
Exploring outliers in compositional data
with structural zeros

K. Hron1, M. Templ2, P. Filzmoser3

1Department of Mathematical Analysis and Applications of Mathematics -
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Compositional data and their geometry Dealing with structural zeros Outlier detection Real data example

Compositional data
= D-part vectors, describing quantitatively the parts of some

whole, which carry exclusively relative information between
the parts (Aitchison, 1986; Pawlowsky-Glahn et al., 2015)

● usual units of measurement: percentages, mg/kg (constant
sum constraint), mg/l (constant sum does not occur)

● examples: (a) vegetation compositions of various plant
species in different survey areas, (b) election results of
political parties in different regions of a country, (c)
household expenditures on various costs (housing, foodstuff,
etc.) for a sample of households

● the constant sum of parts (1, 100) = proper representation of
compositions
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Compositional data and their geometry Dealing with structural zeros Outlier detection Real data example

Geometric aspects of compositional data analysis

● assumptions of a relevant analysis of compositions: scale
invariance, subcompositional coherence, relative scale
preserving ⇒ the Aitchison geometry (AG; EVS of
dimension D − 1)

● most of statistical methods rely on assumption of Euclidean
geometry (Eaton, 1983)

⇒ express compositional data in coordinates with respect to an
orthonormal basis on the simplex (Egozcue et al., 2003) →
statistical analysis, interpretation (balances, lack of
standard/Carthesian coordinates)

● log-ratio analysis of compositional data (Aitchison, 1986)
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Structural zeros are not welcome
● scale invariance principle → all relevant information in

compositional data is contained in ratios between parts

⇒ the logratio methodology cannot cope with zero values
in parts (Mart́ın-Fernández et al., 2011)

● rounded zeros − caused by rounding errors (replacement
strategies are used ,)

● structural zeros − resulting from structural processes
(replacement is not meaningful /)

● examples: (a) plant species that are not able to survive in a
given soil type or climate, (b) a political party that has no
candidates in a region, (c) teetotal households that do not
have expenditures on alcohol and tobacco
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Strategies for dealing with structural zeros

● amalgamation of compositional parts (Aitchison, 1986)
(tobacco and alcohol parts amalgamated into a new part
representing expenditures for both commodities)

× non-linear operation w.r.t. the Aitchison geometry,
information on ratios between the corresponding
compositional parts gets lost

● parametric approach: (1) determine where the zero entries
occur in the data set (zero pattern structure), (2) model the
distribution of the unit available from the non-zero parts using
a binomial conditional logistic normal model

× derivation of the likelihood assumes the usual Euclidean
geometry, not followed by the original compositions
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Strategies for dealing with structural zeros

● zero patterns as indicators of different subgroups of interest
(teetotal households are forming a different household budget
pattern)

× small sample sizes of the resulting subsets of observations,
necessary to get relevant estimates in a statistical model; zero
patterns don’t necessarily induce a different data structure

⇒ use a reasonable imputation of zero parts as an auxiliary
step to get estimates of parameters (e.g. covariance) from
the overall data set (no new information is added to the data
structure)

● the resulting estimates are used for an analysis in the
subcompositions resulting from the single zero patterns
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Mahalanobis distances for outlier detection
● the most widely used methods for multivariate outlier

detection are those based on covariance estimates and
Mahalanobis distances (MDs)

● given a sample of coordinates z1, . . . , zn ∈ RD−1, the MD is
defined as

MD(zi) = [(zi − t)′C−1(zi − t)]1/2, i = 1, . . . ,n; (1)

t and C stand for (robust → MCD) location and covariance
estimators

● if a certain threshold value is exceeded (χ2
D−1;0.975), the

observation is flagged as potential outlier

● MDs are not directly applicable to compositional data
with structural zeros
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Imputation approach to outlier detection

● the (auxiliary) imputation strategy is used to detect outliers
in single zero patterns (Templ et al., 2016)

● orthonormal (pivot) coordinates z = (z1, . . . , zD−1)′,

zi =
√

D − i
D − i + 1

ln xi
D−i
√
∏D

k=i+1 xk

, i = 1, . . . ,D − 1

(Fǐserová and Hron, 2011), guarantee that the subcomposition
(xi , . . . , xD)′ is represented by the last i − 1 coordinates

● permutation of parts and affine equivariance of the MCD
estimator are used to perform outlier detection in any
subcomposition resulting from the zero patterns
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Outliers according to zero patterns

● MDs used to reveal outliers resulting just from non-zero
parts of compositions → in the second step outlying zero
patterns are of interest

● the data are recoded into a binary matrix (non-zeros . . . 1)

● outliers refer to atypical phenomena that occur rarely in the
binary matrix of the zero patterns together with frequencies,
arising from their occurrence in the data set

● the multivariate structure and outlyingness of the zero
patterns are analyzed using principal component analysis
(PCA) for binary data (Leeuw, 2006) → loadings and scores

● results from the previous steps are merged together
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Austrian EU-SILC data set
● European Union Statistics on Income and Living Conditions

(EU-SILC) is an annual panel household survey conducted in
most of European countries, data basis for measuring
risk-of-poverty and social cohesion in Europe

● the Austrian EU-SILC 2006 data set is considered, the data
set is simulated from the original (confidential) data with the
R package simPopulation

● 14,827 observations from 6,000 households and 28 variables
are obtained (data eusilc from the R package laeken)

● the income components contain (too) many zeros → the parts
are amalgamated to obtain the four compositional parts
workinc (work income), capinc (capital income), transh
(household transfers), and transp (personal transfers)
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Austrian EU-SILC data: zero structure
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Austrian EU-SILC data: Mahalanobis distances
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Compositional data and their geometry Dealing with structural zeros Outlier detection Real data example

Austrian EU-SILC data: findings
● MDs results from all patterns are similar → zero patterns do

not cause significant changes in covariance structure

● the imputation approach guarantees that enough sample size
is used for robust estimation of MDs in single zero patterns

● PCA biplot: patterns with observed values in a specific
variable (indicated by x) are located in direction of the
respective arrow

● no clear outlier visible in the scores plot, i.e. none of the zero
patterns shows extreme behavior

● though, some atypical patterns, located further from the
origin, are present, like x00x (occurs only 91 times)
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Austrian EU-SILC data: PCA for binary data
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● the respective R functions (zeroOut, zeroPatterns) from
the package robCompositions soon available at CRAN
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Austrian EU-SILC data: PCA for binary data
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Conclusions
● outlier detection is daily routine in statistical offices when

specific data sets are checked for plausibility; the usual
procedure then is to ‘correct’ implausible data values, or to
reduce the effect of outliers in statistical estimation

● for statistical estimation, the compositional nature of the
data needs to be taken into account × the logratio
methodology of compositional data can cope with structural
zeros just indirectly as demonstrated also with the proposed
procedure

● since outlier detection already involves the (robust)
pattern-individual and joint covariance estimation, it is
straightforward to continue with other multivariate
analysis methods which are based on the estimated
covariance matrices
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