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A B S T R A C T

Prescriptive maintenance planning is an essential enabler of smart and highly flexible production

processes. Due to increasing complexity, traditional maintenance strategies lack in fulfilling present-day

production requirements. This paper proposes a novel procedural approach for prescriptive maintenance

planning in manufacturing companies. Multivariate data analysis and simulation tools are utilized to

analyse historical data (product quality data, machine failure data and production program data). Based

on identified data correlations and incoming real-time machine data, system failures are predicted and

prescriptive maintenance measures are proposed. Results from real implementations in the automotive

manufacturing industry are presented to demonstrate the effectiveness of the proposed approach.

� 2017 Published by Elsevier Ltd on behalf of CIRP.
1. Introduction

Current developments in the field of smart manufacturing call
for high machine availability, high quality of products and at the
same time a high degree of flexibility of manufacturing processes
[1]. One major challenge coming along with smart manufacturing
is the increasing complexity of manufacturing systems, in terms of
products, processes and systems. Recent investigations show that
quality, maintenance and production planning strongly interact
and jointly determine the achievement of the desired production
performance, equipment availability and product quality [2,3]. The
development toward predictive maintenance approaches in
manufacturing industries can minimize maintenance costs up to
30% and eliminate breakdowns up to 75% in comparison to
classical preventive maintenance [4].

However, with the digitization of the industry and the
advancement of computing and visualization technologies, a new
era is emerging in the fields of maintenance, the so-called
prescriptive maintenance. The concept of prescriptive maintenance
extends beyond the mere prediction of failures. Based on the
analyses of historical data and incoming real time data, required
maintenance measures are predicted by a system and a course of
action is prescribed. Prescriptive maintenance means moving from
planned preventive maintenance to proactive and smart mainte-
nance planning [5]. One of the major challenges of realizing
prescriptive maintenance is the collection and management of data
[4]. The volume of available data for maintenance decisions has
increased significantly with the growing popularity of condition
monitoring, multisensory technologies and cloud computing.
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Therefore one major problem for developing data based prescriptive
maintenance measures is the lack of formalized data structures [2,6].

In this paper a holistic, data based approach for prescriptive
maintenance planning is presented. By steadily compiling and
correlating relevant shop floor data (product quality data, PLC- and
condition monitoring data, production program data) via ‘‘cause
and effect’’ coherences, prescriptive maintenance measures are
derived in order to avoid critical and unforeseen failures as well as
to guarantee a high level of machine availability, product quality
and process flexibility.

2. Data based maintenance approaches considering production
planning and product quality

The interaction of production, quality control and maintenance
has attracted much attention in the literature recently. Various
models have been proposed to study the interactions between
these three fundamental functions [7]. Current maintenance
planning approaches mostly combine either production planning
and maintenance [8–10] or align maintenance strategy planning
with product quality [11]. Maintenance approaches which align all
three fundamental functions are rarely available in the literature
[7]. Colledani et al. [4] and Colledani and Tolio [12] investigated the
interactions between these three functions and proposed a model
which combines production planning and maintenance in order to
control the quality of products.

The majority of quality oriented maintenance strategies focuses
on the use of historical product and machine data to analyze
possible coherence between product quality deviations and failure
effects of certain machine components. Load oriented maintenance
strategies statistically determine the remaining life time by using
external measurement parameters, however, the dynamic aspect of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirp.2017.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirp.2017.04.007&domain=pdf
http://dx.doi.org/10.1016/j.cirp.2017.04.007
http://www.sciencedirect.com/science/journal/00078506
http://dx.doi.org/10.1016/j.cirp.2017.04.007


Table 1

K. Matyas et al. / CIRP Annals - Manufacturing Technology 66 (2017) 461–464462
deterioration is neglected [13]. In order to schedule maintenance
intervals, machine- and process perspective are combined by
linking the production program and failure effects of components
[4,14,15].

The novelty of the proposed holistic, data based approach for
prescriptive maintenance planning is the integration of these
approaches based on historical data combined with real time
condition monitoring data as well as load profiles of the machine
that are calculated on the basis of PLC control data. This integration
is significant for the novelty of the approach and in contrast to
existing and already published approaches, system failures are
predicted more precisely and prescriptive maintenance measures
are proposed.

3. Methodology

The proposed procedural approach for realizing prescriptive
maintenance planning consists of four main elements (see Fig. 1):
Example of a failure protocol: original and target format.

(A) Original format
1. D
ata Acquisition and Pre-Processing
Time- Machine Problem Countermeasure Employee ID
2. D
ata Analysis and Simulation
stamp ID
3. R
eaction Model
13.01.17 AC01 Untypical Observation of Mechanic 01d

4. P
12:03:01 noise at

Spindle 1
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leaking sealing

air, Air hose of

connection

ventile C was

exchanged

(B) Target format

Time-
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Repair

time
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12:03:01

AC01 Spindle 1 Spindle

seal air

Air hose C Mechanic

01d

1.2 h
rescriptive Maintenance Decision Support System

In the first element maintenance relevant data are captured,
classified and structured. The subsequent data analysis identifies
correlations within the pre-structured data. A set of rules is defined
and parameterized in the third element, which predicts condition
based machine failures and reveals quality deviations on a real-
time basis. Finally, the fourth element predicts system failures and
suggests prescriptive maintenance measures based on this logic.
But the final decision, whether the suggested maintenance
activities should be carried out or rejected, is made by the
operator. Therefore, the developed approach aims at a decision
support system that allows operators to make the final decision.

The prescriptive maintenance planning approach was developed
based on historical data resulting from a three-year observation
period in a production plant and has been validated with real-time
data. The following sections describe the approach in detail.[(Fig._1)TD$FIG]
Fig. 1. Procedural approach for prescriptive maintenance planning.

Table 2
Data target formats.

Quality data Time-stamp Product ID Measuring
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Value Machine ID

PLC control
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Time-stamp Machine ID Machine

section

Error text

CM data Time-stamp Machine ID Sensor

ID

Value

Prod. program Time-stamp Machine ID Product ID #Pieces
3.1. Data acquisition and pre-processing

Capturing the necessary information required to predict
machine failures and plan prescriptive maintenance activities is
difficult due to the diversity of data [5]. According to several
approaches to assess the diverse quality of data [16,17], this paper
uses the three dimensions (i) data structure quality, (ii) informa-
tion quality and (iii) veracity in order to describe and attain
adequate data sets for the subsequent Sections 3.2–3.4. Failure
protocols, product quality data (measurement protocols), PLC
control and condition monitoring data as well as production
program data serve as input data sets in the presented approach.
Failure protocols represent a collection of historic maintenance
measures of a machine. Their data structure quality is, in its
original form, due to a large proportion of free text passages,
usually very low. Information quality and veracity is highly
dependent on a companies’ feedback culture, as these data are
generated by the shop-floor operators themselves.

The incoming data set (see Table 1A) initializes a data
structuring process, which aims at extracting metadata from the
free text passages. Thus text mining algorithms, using the
programming language R, were built to firstly clean free text
passages from misspelling, used synonyms etc. and secondly
extract metadata for the new categories: module, assembly and
faulty part, which are meant to exactly describe the affected
component of a maintenance action (see Table 1B). If the algorithm
cannot identify metadata from a specific data set, this information
has to be added manually in order to train the algorithm.
In contrast to failure protocols; product quality data, PLC
control and condition monitoring data as well as production
program data sets are usually generated automatically. Hence, a
high data structure quality (large proportion of metadata) and
information quality (high accuracy of data due to mainly numerical
values) as well as a sufficient veracity are assumed for nowadays
commonly used PLC-controls, ERP- or QM-systems. Similar to
failure protocols, relevant information was extracted and re-
structured from these data sets, leading to the following target
formats (see Table 2).

All the target formats contain the metadata element ‘‘time-
stamp’’, which serves as an unique key for the subsequent data
analysis and simulation.
3.2. Data analysis and simulation

Within this element the pre-structured data sets are analyzed
and correlated to detect (i) quality relevant cause and effect
coherences and determine (ii) the remaining useful lifespan of a
machine component.

For the detection of quality relevant cause and effect coherences, a
two-dimensional ‘‘Quality Matrix’’, similar to the proven ‘‘house of
quality’’, is designed. The matrix represents all possible failures on
the horizontal axis and all product quality characteristics on the
vertical axis (see Fig. 2).



[(Fig._2)TD$FIG]

Fig. 2. Quality matrix. (0.00 = no coherence; �0.25 = low coherence;

�0.50 = medium coherence; �0.75 = strong coherence; �1.00 = ideal coherence.)
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By correlating each historical failure event with the quality
control chart of each measuring point over a certain time-period,
coherences between a specific measuring point and failure event
can be identified and visualized within the matrix. The Quality
Matrix can be interpreted using the following example: The
roundness of the bearing bore measuring point 201A is strongly
influenced by a failure of air hose C of the spindle seal air of Spindle 1.

To determine the remaining useful lifespan of a machine

component, the machine is systematically structured into the
three categories: module, assembly and machine part (following
Table 1) and then integrated as 3D multi-body model in the
software CHECKitB4. The current wear condition for each relevant
part is estimated based on information regarding spare parts
replacements, machine age and wear measurements. The calcula-
tion assumes that the analyzed machine is used for similar
production process steps and that a fixed use of machine tools is
given. From the pre-processed PLC control, condition monitoring
and production program data sets, load profiles (such as rotation
speed, speed, acceleration profiles) for each machine part per NC-
program are determined analytically.

CAD-data of the workpiece combined with the NC-code
(machine instructions, tools, switch commands) for the machine
tool form the basis for the incremental wear calculation (see Fig. 3).
Firstly, the feed path and the ablation volume is calculated by the
simulation software CHECKitB4. An archive file containing all
relevant technological data of the PLC control is pre-loaded in the
software to define the production environment and the NC-
programs. The following simulation delivers the exact feed path of
the process. The simulator then delivers the axis motion data, the
chip volume as well as the switch commands needed for the
dynamic computation. Drive and guidance loads are calculated
using an analytical multi-body model during dynamic computa-
tion. These calculations build the input for the subsequent wearout
calculation. Depending on the type of component, three different
wearout calculations can be distinguished: lifetime calculations
according to DIN ISO 3408, DIN ISO 281 and DIN ISO 14728 (e.g.[(Fig._3)TD$FIG]
Fig. 3. Approach for wearout calculation of a machine component [14].
rolling bearings), number of switch commands (e.g. valves) or duty
cycle times (cooling sensors). Future wear progress, caused by
every single produced part, is then predicted based on the wearout
calculation, incoming condition monitoring data and the future
production program.

3.3. Reaction model

As a result individually parametrizable rules are derived for
each machine component, based on the prognoses of the wear

reserve for machine components, condition based monitoring and
variations in product quality. Each rule is represented by a
mathematical function. In case of rule violations, specific mainte-
nance measures in the subsequent prescriptive maintenance
decision support system are triggered.

Rules based on variations in product quality and condition based

monitoring: These rules are based on the identified quality relevant
cause and effect coherences and incoming condition monitoring
data and aim at identifying statistical significant data variations
and trends. An example of such a rule is defined as the following: If
the arithmetical mean value y

¯
of a certain amount of quality

characteristic measurements exceeds or falls below a default
value t1,

y
¯
¼ 1

n

Xn

i¼1

yi <=> t1 (1)

and the slope of the regression line b exceeds or falls below a
default value t2, the rule is violated and a specific reaction
(maintenance measure) is triggered.

b ¼
Pn

i¼1ðxi�xÞ̄ � ðyi�yÞ̄=ðn�1Þ
1=ðn�1Þ

Pn
i¼1ðxi�xÞ̄2

(2)

wherein n is the number of measurement values; yi is the observed
values; xi is the 1,. . .,n (represents the dates of the measurements);
x
¯
is the arithmetical mean value of xi.

Fig. 4 shows the violation of the described rule above
parameterized for the component air hose C (Assembly: spindle
seal air; Module: Spindle 1).

Herein the number of measured values is 25 (n = 25), the
arithmetical mean value should not exceed 123.4 ðy

¯
<123:4Þ and

the slope of the regression line should be between 9.00 � 10�5
[1_TD$DIFF] and

9.05 � 10�5.
Rules based on prognoses of the wear reserve for machine

components: These rules are triggered if the wear reserve wr of a
machine component drops below a pre-defined stock value ws:

wr�ws (3)

The stock value is defined for each machine component
according to DIN 31051.

3.4. Prescriptive maintenance decision support system

Within this element a prescriptive maintenance decision
support system is developed. Based on the previously identified[(Fig._4)TD$FIG]
Fig. 4. Quality control chart (measuring point 201A_X1_D).
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data correlations, incoming real-time machine data and the rules
defined in the reaction model, this support system visualizes and
predicts machine conditions and quality deviations and suggests
anticipative maintenance measures.

These maintenance measures are automatically bundled if they
affect the same machine and become due within a defined
timespan of two weeks. The bundling has positive effects on the
repair time and therefore availability of the machine. Finally, the
maintenance operators have to accept or reject the suggested
measures – their implicit experiential knowledge is necessary to
decide context-dependent in a highly flexible production envi-
ronment. The information regarding the acceptance or rejection of
the suggested measure is processed and analyzed as feedback
information to continuously improve the defined rules and
measures.

4. Application

The proposed approach has been applied on triaxial machining
centers of an automotive manufacturer in Austria. Fig. 5 shows the
developed decision support system applied on the manufacturer’s
machines. It consists of four main modules: (i) overview, (ii)
machine condition prediction, (iii) planning support and (iv) KPI-
board. Within module (i) each machine, its status as well as the
production layout can be overviewed. If a machine failure is
expected the status will turn orange. In order to get further details
about the expected failure, module (ii) needs to be opened. Within
this module the operator is able to get information about the
predicted machine status. If a rule is violated a window pops up,
identifying the violated rule and its reason.[(Fig._5)TD$FIG]
Fig. 5. Decision support system – module (ii).
Module (iii) then suggests prescriptive maintenance measures
according to Table 3. Maintenance relevant key performance
indicators are finally reported in module (iv).

Although random failures can occur at any time in the lifecycle
of a machine component, results show that 43% of unplanned
machine breakdowns caused by mechanical failures can be
predicted. This effect leads to a higher quality in maintenance
planning–time savings of 20% for carrying out maintenance
activities (time for realizing, analysing, assessing and carrying
out an activity), maintenance cost reductions of 30% (due to the
avoidance of direct and indirect failure correction costs) and an
Table 3
Examples of a prescriptive maintenance measure.

Date Trigger Machine ID Measure Repair

time

Due

date

23.12.16 Wear AC01 Critical wear

reserve – Spindle

1 – spindle seal air

1.2 h 20.1.17

26.12.16 Quality AC01 MP 201A:

Scattering>20%

!Control of spindle

seal air

0.75 h 22.1.17
increased equipment availability of 12% could be realized within
the described application.

5. Conclusion and outlook

This paper presents a novel procedural approach for realizing
prescriptive maintenance planning by building conclusions based
on the interaction between real-time PLC-, condition monitoring-
and production program data from the short- and medium-term
planning as well as historical quality- and machine failure data.

A real production environment was used to collect the
necessary data and to develop the proposed approach. The
approach was tested and validated in a case study based on
triaxial machining centers of an automotive manufacturer. The
results point to a successful implementation. However, future
work is required to automatically adapt the proposed set of rules to
a dynamic production environment, which is currently done on a
periodic basis. Furthermore, the design of the used 3D multi body
model (see Section 3.2), at present, requires substantial time and
efforts.

Therefore, a modular design of this model, for easily applying it
to different machine types and guaranteeing a broad applicability
of the proposed approach, is another field for further research.
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