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On the Convergence of the Gradient Projection Method

for Optimal Control Problems with Bang-Bang Solutions.∗

J. Preininger†and P. T. Vuong‡

Abstract

We revisit the gradient projection method in the framework of nonlinear optimal control

problems with bang-bang solutions. We obtain the strong convergence of the iterative sequence

of controls and the corresponding trajectories. Moreover, we establish a convergence rate, de-

pending on a constant appearing in the corresponding switching function and prove that this

convergence rate estimate is sharp. Some numerical illustrations are reported confirming the

theoretical results.

Keywords: Gradient projection method, Strong convergence, Convergence rate, Optimal con-

trol, Bang-bang control.
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1 Introduction

Numerical solution methods for various optimal control problems have been investigated during

the last decades [9, 8, 10, 11, 6]. However, in most of the literature, the optimal controls are

assumed to be at least Lipschitz continuous. This assumption is rather strong, as whenever the

control appears linearly in the problem, the lack of coercivity typically leads to discontinuities of

the optimal controls. Recently, optimal control problems with bang-bang solutions attract more

attention. Stability and error analysis of bang-bang controls can be found in [14, 32, 26]. Euler

discretizations for linear-quadratic optimal control problems with bang-bang solutions were studied

in [1, 2, 29, 5]. Higher order schemes for linear and linear-quadratic optimal control problems with

bang-bang solutions were developed in [24, 27].

On the other hand, among many traditional solution methods in optimization, projection-type

methods are widely applied because of their simplicity and efficiency [13, 15, 31].

∗This research is supported by the Austrian Science Foundation (FWF) under grant No P26640-N25.
†Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria,
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Recently, the gradient projection method has been reconsidered for solving general optimal con-

trol problems [22, 28]. Under some suitable conditions, it was proved that the control sequence con-

verges weakly to an optimal control and the corresponding trajectory sequence converges strongly

to an optimal trajectory. However, no convergence rate result has been established.

In this paper, we study the gradient projection method for optimal control problems with

bang-bang solutions. In particular we consider the following problem

minimize ψ(x, u) := g(x(T )) +

∫ T

0
h(t, x(t), u(t))dt (1.1)

subject to

ẋ(t) = f(t, x(t), u(t)) for a.e. t ∈ [0, T ], x(0) = x0, (1.2)

and

u(t) ∈ U := [−1, 1]m for a.e. t ∈ [0, T ]. (1.3)

Here [0, T ] is a fixed time horizon, admissible controls are all measurable functions u : [0, T ]→ U ,

while x(t) ∈ Rn denotes the state of the system at time t ∈ [0, T ] and the functions f : R×Rn×Rm →
Rn, g : Rn → R and h : R× Rn × Rm → R are given.

Further we assume (see the next section for precise formulations) that the data are smooth

enough, that the problem (1.1)-(1.3) is convex and that for the (unique) optimal control u∗ the

objective function fulfills a certain growth condition. In particular we show that this condition is

satisfied in the bang-bang case if each component of the associated switching function satisfies a

growth condition as given in [29, 25].

Under these assumptions, we prove that the control sequence actually converges strongly to the

solution. Moreover, the convergence rates for both controls and states are provided, depending on

the constant appearing in the growth condition for the switching function. An example is analysed

showing that the estimation for these convergence rates is sharp.

The paper is organized as follows: In Section 2, we specify the assumptions we use and recall

some facts which will be useful in the sequel. Section 3 discusses the convergence properties of

the gradient projection method. Some numerical examples of linear-quadratic type are reported in

Section 4 illustrating the results in the previous section. Some final remarks are given in the last

section.

2 Preliminaries

In this section, we will clarify the assumptions used and recall some important facts which are

necessary to establish our result.

By U := L2([0, T ], U) we denote the set of all admissible controls and if not stated otherwise

‖ · ‖ denotes the L2-norm. The first two assumptions guarantee that the problem (1.1)-(1.3) is

meaningful.
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Assumption (A1). For any given control u ∈ U there is a unique solution x = x(u) of (1.2) on

[0, T ].

Assumption (A2). The problem (1.1)-(1.3) has a solution (x∗, u∗).

Now recall the Hamiltonian of (1.1)-(1.3) as

H(t, x, u, p) = 〈p, f(t, x, u)〉+ h(t, x, u).

Then by the Pontryagin maximum principle there is an absolutely continuous function p∗ such that

(x∗, u∗, p∗) solves the adjoint equation

ṗ(t) = −Hx(t, x(t), u(t), p(t)) = −fx(t, x(t), u(t))>p(t)−∇xh(t, x(t), u(t)) for a.e. t ∈ [0, T ]

p(T ) = ∇g(x(T )),

(2.1)

and for every u ∈ U

〈Hu(t, x∗(t), u∗(t), p∗(t)), u− u∗(t)〉 ≥ 0 for a.e. t ∈ [0, T ].

We define J : U → R via J(u) := ψ(x(u), u), where x(u) is the solution (1.2). Then we have the

following useful formula for the gradient of J (see, e.g. [31, 22]).

∇J(u)(t) = Hu(t, x(t), u(t), p(t)) = fu(t, x(t), u(t))>p(t) +∇uh(t, x(t), u(t)), (2.2)

where x and p are the unique solution of (1.2) and (2.1) depending on u ∈ U .

Assumption (A3). The objective function J is continuously differentiable on U with Lipschitz

derivative.

We denote by L the Lipschitz modulus of the gradient ∇J of J and write J∗ := J(u∗) for its

optimal value. The following result is well known (see e.g. [23, Lemma 1.30]).

Lemma 2.1. Suppose that (A3) is fulfilled. Then for every u, v ∈ U the following estimation holds

J(v)− J(u)− 〈∇J(u), v − u〉 ≤ L

2
‖v − u‖2.

Assumptions (A1)-(A3) are common in optimal control. For example the following two assump-

tions (B1)-(B2) imply (A1)-(A3) (cf. [22])

Assumption (B1). The functions f and h are of the form f(t, x, u) = f0(x) + f1(x)u and

h(t, x, u) = h0(x) + 〈h1(x), u〉 respectively, where f0 : Rn → Rn, f1 : Rn → Rn×m, h0 : Rn → R and

h1 : Rn → Rm are twice continuously differentiable.

Assumption (B2). There exists c ≥ 0 such that for every x ∈ Rn and u ∈ U :

〈x, f(t, x, u)〉 ≤ c(1 + |x|2).

Additionally we assume the following.
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Assumption (A4). The objective function J is convex.

Note that if the set F of admissible pairs is convex this assumption is equivalent to the statement

that the function ψ is convex on F . In particular this is the case if f is affine (i.e. f is of the form

f(t, x, u) = A(t)x+B(t)u+ d(t)) as in [29, 25].

Further we will assume a growth condition for J that is similar to (4.7) in [3].

Assumption (A5). For a solution u∗ of (1.1)-(1.3) there are constants β > 0 and θ ≥ 0 such that

for every u ∈ U we have

J(u)− J(u∗) ≥ β‖u− u∗‖2θ+2.

Note that in particular (A5) implies that the solution u∗ is unique.

Remark 2.2. For coercive optimal control problems (in the sense of [12]) Assumptions (A1)-(A4)

are fulfilled as well as (A5) for θ = 0. In these problems the objective function J however is even

strongly convex and therefore one can apply known results (e.g. [21, Theorem 2.1.15]) directly to

show linear convergence of the gradient projection method in this case.

In the following we will show that Assumption (A5) is fulfilled for bang-bang controls with no

singular arcs. We recall that in the case of bang-bang controls the function σ∗ := Hu(·, x∗, u∗, p∗) is

called switching function corresponding to the triple (x∗, u∗, p∗). For every j ∈ {1, . . . ,m} denote

by σ∗j its j-th component. The following assumption says that the switching function σ∗ satisfies a

growth condition around the switching points, which implies that u∗ is strictly bang-bang.

Assumption (B3). There exist real numbers θ, α, τ > 0 such that for all j ∈ {1, . . . ,m} and

s ∈ [0, T ] with σ∗j (s) = 0 we have

|σ∗j (t)| ≥ α|t− s|θ ∀t ∈ [s− τ, s+ τ ] ∩ [0, T ].

Assumption (B3) plays the main role in the study of regularity, stability and error analysis of

discretization techniques for optimal control problems with bang-bang solutions. Many variations

of this assumption are used in the literature about bang-bang controls. To our knowledge the

first assumption of this type was introduced by Felgenhauer [14] for continuously differentiable

switching functions with θ = 1 to study the stability of bang-bang controls. Alt et. al. [1, 2, 4]

used a slightly stronger version of (B3) with θ = 1, that additionally excludes the endpoints 0

and T as zeros of the switching function, to investigate the error bound for Euler approximation

of linear-quadratic optimal control problems with bang-bang solutions. Quincampoix and Veliov

[26] used a rank condition which implies (B3) (including cases where θ 6= 1) to obtain the metric

regularity and stability of Mayer problems for linear systems. Seydenschwanz [29], Preininger et.

al. [25], Pietrus, Scarinci and Veliov [24, 27] used this assumption in the study of metric (sub)-

regularity, stability and error estimate for discretized schemes of linear-quadratic optimal control

problems with bang-bang solutions.

To prove that (B3) implies (A5) we need the following lemma, which is a simplified version of

[29, Lemma 1.3] (see also, [1, Lemma 4.1]).
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Lemma 2.3. Let Assumptions (A1)-(A2) be fulfilled and let u∗ be a solution of (1.1)-(1.3) such

that (B3) is fulfilled for some θ > 0. Then there exists constants β > 0 such that for any feasible

u ∈ U it holds ∫ T

0
σ∗(t)T (u(t)− u∗(t)) dt ≥ β‖u− u∗‖θ+1

1 ,

where ‖ · ‖1 is the L1-norm.

Proposition 2.4. Let Assumptions (A1)-(A2) and (A4) be fulfilled and let u∗ be a solution of

(1.1)-(1.3) such that (B3) is fulfilled. Then (A5) holds.

Proof. From Assumption (A4) and (2.2) we obtain

J(u)− J(u∗) ≥ 〈∇J(u∗), u− u∗〉 =

∫ T

0
σ∗(t)T (uk+1(t)− u∗(t)) dt. (2.3)

Since ‖ · ‖2 ≤ C‖ · ‖1 on U for some constant C > 0, from Lemma 2.3 there exists β > 0 such that∫ T

0
σ∗(t)T (u(t)− u∗(t)) dt ≥ β‖u− u∗‖θ+1

1 ≥ β‖u− u∗‖2θ+2. (2.4)

Combining (2.3) and (2.4) we obtain (A5). Q.E.D.

To define the gradient projection method in the next chapter we will need the following notion

of a projection. For each u ∈ U , there exists a unique point in U (see [17, p. 8]), denoted by PU (u),

such that

‖u− PU (u)‖ ≤ ‖u− v‖ ∀v ∈ U .

It is well known [17, Theorem 2.3] that the projection operator can be characterized by

〈u− PU (u), v − PU (u)〉 ≤ 0 ∀v ∈ U . (2.5)

Further to establish the convergence rate of the gradient projection method, we will need the

following lemmas.

Lemma 2.5. [18, Lemma 7.1] Let α > 0 and let {δk}∞k=0 and {sk}∞k=0 be two sequences of positive

numbers satisfying the conditions

sk+1(δks
α
k+1 + 1) ≤ sk ∀k ∈ N.

Then there is a number γ > 0 such that

sk ≤

(
s−α0 + γ

k−1∑
i=0

min{δi, δ
α
α+1

i }

)− 1
α

∀k ∈ N.

In particular, we have limk→∞ sk = 0 whenever
∑∞

k=0 δk =∞.
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Lemma 2.6. [7, Lemma 3.2] Let {αk} , {sk} be sequences in R+ satisfying

∞∑
i=0

αksk <∞,

the sequence {αk} is non-summable and the sequence {sk} is decreasing. Then

sk = o

(
1∑k
i=0 αi

)
,

where the o-notation means that sk = o(1/tk) if and only if limk→∞ sktk = 0.

3 Convergence Analysis

We consider the following Gradient Projection Method (GPM):

Algorithm GPM.

Step 0: Choose a sequence {λk} of positive real numbers and an initial control u0 ∈ U . Set

k = 0.

Step 1: Compute the gradient ∇J(uk)(t) := fu(t, xk(t), uk(t))
>pk(t) +∇uh(t, xk(t), uk(t)) by

solving the following differential equations

ẋk(t) = f(t, xk(t), uk(t)), xk(0) = x0; (3.1)

ṗk(t) = −fx(t, x(t), u(t))>p(t)−∇xh(t, x(t), u(t)), pk(T ) = ∇g(xk(T )).

Step 2: If uk = PU (uk − λk∇J(uk) then Stop. Otherwise, go to Step 3.

Step 3: Compute

uk+1 = PU (uk − λk∇J(uk)). (3.2)

Step 4: Replace k by k + 1; go to Step 1.

It is known (see e.g. [21, Theorem 2.1.14]) that for J continuously differentiable with Lipschitz

derivative the gradient (projection) method has the convergence rate O( 1k ) in terms of the objective

value. I.e. that

J(uk)− J∗ = O(
1

k
). (3.3)

For the strongly convex objective function, it is known that the iterative sequence {uk} converges

linearly to the unique solution. However, it is not possible to show convergence for the iterative

sequence {uk} for the general convex case. Here, thanks to Assumptions (A1)-(A5), we are able

to prove that the iterative sequence {uk} generated by the GPM converges strongly to an optimal

control. Moreover, the convergence rate is established, depending on the constants θ appearing in

Assumption (A5).

The following estimate will be used repeatedly in our convergence analysis.
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Proposition 3.1. Let Assumption (A1)-(A4) be satisfied, let u∗ be a solution of (1.1)-(1.3) such

that Assumption (A5) is fulfilled with some θ > 0 and β > 0. Then for all k ∈ N, the following

estimate holds

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2 − 2λkβ‖uk+1 − u∗‖2θ+2. (3.4)

Proof. Since uk+1 = PU (uk − λk∇J(uk)), it follows from (2.5) that

〈uk − λk∇J(uk)− uk+1, u− uk+1〉 ≤ 0 ∀u ∈ U . (3.5)

Substituting u = u∗ ∈ U into the latter inequality yields

〈uk − λk∇J(uk)− uk+1, u
∗ − uk+1〉 ≤ 0,

or equivalently

〈uk − uk+1, u
∗ − uk+1〉 ≤ λk〈∇J(uk), u

∗ − uk+1〉.

This implies that

‖uk+1 − u∗‖2 = ‖uk − u∗‖2 + 2 〈uk − u∗, uk+1 − uk〉+ ‖uk+1 − uk‖2

= ‖uk − u∗‖2 + 2 〈uk+1 − u∗, uk+1 − uk〉 − ‖uk+1 − uk‖2

≤ ‖uk − u∗‖2 + 2λk〈∇J(uk), u
∗ − uk+1〉 − ‖uk+1 − uk‖2

= ‖uk − u∗‖2

−2λk

[
〈∇J(uk), uk+1 − u∗〉+

L

2
‖uk+1 − uk‖2 +

(
1

2λk
− L

2

)
‖uk+1 − uk‖2

]
= ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2

−2λk

[
〈∇J(uk), uk − u∗〉+ 〈∇J(uk), uk+1 − uk〉+

L

2
‖uk+1 − uk‖2

]
. (3.6)

Since J has Lipschitz derivative, we have from Lemma 2.1 that

J(v)− J(u)− 〈∇J(u), v − u〉 ≤ L

2
‖v − u‖2 ∀u, v ∈ U .

Substituting u = uk and v = uk+1 into the last inequality yields

− 〈∇J(uk), uk+1 − uk〉 −
L

2
‖uk+1 − uk‖2 ≤ J(uk)− J(uk+1). (3.7)

Moreover, since J is convex, we obtain

− 〈∇J(uk), uk − u∗〉 ≤ J(u∗)− J(uk) (3.8)

Combining (3.6), (3.7) and (3.8) gives

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2 − 2λk (J(uk+1)− J(u∗)) . (3.9)
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Using Assumption (A5) we obtain

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2 − 2λkβ‖uk+1 − u∗‖2θ+2,

which is (3.4). Q.E.D.

We are now in the position to establish the strong convergence and the convergence rate of {uk}
to a solution.

Theorem 3.2. Let Assumptions (A1)-(A4) be satisfied, let u∗ be a solution of (1.1)-(1.3) such

that Assumption (A5) is fulfilled with some θ > 0. Let the sequence {λk} be chosen such that

0 < λmin ≤ λk ≤
1

L
∀k ∈ N.

Then we have

(i) ‖uk − u∗‖2 ≤ ηk−
1
θ , for all k, where η > 0 is a constant;

(ii) The sequence {J(uk)} is monotonically decreasing. Moreover
∑∞

k=0 (J(uk)− J(u∗)) < +∞.

Proof. We first prove that {uk} converges strongly to u∗. From (3.4) and 0 < λmin ≤ λk ≤ 1
L ,

the sequence {‖uk − u∗‖} is decreasing and bounded from below by 0, and therefore it converges.

Moreover, since

2λminβ‖uk+1 − u∗‖2θ+2 ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 (3.10)

we conclude that {‖uk − u∗‖} converges to 0, which means {uk} converges strongly to u∗.

Now we can apply Lemma 2.5 for sk = ‖uk − u∗‖2, α = θ and δ = 2λminβ to obtain the

convergence rate (i) for {‖uk − u∗‖}.
Substituting u = uk in (3.5) implies

λk〈∇J(uk), uk − uk+1〉 ≥ ‖uk+1 − uk‖2. (3.11)

Combining (3.7) and (3.11) we get

J(uk+1)− J(uk) ≤
(
L

2
− 1

λk

)
‖uk+1 − uk‖2 ≤ 0. (3.12)

Hence the sequence {J(uk)} is monotonically decreasing. Now from (3.9) and 0 < λmin ≤ λk ≤ 1
L

we have

2λmin (J(uk)− J(u∗)) ≤ ‖uk−1 − u∗‖2 − ‖uk − u∗‖2 ∀k ∈ N.

Summing this inequality from 0 to i− 1 we obtain

i−1∑
k=0

(J(uk)− J(u∗)) ≤ 1

2λmin

(
‖u0 − u∗‖2 − ‖ui − u∗‖2

)
.

Finally, taking the limit as i→∞, we obtain (ii). Q.E.D.
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Remark 3.3. From (ii) in Theorem 3.2, we can conclude that J(uk)− J(u∗) = o( 1k ), which signifi-

cantly improves the error estimate J(uk)− J(u∗) = O( 1k ) in (3.3).

The following example illustrates that the estimation (i) in Theorem 3.2 cannot be improved

when λk is bounded from below by a constant λmin.

Example 3.4. Consider the following optimal control problem

minimize
∫ T
0 σ(t)u(t)dt

subject to u(t) ∈ U := [−1, 1]m,
(3.13)

where σ is any continuous function fulfilling Assumption (A2). Then ∇J(u)(t) = σ(t) is indepen-

dent of u and the optimal control is given by u∗(t) = −sgn(σ(t)). Starting the GPM with u0 ≡ 0

and λk = λ for some λ ∈ R+ we get

uk(t) =


1, if − kλσ(t) > 1,

−kλσ(t), if − 1,≤ −kλσ(t) ≤ 1,

−1, if − kλσ(t) < −1.

In the special case σ(t) = tθ, we therefore have uk(t) = max{−1,−kλtθ}. This implies that for

k > 1
λT θ

, we have

‖uk(t)− u∗(t)‖2 =

∫ (kλ)−
1
θ

0
(1− kλtθ)2dt = (kλ)−

1
θ (1− 2

θ + 1
+

1

2θ + 1
) = Ck−

1
θ .

For the objective value we get

J(uk)− J(u∗) =

(
1

θ + 1
− 1

2θ + 1

)
(kλ)−1−

1
θ , (3.14)

which is stronger than (ii). It remains unknown whether in the general case the estimation (ii) can

be improved to an estimation similar to (3.14).

Using the stronger Assumptions (B1)-(B2) the convergence rate of the corresponding trajectories

can be obtained as a corollary of Theorem 3.2 and [22, Lemma 2].

Corollary 3.5. Let Assumptions (B1)-(B2) and (A4) be satisfied and let (x∗, u∗) be a solution

of (1.1)-(1.3) such that assumption (A5) is fulfilled with some θ > 0. Further suppose that λk ∈
[λmin, 1/L] ⊂ (0, 1/L]. Then the sequence {xk(t)} of trajectories converges strongly to the solution

x∗. Moreover, there exists a positive constant C such that for all k it holds,

‖xk − x̂‖c ≤ Ck−
1
2θ ,

where ‖x(·)‖c = maxt∈[0,T ] |x(t)|.

When the Lipschitz modulus L is difficult to estimate, one can consider the non-summable

diminishing stepsizes as follow.
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Theorem 3.6. Let assumption (A1)-(A4) be satisfied, let u∗ be a solution of (1.1)-(1.3) such that

assumption (A5) is fulfilled with some θ > 0. Let the sequence {λk} be chosen such that

lim
k→∞

λk = 0,

∞∑
k=0

λk =∞.

Then the sequence {uk} converges strongly to u∗. Moreover there exists N > 0 such that for all

k ≥ N , it holds

(i) ‖uk − u∗‖2 ≤ Cµ
− 1
θ

k

(ii) J(uk)− J(u∗) = o
(

1
µk

)
,

where µk :=
∑k−1

i=N λi and C is a constant.

Proof. Let β > 0 be as in Proposition 3.1. Since limk→∞ λk = 0, there exists N > 0 such that for

all k ≥ N we have 1− λkL > 0 and 2λkβ < 1. From (3.4) we have that {‖uk − u∗‖} is decreasing,

therefore it converges. Moreover

2λkβ‖uk+1 − u∗‖2θ+2 ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ∀k ≥ N.

Using Lemma 2.5 with sk = ‖uk+N − u∗‖2, α = θ and δk := 2λk+Nβ we get that there exists

γ > 0 such that

‖uk − u∗‖2 ≤

(
‖uN − u∗‖−2θ + γ

k−1∑
i=N

λi

)− 1
θ

,

which shows (i).

From (3.9), we have

2λk (J(uk+1)− J(u∗)) ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ∀k ≥ N.

leading to
∞∑
k=N

λk (J(uk+1)− J(u∗)) <∞.

Applying Lemma 2.6 with αk = λN+k and sk = J(uN+k)− J(u∗) we obtain (ii). Q.E.D.

Using the same example as above we can again show that the estimation (i) cannot be improved.

Example 3.7. Consider the problem (3.13) with σ(t) := tθ again. As before we use GPM with

u0 ≡ 0 but now with non-constant λk. Denoting µk :=
∑k−1

i=0 λi we get uk(t) = max{−1,−µktθ}.
Hence for k big enough such that µk >

1
T θ

we have

‖uk(t)− u∗(t)‖2 =

∫ µ
− 1
θ

k

0
(1− µktθ)2dt = µ

− 1
θ

k (1− 2

θ + 1
+

1

2θ + 1
) = Cµ

− 1
θ

k

and

J(uk)− J(u∗) =

(
1

θ + 1
− 1

2θ + 1

)
µ
−1− 1

θ
k .
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Similar to Corollary 3.5 we obtain

Corollary 3.8. Let Assumptions (B1)-(B2) and (A4) be satisfied and let (x∗, u∗) be a solution of

(1.1)-(1.3) such that assumption (A5) is fulfilled with some θ > 0. Further let the sequence {λk} be

chosen such that

lim
k→∞

λk = 0,
∞∑
k=0

λk =∞.

Then the sequence {xk(t)} of trajectories converges strongly to the solution x∗. Moreover, there

exists a positive constant C such that for all k it holds,

‖xk − x̂‖c ≤ Cµ
− 1

2θ
k .

4 Numerical Illustrations

In this section, we present some numerical experiments for a class of optimal control problems with

bang-bang solutions namely linear-quadratic problem, described as follow.

minimize ψ(x, u)

subject to ẋ(t) = A(t)x(t) +B(t)u(t) + d(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,

x(0) = x0,

(4.1)

where

ψ(x, u) :=
1

2
x(T )Qx(T ) + q>x(T ) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt.

Here we use the classical Euler discretization where the error estimate can be found in [1, 2, 5].

We choose a natural number N and define the mesh size h := T/N . Since the optimal control

is assumed to be bang-bang, we identify the discretized control uN := (u0, u1, . . . , uN−1) with its

piece-wise constant extension:

uN (t) = ui for t ∈ [ti, ti+1) , i = 0, 1, . . . , N − 1.

Moreover, we identify the discretized state xN := (x0, x1, . . . , xN ) and costate pN := (p0, p1, . . . , pN )

with its piece-wise linear interpolations

xN (t) = xi +
t− ti
h

(xi+1 − xi) , for t ∈ [ti, ti+1) , i = 0, 1, . . . , N − 1

and

pN (t) = pi +
ti − t
h

(pi−1 − pi) , for t ∈ (ti−1, ti] , i = N,N − 1, . . . , 1.

The Euler discretization of (1.1) is given by

minimize ψN (xN , uN )

subject to xNi+1 = xNi + h
[
A(ti)x

N
i +B(ti)u

N
i + d(ti)

]
,

xN (0) = x0,

uNi ∈ U,

(PN )
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where ψN is the cost function defined by

ψN (xN , uN ) :=
1

2
x>NQxN + q>xN + h

N−1∑
i=0

[
1

2
xTi W (ti)xi + xTi S(ti)ui

]
.

Observe that (PN ) is a quadratic optimization problem over a polyhedral convex set, where the

gradient projection method converges linearly, see e.g., [30]. This means that for each N , there

exists ρN ∈ (0, 1) such that

‖uNk+1 − uN∗‖ ≤ ρN‖uNk − uN∗‖, ∀k ∈ N.

In the following example, we will considered various values of N which suggest that

lim
N→∞

ρN = 1.

This will confirm the sublinear rate obtained in Theorem 3.2. The codes are implemented in Matlab.

We perform all computations on a windows desktop with an Intel(R) Core(TM) i7-2600 CPU at

3.4GHz and 8.00 GB of memory. The stopping condition is ‖uNk − uNk−1‖ ≤ ε, where ε = 10−10.

The following example is taken from [27].

Example 4.1.

minimize −by(1) +
∫ 1
0

1
2 (x(t))2 dt

subject to ẋ(t) = y(t), x1(0) = a

ẏ(t) = u(t), y(0) = 1.

u(t) ∈ [−1, 1].

(4.2)

Here with appropriate values of a and b, there is a unique optimal solution u∗ with a switch

from −1 to 1 at time τ , which is a solution of the equation

−5τ4 + 24τ3 − (12a+ 36)τ2 + (24a+ 20)τ + 24b− 12a− 3 = 0.

As in [27], we choose a = 1, b = 0.1, then τ = 0.492487520 is a simple zero of the switching function.

Therefore, θ = 1 and the exact optimal control is

u∗(t) =

−1 if t ∈ [0, τ ]

1 if t ∈ (τ, 1].

We choose starting control u0(t) = 1 ∀t ∈ [0, T ] and stepsize λk = 50. The convergence results

for Example 4.1 with some different values of N are reported in Table 4.1. We can see that when

N increases, ρN is also increases and approaches 1. This means that we can only guarantee the

sublinear convergence for the continuous problem. Figure 4.1 displays the optimal control and the

optimal states when the discretized size N = 50.

The following second example is taken from [1, Example 6.1]

12



Table 4.1: Convergence rates for Example 4.1

N 10 20 50 100 200 500

ρN 0.3563 0.5821 0.6599 0.9142 0.9402 0.9956
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x
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)

x1(t)
x2(t)

Figure 4.1: Optimal control (left) and optimal states (right) for N = 50.

Example 4.2.

minimize 1
2

(
(x1(5))2 + (x2(5))2

)
subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 5].

x1(0) = 6, x2(0) = 1,

u(t) ∈ [−1, 1].

(4.3)

The exact optimal control is given by

u∗ =

1 if t ∈ (τ, 5]

−1 if t ∈ (0, τ ],

where τ = 3.5174292.

We choose the starting control u0(t) = 1 ∀t ∈ [0, T ] and stepsize λk = 0.05. The convergence

results for Example 4.2 with some different values of N are reported in Table 4.2. Again, we see

that when N increases, ρN is also increases and approaches 1. Figure 4.2 display the optimal

Table 4.2: Convergence rates for Example 4.2

N 10 20 50 100 200 500

ρN 0.9625 0.9724 0.9905 0.9937 0.9943 0.9944

control and the optimal states for N = 50.
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Figure 4.2: Optimal control (left) and optimal states (right) for Example 4.2 when N = 50.

5 Concluding remarks

Note that the main results in Theorem 3.2 and Theorem 3.6 use Assumption (A5) which is more

general than just the bang-bang case. For example Assumption (A5) is also satisfied in the strongly

convex case, where even better convergence results are known. Further it would be interesting to

see under what assumptions our results still apply in the case of singular arcs. This is challenging

due to the fact that currently there is no condition similar to the bang-bang Assumption (B3) that

ensures Assumption (A5) and therefore remains as a topic for future research.
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