systems. The orbital
component (σo) shows a relatively weak variation within the set
of compounds, as shown in Figure 2a. We see a slightly negative
value of the correlation coefficient (−0.14), which partially
counteracts the trend of the spin component. According to our
experience related to calculations for other systems (unpub-
lished at the moment), this seems to be a quite general feature.
Since the spin and orbital component of the experimental shifts
cannot be separated, it is not possible to identify which one is
responsible for the “slope problem” in this case. The difference
in σo between the two sites Ga(4b) and Ga(5b) in MGa4
reaches 400 ppm for NaGa4 and drops to less than 10 ppm for
BaGa4. The orbital shift at the Ga(5b) sites shows a much

smaller variation of roughly 100 ppm, while σo for the Ga(4b)
sites varies by more than 300 ppm. For MGa2, σo varies within a
range of 350 ppm. This is compatible with measured Ga shifts
in insulators, which range from about −700 to 700 ppm.36 At
this point, we confirm previous suggestions10 that the
experimentally observed trend arises mainly due to the spin
part of the response. In this case, the Fermi contact term is
clearly the major component for most compounds. There is
one exception, namely, BaGa2, which has an unusually large
spin-dipolar part reaching as much as −1166 ppm, while in all
other compounds |σsd| is less than 200 ppm and often even
much smaller. We will discuss and explain this later.
The spin contact term is usually interpreted as a result of an

induced spin density at the nucleus due to the external

Table 2. Calculated NMR Isotropic Shielding (σ) and the Decomposition into Orbital Component (σo), Spin Contact (σc), and
Spin Dipolar (σsd) Terms Computed with a Fermi Smearing of 2 mRya

site σo (ppm) σc (ppm) σsd (ppm) σ (ppm)

NaGa4 (4b) 1534 (0,3) −2800 (−3,25) −12 (1,0) −1278
(5b) 1136 (2,3) −602 (−4,2) 115 (1,1) 647

CaGa4 (4b) 1407 (1,−12) −2577 (5,−17) 14 (1,1) −1151
(5b) 1283 (6,−3) −1327 (9,−8) −43 (1,−2) −84

SrGa4 (4b) 1304 (7,−12) −2322 (8,120) −16 (1,1) −1034
(5b) 1142 (22,−5) −213 (3,49) 64 (0,4) 993

BaGa4 (4b) 1203 (2,−6) −2796 (10,19) −84 (1,10) −1677
(5b) 1191 (6,−5) −35 (1,15) −3 (1,−2) 1153

CaGa2 (3b) 1292 (3,2) −509 (1,−5) −14 (1,−3) 769
SrGa2 (3b) 956 (16,22) 475 (−4,8) −179 (1,7) 1252
BaGa2 (3b) 999 (20,10) 1746 (4,245) −1166 (1,−227) 1579

aThe first number in the parentheses represent the change when comparing results with Nk and Nk/2 k-points, where Nk is 10
6 and 0.512 × 106 (in

full BZ) for spin and orbital components, respectively. The second number in parentheses is the slope (ppm/mRy) describing the dependence of the
shielding on the Fermi “smearing”, defined as [σ(2 mRy) − σ(4 mRy)]/2mRy, where σ(T) is the shielding computed with Fermi smearing T.

Figure 2. (a) Comparison of calculated shielding (σ) and measured
shifts (δ). (b) Correlation of the orbital (σo) and spin (σs)
components of the shielding with the measured shifts. The standard
errors for the slope and constant of the linear regression are given in
parentheses.
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magnetic field. The magnetic field shifts spin up and down
bands in opposite directions in energy scale leading to a larger
spin up occupation compared to spin down. Therefore, it is
reasonable to assume a paramagnetic (negative) character of
such a response with some scaling related to the Ga-s character
of the partial density of states (PDOS) at the Fermi level ϵF.

37

Interestingly, for SrGa2 and BaGa2, the value of σc is positive,
which cannot be explained within this simple picture. Let us
emphasize that in all cases considered here the contributions to
σc come predominantly from the valence Ga-4s electrons and
the core-polarization is small (in contrast to some transition
metals, where the induced 3d moment results in a huge
diamagnetic core polarization5). In order to understand the
origin of the diamagnetic character of the contact term σc for
SrGa2 and BaGa2, let us consider the spin magnetization density
induced by the external magnetic field given by the difference:

ψ ψ ψ ψ= * − *
↑ ↑ ↓ ↓m r r r r r( ) ( ) ( ) ( ) ( ) (7)

where ψ↑ and ψ↓ are wave functions of the spin up and spin
down eigenstates. As shown in eq 4, the contact term is related
to the average spin density within the Thomson radius;
therefore, in order to calculate it, we need to consider only the
spherical component of the wave function ψ π=σ σu1/ 4 ,
where uσ is a radial function associated with orbital quantum
number l = 0. The dependency of the radial functions uσ on the
external field can be expressed within first order:

= + ̇ Δϵσ σu B r u r u r B( , ) ( ) ( ) ( )ext
0 0

ext (8)

where Δϵσ = −σμBBext. uσ
0(r) is calculated without the external

field Bext, and u ̇σ0(r) is its energy derivative. Therefore, within
first order in Bext, the induced magnetization is equal to

μ= − ̇r B u r u rm( ) [ ( ) ( )]B
0 0

(9)

Close to the nucleus, both u0(r) and u ̇0(r) are positive, as
shown in Figure 3, leading to a diamagnetic response. In a case

where the Ga s-PDOS at the Fermi level is very small, the
paramagnetic component of the contact term may not be large
enough to compensate this diamagnetic part. This is observed
in Figure 4a, where the correlation between σc and the Ga-s
PDOS(ϵF) is shown for the discussed di- and tetragallides. A
first estimate of the diamagnetic component σc

dia can be
obtained from the constant coefficient of the linear regression,
which is positive and quite large (950 ppm). However, it is
obviously not always constant as both, SrGa2 and BaGa2 have
the same very low s-PDOS but very different σc. A better
estimate of the diamagnetic component of σc can be obtained

by performing calculations of σc constraining the total spin
magnetization to zero. Such calculations are done non-self-
consistently using the converged eigenstates from the uncon-
strained calculation with the external magnetic field. In this
“fixed-spin-moment”38 (FSM) calculation, we simply populate
the spin up and down eigenstates such that the correct total
charge but zero total spin moment are achieved. This results in
two different Fermi levels for spin up and down eigenstates,
respectively. The values of this estimate of the diamagnetic
contribution σc

dia and the subsequent decomposition of the total
contact term σc = σc

dia + σc
para are displayed in Table 3. The

diamagnetic component (σc
dia) ranges from 400 to 700 ppm for

most of the compounds, but SrGa2 and BaGa2 have much larger
values of 1010 and 2622 ppm, respectively. This comes
probably because of the large induced Ga-4p moment, which
introduces an additional diamagnetic 4s response. In principle,
only the paramagnetic term σc

para results from reoccupation of

Figure 3. Radial function for Ga 4s in the valence band (ul=0(r)) and

its energy derivative ( ϵ =ul
d

d 0).

Figure 4. (a) Correlation of the calculated spin part of the shielding
(σc) with the value of the s partial DOS at ϵF. (b) Correlation plotted
for its paramagnetic component (σc

para) resulting from reoccupation of
the spin up and down states.

Table 3. Decomposition of the Spin Contact Component of
the Shielding (σc) into Its Diamagnetic Component (σc

dia)
Related to the Contraction of the Wave Function and the
Paramagnetic Part (σc

para) Coming from the Reoccupation of
the Spin up and down States in the External Magnetic Field

site σc (ppm) σc
dia (ppm) σc

para (ppm)

NaGa4 (4b) −2800 483 −3286
(5b) −602 497 −1099

CaGa4 (4b) −2577 451 −3028
(5b) −1327 416 −1743

SrGa4 (4b) −2322 390 −2720
(5b) −213 482 −698

BaGa4 (4b) −2796 495 −3302
(5b) −35 685 −721

CaGa2 (3b) −509 415 −924
SrGa2 (3b) 475 1010 −535
BaGa2 (3b) 1746 2622 −876
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the spin up and down states in the external magnetic field, and
thus, only this term is expected to be directly related to the
value of the Ga s-PDOS at Fermi level. In fact, in Figure 4b, the
correlation between σc

para and the Ga s-PDOS is nearly perfectly
linear and the constant of the regression is close to zero (−174
ppm).
Let us emphasisze as a side remark that there is no reason

why such effects should not be present also for insulating
compounds. The contribution to the shielding scales with the
energy dependence of the radial function and the amount of
charge carried by the spherical part of the valence wave
functions. For instance, this contact term ranges from 17 ppm
in the very ionic GaF3 (with a PBE band gap close to 5.2 eV) to
30−100 ppm in semiconductors like GaN or GaSb, which is
quite a significant number compared to the precision of NMR
calculations expected in insulating materials. Therefore, such an
effect should be considered when a high precision NMR
shielding is computed for insulators. The exact value of this
contribution depends a lot on the ionization state and the Ga-s
charge. For instance, in GaF3, the Ga3+ cation has
approximately 3-times less Ga-s charge inside the atomic
sphere than the neutral (or anionic) Ga in the digallides.
Considering the scaling of the paramagnetic component of

σc, the value of the Ga-s PDOS at the Fermi level determines σc.
This value, however, is related to the local atomic structure
around Ga atoms. As shown in Figure 1, Ga(4b) in MGa4 is
coordinated by four equidistant Ga(5b) atoms that form
slightly deformed tetrahedra. Ga(5b) have square pyramidal
coordination by 5 Ga atoms (four Ga(4b) at the base and one
Ga(5b) at the top). Ga in MGa2 with M = Sr and Ba has three
Ga neighbors that form flat triangles. The Ga-s character
around the Fermi level originates from an overlap of Ga-p
states localized at neighboring atoms. Therefore, “more
spherical” local atomic environment, as it is for Ga(4b) in
MGa4 results in larger values of the Ga-s PDOS, and the “least
spherical” triangular neighborhood results in the smallest Ga-s
PDOS. This is what is seen in Figure 4 and delivers a simple
qualitative relation between the type of local atomic structure
and the resulting shielding.
As mentioned before, BaGa2 stands out from the other

gallides in showing a very large spin-dipolar component σsd to
the spin part of the shielding. This can arise only from electrons
with an orbital momentum l > 0, and for Ga, it is due to the Ga
4p (l = 1) states. To better understand this, we cast the second
component of Bhf in eq 4 into a simple form:39
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where the sum runs over the occupied states. Since, we do not
include spin−orbit coupling in our calculation we consider all
states as pure spinors and eigenstates of sz. For the spin up
states, the Cartesian coordinates of Bsd are
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where we use the fact that l(l + 1) is an eigenvalue of L2 = lx
2 + ly

2

+ lz
2. Without spin−orbit coupling Bsd

x and Bsd
y vanish. Due to

the symmetry of the MGa2 systems, the expectation value of lx
2

and ly
2 averaged over all occupied states are the same; therefore,

Bsd can be further simplified into:

∑∼ − ⟨ | − | ⟩B o
S r

r
l l o3

( )
( )z

o
x y zsd 3 ,
2 2

(12)

Contributions from spin down eigenstates will have opposite
sign. Our systems are nonmagnetic, only slightly polarized by
an external magnetic field and the total response is proportional

to the integral of − ∑ ⟨ | − | ⟩o l l o3 ( )o
S r

r x y z
( )

,
2 2

3 around the Fermi

level. Therefore, σsd should correlate with the difference of the
partial px,y and pz DOS at ϵF. Figure 5 shows this difference for

MGa2 together with the resulting σsd. In fact, the differences in
the PDOS and the resulting σsd are almost always very small
except for BaGa2 (please recall the previous discussion that the
exact value of σsd for BaGa2 is hard to calculate and depends on
the smearing parameter). The Ga-pz and px,y PDOS for MGa2 is
shown in Figure 6. Only in the BaGa2 case the Ga-pz PDOS has

Figure 5. Relation of the spin-dipolar component σsd of the shielding
to the difference of the Ga pz and px,y PDOS at ϵF collected for MGa2
and MGa4.

Figure 6. Ga pz and px,y PDOS for digallides.
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a pronounced peak positioned exactly at the Fermi level and is
much larger than the px,y PDOS. The position of this Ga-pz
peak relative to ϵF, as well as to the Ga-px,y PDOS is related to
the Ga−Ga distance. We notice that for CaGa2 this Ga-pz
feature is found well above the Fermi level and the Ga−Ga
distance is largest and equal to 2.650 Å. On the other hand, for
SrGa2 the peak is placed below ϵF overlapping with Ga-px,y and
the Ga−Ga distance is smallest (2.511 Å). For BaGa2, however,
the Ga−Ga distance is intermediate (2.559 Å) leading to this
extreme situation. The presence of such a sharp peak at ϵF
results in a large dependence on the smearing temperature as
observed for BaGa2 and discussed before.

■ CONCLUSIONS

We have presented a detailed analysis of the computed Ga
NMR shielding in various metallic gallides with different local
Ga environment. Despite the fact that NMR calculations for
metallic systems are quite challenging, our computed isotropic
shielding correlates very well with the experimental shifts. The
chemical trends are mainly due to the spin component of the
response, which is dominated by the contact term for all cases
except BaGa2, which shows an unusually large spin-dipolar
component. The relation between the local atomic structure
and the isotropic shielding can be understood by looking at the
value of the s-PDOS at the Fermi level. The Ga character of the
bands close to ϵF are dominated by the 4p orbitals and the Ga-
4s character develops due to the overlap with the neighbors,
which is sensitive to the local atomic structure.
The response of the 4s wave functions to an external

magnetic field leads in metals to a paramagnetic response due
to a reoccupation of spin up and down states. However, when
the s-PDOS at the Fermi level is small, a diamagnetic response
of the spin contact term can be observed. It has its origin in a
spin-splitting of all valence s-states (not just at ϵF) leading to a
contraction/expansion of the corresponding 4s radial wave
functions and a resulting positive spin-density at the nucleus.
This non-negligible effect is present even in an insulator,
although it has been ignored in the literature so far. The
important message here is that only the part of the spin
component of the shielding related to the reoccupation of the
spin up and down eigenstates shows a linear scaling relation to
the s-PDOS, but not the total contact term.
Our calculations identify also a large spin dipolar

contribution for BaGa2. This component develops due to a
large difference between the pz and px,y-PDOS at the Fermi
level. The peculiar PDOS occurs for the specific Ga−Ga
distance in the Ga honeycomb-like layer present in BaGa2.
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