

Modelling P2H – Potentials for Austria

P2H-Pot: Potentials, Economic assessment and system solutions for Power-to-Heat

Project Duration: September 2014 – October 2017

Presenting: Sara Fritz

Gerhard Totschnig, Richard Büchele, Lukas Kranzl, Andreas Müller, Johannes Nagler

Sdewes 2017, Dubrovnik, 06.10.2017

Transitional challenges

What are the economic viable potentials for renewables resp. P2H in central heat supply?

What are the barriers to implement P2H technologies in Austria?

Objectives of the project

- Identify economic potentials for heat pumps with different heat sources and system configurations in existing Austrian district heating networks until 2050
 - Take into account the spatial and energetic characteristics of each area
 - Detailed analysis of the district heating potential per region
 - Focus on the sectorial integration of the electricity and heating sector

Method

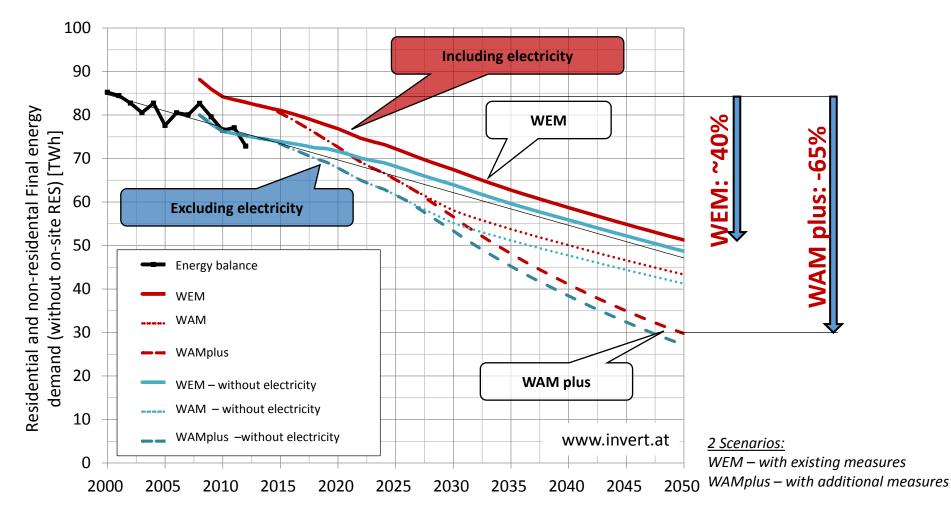
Integrated modelling approach

1) Bottom-up modelling of the buildings' heat demand (Invert/EE-Lab)

2) District heating expansion

Sectorial integration: Dynamical power and heat system model (HiREPS)

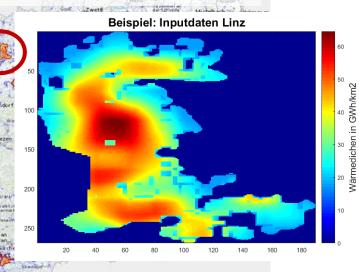
Characterisation of district heating areas


- Clustering of the 11 district heating types in Austria regarding
 - Heat density
 - District heat demand
 - Share in total heat demand
 - Existing supply infrastructure
 - Incineration plant
 - Excess heat
 - CCGT / heat plant
 - Biomass CHP
 - Biomass heat plant
 - Potential for
 - Industrial excess heat
 - Geothermal
 - Heat pumps

	Description	number	Heat density	district heating demand	
	Desemption	of cities	[GWh/ km²]	[MWh]	
Type 1	CCGT, Biomass CHP, waste incineration, geothermal, river, excess heat potential	1	58	5,870,000	
Type 2	waste incineration, CCGT, biomass CHP, excess heat, river, excess heat potential	1	30	1,160,000	
Type 3	excess heat, CCGT, excess heat potential, river	2	28	1,780,000	
Type 4	incineration plant, heat plant, river	2	23	460,000	
Type 5	excess heat, river	8	26	420,000	
Type 6	biomass CHP, river/lake	4	27	740,000	
Type 7	geothermal otential and biomass plant	4	25	160,000	
Type 8	biomass CHP >10MWth	ca 25	20	1,000,000	
Type 9	biomass CHP <10MWth	ca 40	15	600,000	
Туре 10	biomass plant >2 MWth	150-200	10	1,600,000	
Type 11	biomass plant <2MWth	1000- 1800	10	1,100,000	

1) Development of buildings heat demand in Austria up to 2050

Methods: Application of bottom-up building stock model Invert/EE-Lab for 2 scenarios



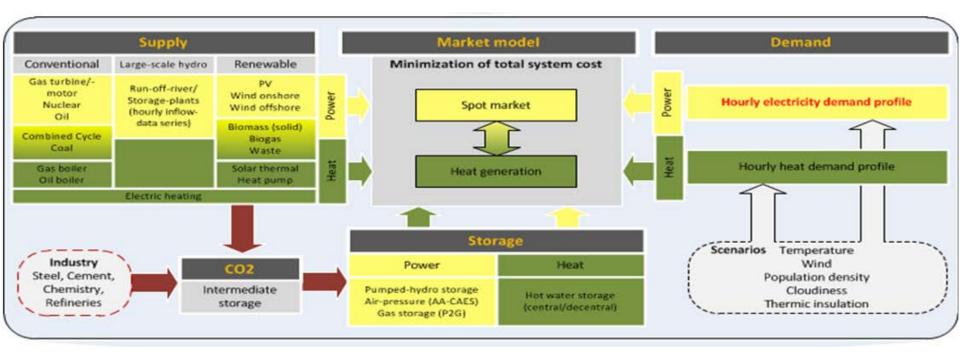
Source: Energieszenarien bis 2050: Wärmebedarf der Kleinverbraucher. Erstellung von energiewirtschaftlichen Inputparametern und Szenarien zur Erfüllung der Berichtspflichten des Monitoring Mechanisms. Wien. 2015.

2) District heating expansion

- Starting point: www.austrian-heatmap.gv.at based on heat demand scenarios
- Methods: Yearly district heating expansion, considering:
 - Full costs for district heating: distribution costs, operation and maintenance costs and heat generation costs
 - Inertia of the building stock (heating system replacement rate)
 - Thermal quality of building stock

Results:

	WEM-Scenario				WAMplus-Scenario		
Regions and district heating demand [GWh]	2015	2020	2030	2050	2020	2030	2050
Wien	6,064	7,351	9,898	8,128	7,012	8,594	5,303
Linz	1,209	1,357	1,225	935	1,197	924	526
Graz	1,108	1,303	1,477	1,164	1,234	1,243	741
Salzburg	746	864	944	718	818	808	460
Kirchdorf an der Krems	46	44	39	30	55	41	24
Braunau am Inn	53	64	78	63	64	58	36
District heating remaining regions	9,492	10,217	11,092	8,639	10,196	10,038	6,350
Total district heating demand Austria [GWh]	18,718	21,200	24,753	19,677	20,576	21,707	13,440
Total heat demand Austria [GWh]	99,605	95,643	83,359	65,856	92,935	71,434	42,363
Share of district heating in total demand [%]	19%	22%	30%	30%	22%	30%	32%


Schör

Method

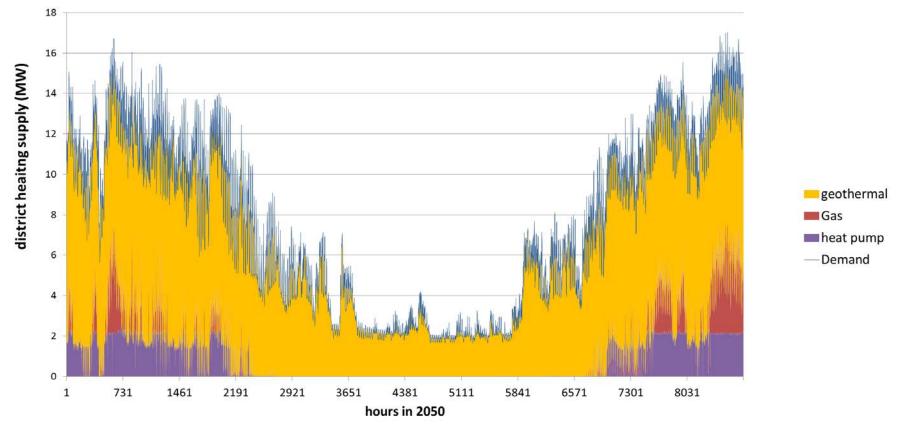
HiREPS: Dynamic power and heat system model

- Hourly optimization of costs and simulation of
 - Hydropowerplants
 - Thermal powerplants (incl. CHP)
 - Wind and solar

- Heat supply
 - District heating and decentral heat supply
- Storages

Overview

- Assumptions:
 - Scenario WEM with existing measures
 - No investment costs for existing technologies
 - -84 % CO₂ reduction for Germany and Austria
 - Requires ~ 200 €/tCO₂
- Two variants of regulatory framework:
 - with taxes on electricity and gas
 - without taxes
- Three configurations, differ regarding existing technologies:
 - Geothermal energy at 80°C and gas is available
 - Biomass CHP is available
 - CCGT, biomass CHP and excess heat is available

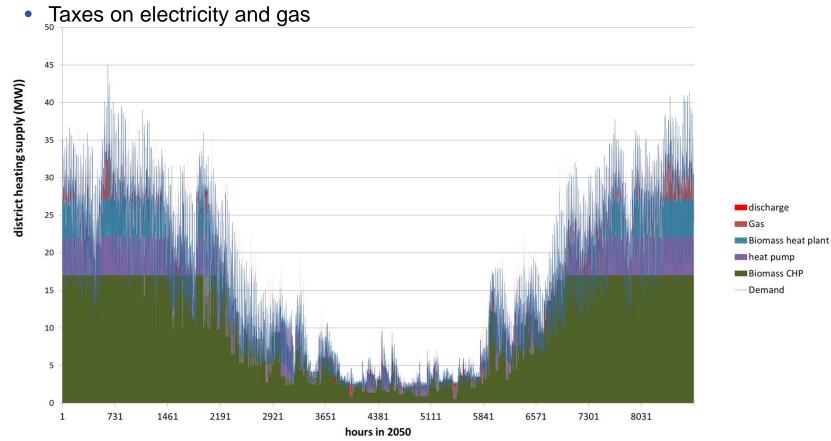


Results – Selection of configurations

Type 7: Geothermal and gas available

Assumptions:

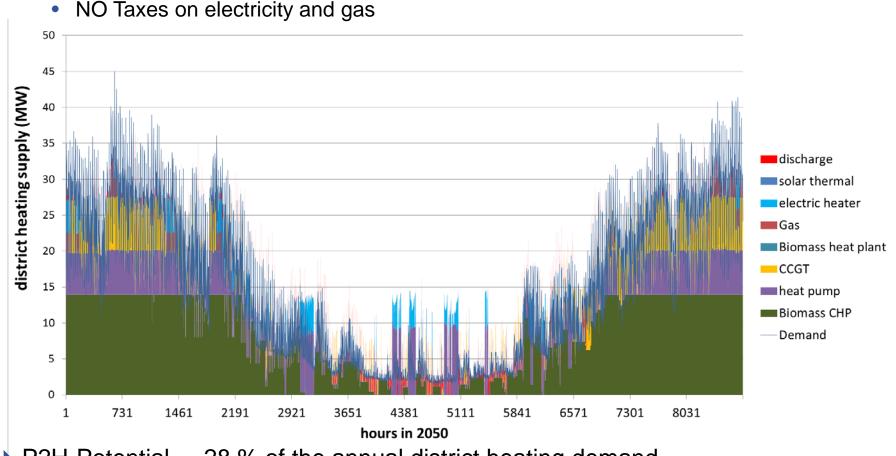
Taxes on electricity and gas



P2H-Potential (heat pump) = 10 % of the annual district heating demand

Type 6: Biomass CHP available

Assumptions:



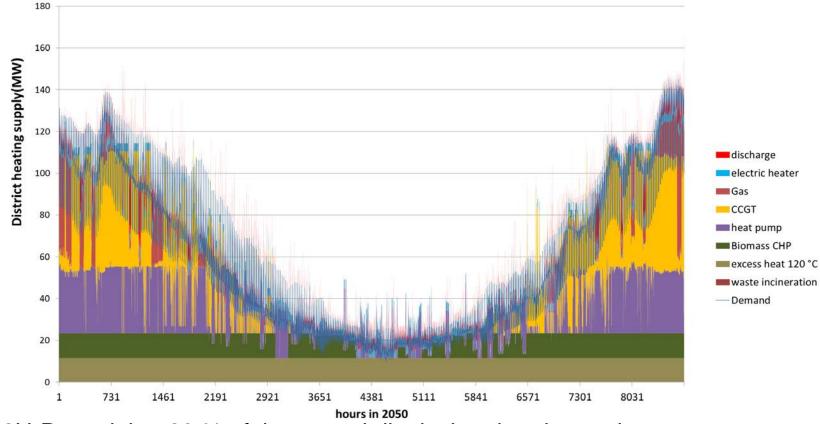
P2H-Potential = 17 % of the annual district heating demand

Type 6: Biomass CHP available

Assumptions:

P2H-Potential = 28 % of the annual district heating demand

BUT: decrease of biomass heat plant and increase of Gas

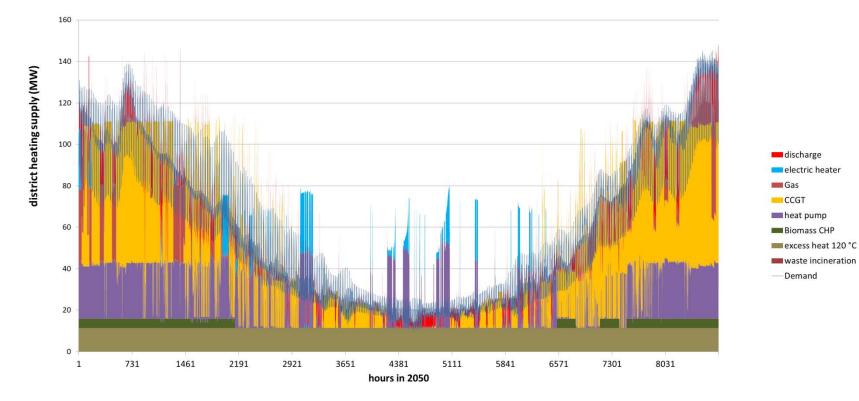


onomic

Type 3: CCGT, biomass CHP and excess heat

Assumptions:

Taxes on electricity and gas


P2H-Potential = 28 % of the annual district heating demand

Type 3: CCGT, biomass CHP and excess heat

Assumptions:

NO Taxes on electricity and gas

P2H-Potential = 28 % of the annual district heating demand

- Less heat pump and increase of electric heater
- Increase of gas and reduction of biomass CHP

- Heat pumps are reasonable option for Austrian district heating networks.
- P2H options are related to the district network characteristics and the system configurations.
- Shares of P2H up to 28 % are possible.
- Considering high COPs for heat pumps, taxes on electricity and gas are no disadvantages for heat pumps in comparison to CCGT.
- Still natural gas in the system further reduction of heat demand as in the WEM scenario required.

Thank you for your attention!

Sara Fritz Fritz@eeg.tuwien.ac.at

> The project was founded by the Austrian Climate and Energy Fund powered by klimapowered by chima-

Project Coordinator: Gerhard Totschnig

totschnig@eeg.tuwien.ac.at