
Non-Linear Analysis of a Pre-Stressed Piezoelectric Multi-Layer Plate

VIII ECCOMAS Thematic Conference on Smart Structures and Materials
SMART 2017
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Abstract. A geometrically non-linear mechanical model for a MEMS actuator is developed
based on von Karman plate theory. Piezoelectric and thermally stressed layers are incorporated
within the framework of classical lamination theory. The formulation is completely general
with respect to the possible configuration of layers. It is then employed to treat circular plates
under the assumption of axially-symmetric deformations. Finally, some results for a selected
piezo-actuator are presented.

1 INTRODUCTION

Loss of stability through buckling or snap-through is usually undesired in engineering struc-
tures. However, buckling phenomena can also be exploited e.g. to determine material parameters
through indirect experiments [1], or in actuator applications [2]. While the determination of crit-
ical loads (i.e. the load at which a bifurcation occurs) is often sufficient for the prevention against
the loss of stability in standard applications, the exploitation of buckling phenomena in actua-
tor applications requires precise knowledge about the post-critical behaviour of the investigated
system.

This makes geometrically non-linear formulation necessary. The simplest of such formulations
is based on von Karman plate theory, resulting in a set of equations which is difficult to solve
[3, 4, 5]. For the case of circular, isotropic plates it is possible to prove the existence of a solution
to the von Karman plate equations [6]. Considerable simplification is possible by employing
Berger’s approximation [5, 7]. Originally developed for isotropic plates, it can also be applied
to composite plates without coupling stiffness matrix [8]. The challenging nature of the von
Karman equations has inspired the development of many numerical methods [9, 10, 11, 12,
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13]. The incorporation of piezoelectric layers into classical lamination theory can be done in a
straightforward manner [14, 15].

The investigated microelectromechanical system (MEMS) consists of a circular, multilayer
plate with the intended use as an actuator for digital sound reconstruction (DSR). The multilayer
structure is pre-stressed due to the production process leading to buckling of the plate structure.
The piezo layer is actuated to switch from one to the other stable equilibrium. The advantage
of such an actuator exploiting the post-buckling behaviour is a significantly larger stroke level.

2 MECHANICAL MODEL

One of the key points of the mechanical modelling of the actuator system is the correct
description of the electromechanical coupling including pre-stress. In order to accurately describe
the post-buckling behaviour we require a large-displacement framework. However, the model
must be simple enough to enable a mathematical analysis of the non-linear behaviour of the
structure to be suitable for the tailored design of actuators. In order to obtain a computationally
efficient model the multi-layer structure will be treated as a thin plate.

2.1 Plate Kinematic

Adopting the Kirchhoff hypothesis we can describe the strain state in the plate by

�̄ = �+ zκ, (1)

where the in-plane strain tensor � and the curvature tensor κ describe the deformation of the
reference surface of the plate, and z is transverse coordinate measured from the reference surface.
We choose to use the von Karman assumptions to derive the simplest possible geometrically non-
linear plate formulation. Thus, we write the deformation tensors of the reference surface as

� =
1
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�
∇u+ (∇u)T +∇u3∇u3
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, (2)

κ = −∇∇u3, (3)

with the displacement vector u = [u1, u2, u3]. The above formulation allows the coupling of
transverse displacements, i.e. u3, and in-plane strains.

2.2 Constitutive Model

As we are dealing with a thin plate we assume a plane stress state with a vanishing normal
stress in thickness direction. All materials are modelled as transversally isotropic with the axis
of the vanishing normal stress perpendicular to the isotropic plane. Employing Voigts linearised
theory of piezoelectricity and additionally considering thermal strains we can write the linearised
constitutive relation as
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D3 = ē�̄− ēᾱΔT + η̄E3, (5)
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where σ̄ is the plane stress tensor (in Voigt notation), ΔT is the temperature change with
respect to a reference temperature, E3 is the electric field strength in thickness direction and
D3 is the dielectric displacement in thickness direction. The components Qij of the effective
plane-stress stiffness tensor C̄ can be computed from the components Cij of the transversally
isotropic stiffness tensor by

Q11 = C11 −
C2
13

C33
, Q12 = C12 −

C2
13

C33
, Q66 =

C11 − C12

2
, (6)

and the components of the effective plane-stress piezoelectric coupling tensor ē as well as the
effective plane-stress permittivity η̄ are given by

ē = e31 −
C13

C33
e33, η̄ = η33 +

e233
C33

, (7)

where eij and ηij denote the entries of the transversally isotropic piezoelectric coupling and
electric permittivity tensors, respectively.

We have already neglected any electric field components in in-plane direction. Therefore,
Gauss’ law simplifies to ∂D3/∂z = 0, stating that the dielectric displacement is constant in each
layer. We can now insert the kinematic assumption (1) into (5) and integrate over the layer
thickness Δz to obtain

D3 =
1

Δz

�
D3 dz = ē�+ z̄ēκ− ēᾱΔT + η̄

ΔV

Δz
, (8)

where z̄ denotes the vertical coordinate of the middle of the layer and ΔV the voltage difference
applied to the electrodes at the top and bottom of the layer [8, 15]. Reinserting back into (5)
yields

E3 =
z̄ − z

η̄
ēκ+

ΔV

Δz
, (9)

which is finally inserted into (4). Thus, the constitutive relation for each layer reads

σ̄ = C̄�+ z
�
C̄ − (z̄ − z)Ē

�
κ− τ , (10)

where the tensor

Ē =
ēT ē

η̄
, (11)

accounts for stiffening due to the equipotential conditions on the electrodes of the piezo. For
non-piezoelectric layers the coupling tensor is zero and thus there is no stiffening. The stress
components due to piezo actuation or temperature change are included via

τ = C̄ᾱΔT + ēT
ΔV

Δz
. (12)

It is interesting to note that both effects can be treated with the same forcing term in the
constitutive equation.

As a last step we integrate (10) over the thickness of the plate to obtain the constitutive
relation on the plate level
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�
, (13)

which relates the section forces and moments n and m defined as

n =
�

l

�
σ̄l dz, m =

�

l

�
zσ̄l dz, (14)

to the deformation of the reference surface via the in-plane stiffens matrix A, the coupling
stiffness matrix B, and the bending stiffness matrix D, well known from classical lamination
theory. The section forces and moments due to the combined effect of piezo actuation and
thermal stress are included via n̄ and m̄, respectively. They are computed equivalently to (14)
by replacing σ̄ with τ . The laminate stiffness matrices are

A =
�

l

�
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�

l

ΔzlC̄ l, (15)
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�
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�
, (17)

with the abbreviations

Δzl = zl+1 − zl, z̄l =
zl+1 + zl

2
, (18)

for the layer thickness and center coordinate.

2.3 Equilibrium Equations

We neglect any in-plane forces other than the ones introduced by piezo actuation or temper-
ature change. Furthermore, we only consider the static equilibrium. The equilibrium equations
can then be written as

∇ ·n = 0, (19)

∇ ·∇ ·m+∇ · (n ·∇u3)− p3 = 0, (20)

where p3 denotes a pressure acting transverse to the plate [8].
We now introduce a cylindrical coordinate system with its origin in the center of the plate.

Restricting ourselves to rotationally symmetric loading, and thus deformations and section forces
and moments, above partial differential equations are reduced to a set of coupled ordinary
differential equations with respect to the radial coordinate r. Applying the divergence and
gradient operators in cylindrical coordinates in (19) and (20) one obtains

n�
r +

nr − nφ

r
= 0, (21)

�
rm�

r +mr −mφ

��
+
�
rmru

�
z

��
+ pzr = 0, (22)
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for the non-trivial components, where the indices r, φ and z indicate the radial and circumfer-
ential and axial direction and ()� denotes the derivative with respect to r. The above moment
equation can be easily integrated once [16, 17] to obtain

2
�
rm�

r +mr −mφ + rmru
�
z

�
+ pzr

2 = 0. (23)

Inserting the deformation measures (2) and (3) for axially symmetric deformations of the refer-
ence surface in cylindrical coordinates into (13) on obtains the following expressions for section
forces and moments
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r
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z

2
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��
z − m̄. (27)

These can now be inserted into (21) and (23) to obtain two non-linearly coupled ordinary
differential equations (ODEs) of third order in uz(r) and second-order in ur(r).

As boundary conditions at the center, i.e. r = 0 and the outer radius r = R we require

ur(0) = 0, u�z(0) = 0, uz(R) = 0, nr(R) = −knur(R), mr(R) = kmu�z(R), (28)

where we have introduced the boundary stiffness factors kn and km. These can be used to transit
between simply supported and freely movable in radial direction, i.e. km → 0 and kn → 0, to
clamped, i.e. km → ∞ and kn → ∞, behaviour. The clamped behaviour can of course also be
enforced by requiring

u�z(R) = 0, and ur(R) = 0. (29)

The latter is mathematically exact, the former can be seen as a penalty formulation.
The coupled second and third order ODEs can be cast into a system of first order ODEs

by introducing axillary variables for the derivatives. The resulting system of 5 non-linearly
coupled first order ODEs, y�(r) = f(y, r) with y = [u��z , u

�
z, uz, u

�
r, ur]

T and boundary conditions
g(y(0),y(R)) = 0, can then be solved numerically. This is for example possible by the shooting
method [18]. In the current work we employ a collocation based boundary value problem solver
[19]. For the numerical solution one has to consider that the equations have a singularity at
r → 0. However, knowing that the physical solution must be bounded, we can form the limits
lim
r→0

f and lim
r→0

g by the application of L’Hôpital’s rule.

3 ACTUATOR CONFIGURATION

As an example we consider an circular actuator with a diameter of 800 µm as shown in
Fig. 1. The plate consists of a 2 µm thick Silicon (Si) substrate, including a 200 nm thick a-
SiC:H ’stress-layer’ which is used to adapt the pre-stress of the system in the production process.
The electrodes surrounding the 400 nm Aluminium-Nitride (AlN) piezo layer consist of 50 nm
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Figure 1: Chip with MEMS actuator (left); Top view of the actuator showing the electrode configuration
(center); Material layers assumed in the analysis (right).

Table 1: Assumed values for the material parameters.

Q11/Pa Q12/Pa ē/Cm−2 η̄/Fm−1 α/K−1

Si 1.93e+11 5.02e+10
a-SiC:H 1.93e+11 5.02e+10 2.60e-06

Au 9.40e+10 3.76e+10
Cr 3.07e+11 9.20e+10
AlN 3.55e+11 1.00e+11 -2.75e+00 1.26e-10

Chromium (Cr) and 450 nm Gold (Au). Thus, we have a total thickness of h = 3.6 µm. The
assumed material properties are given in Tab. 1.

To take into account the electrode configuration of the actuator (as can be seen in Fig. 1)
one needs to consider the possibility of radially varying actuation voltages. The center electrode
might have a different actuation voltage as the outer ring shaped-electrode. In order to avoid
numerical difficulties we assume smooth transitions between actuation voltages by combining
tanh-functions.

4 RESULTS

In a first step we investigate the impact of different actuation schemes on the resulting defor-
mation of the composite plate. Three different actuations are considered: First only the center
electrode is actuated. In the second configuration the center electrode and the ring electrode
are actuated in different directions, i.e. with a negative and positive voltage, respectively. In
the third configuration we assume that the ring electrode ends before the outer radius of the
plate, thus the actuation voltage is zero at this location. The shape of the total actuation
voltage and the resulting deformation of the actuator are depicted in Fig. 2. For the case of
free rotation at the outer edge (simply supported) the bending moment introduced by the piezo
actuation leads to curvature of the plate. The negative voltage at the center electrode leads to a
positive curvature and thus to a displacement in negative z-direction. If the positive voltage of
the ring electrode is added the resulting negative curvature leads to an overall positive vertical
displacement. The behaviour is dominated by the larger ring electrode. If the ring electrode
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Figure 2: Impact of the electrode configuration on the deformation shape: Level of the actuation voltage
(left); and resulting deformation shape for different boundary conditions (right).

ends before the outer edge of the plate the total displacement is slightly smaller. For a clamped
outer edge the behaviour is different: The boundary condition does not allow for any defor-
mation due to constant piezo actuation (provided it is below the buckling load). However, the
change of actuation gradient of the actuation voltage between center electrode and ring electrode
causes a deformation of the actuator. The internal forcing introduced by the actuation is similar
to an external moment at the transition between the electrodes. The overall displacement is
significantly smaller in the case of a clamped outer edge.

Finally, we explore the effect of compressible residual stress introduced in the stress-layer. In
the current case this is modelled as thermal expansion. The temperature is therefore regarded
as a loading parameter, which could be different for different effects introducing the residual
stress. On the level of the plate the residual stresses in the layers lead to residual section
forces and moments. Once the critical section force is reached the plate can buckle. As the
configuration is un-symmetric, i.e. we have a non-zeroB-matrix, there exists a preferred buckling
direction. As can be seen from the bifurcation diagram in Fig. 3 this is the upper side for the
investigated configuration. The diagram shows the typical pitchfork bifurcation as expected for
a plate. Observing the sharpness of the bifurcation one can conclude that the imperfection due
to the unsymmetrical stacking of layers is small. Once the critical load is exceeded, several
equilibrium positions may exist. Further increasing the load up to the second buckling load one
can recognise additional buckling mode shapes. It should be noted that, transitions between
the different branches due to snap-buckling [8] cannot be treated within the assumption of an
axially-symmetric deformation.

5 CONCLUSIONS

A formulation for piezoelectric plate actuators has been presented. The mathematically
equivalent effects of thermal stress and piezo actuation are included into the formulation by
a modified constitutive law, which can be incorporated into classical lamination theory in a
straight forward manner. The equilibrium equations based on the von Karman plate theory for
circular plates with axially-symmetric deformation shape were derived for general un-symmetric
laminates. The resulting non-linear, coupled ODEs were then solved numerically to obtain the
deformed actuator configuration for different electrode actuations. Comparison of the impact
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Figure 3: Bifurcation diagram of center displacement versus temperature in the stress-layer as loading
parameter. The shape of the actuator for selected equilibrium points is shown as inserts.

of the boundary condition at the outer edge demonstrated the importance of correct modelling
assumptions in therms of an equivalent boundary stiffness. Finally, a bifurcation plot for the
investigated actuator was created using the temperature in a ’stress-layer’ as the loading pa-
rameter.

The proposed modelling strategy is computationally inexpensive. It can be naturally applied
to arbitrary layered configurations. It offers great flexibility in the incorporation of actuation
patters and the treatment of boundary conditions at the edge of the plate. Therefore, it shows
potential for the tailored design of actuators.
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