

17. ÖSTERREICHISCHE CHEMIETAGE

17th Austrian Chemistry Days

Joint Meeting of the Swiss & Austrian **Chemical Societies**

September 25 - 28, 2017

UNIVERSITY OF SALZBURG

Program

Swiss Chemical Society

PO-85	M. Nadlinger
	DURABILITY OF ADHESIVELY BONDED Zn-
	Mg-Al HOT-DIP GALVANIZED STEEL
PO-86	F. Putz
	3D PRINTING OF POROUS SILICA WITH
	MULTILEVEL POROSITY
PO-87	G.R. Reisinger
	BULK SYNTHESIS OF MISFIT LAYER
	COMPOUNDS IN THE TERNARY SYSTEMS
	V-Se-Bi and V-Se-Sn
PO-88	M. Salihovic
	HIERARCHICALLY STRUCTURED FLEXIBLE
	CARBON AEROGELS
PO-89	M. Schenck
	GENERATION OF A NOVEL VACCINATION
	PLATFORM USING SURFACE-MODIFIED
	SILICA NANOPARTICLES
PO-90	M. Seifner
	NUCLEATION, GROWTH AND THERMAL
	STABILITY OF Ge _{1-x} Sn _x NANOWIRES AND
DO 01	NANORODS
PO-91	S. Solé
	STRUCTURE – COMPOSITION RELATIONS IN
DO 02	THE Sb-Te SYSTEM
PO-92	N. Yigit
	CRYSTAL STRUCTURE STUDIES OF Co- BASED CATALYSTS: OPERANDO
	SYNCHROTRON X-RAY ABSORPTION AND
	DIFFRACTION
	Medicinal Chemistry
PO-93 Th. Kalina	
PO-93	SYNTHESIS OF NEW TSPO LIGANDS FOR
	PET IMAGING
DO 04	B. Kocyigit-Kaymakcioglu
10-94	SYNTHESIS AND ANTI-INFLAMMATORY
	ACTIVITIES OF SOME PYRIMIDINE
	HYDRAZIDE HYDRAZONES
PO-95	A. Migglautsch
10-75	DEVELOPMENT OF SMALL-MOLECULE
	INHIBITORS OF ADIPOSE TRIGLYCERIDE
	LIPASE (ATGL)

Nucleation, Growth and thermal Stability of Ge_{1-x}Sn_x Nanowires and Nanorods

Michael S. Seifner, and Sven Barth*

Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria

Direct band gap materials that are compatible with the silicon based semiconductor technology are desirable components for light emission in the mid-IR range. One promising candidate to achieve this goal is a germanium-tin alloy. However, the theoretically required Sn content of ~ 11 % to convert Ge to a direct band gap material [1] exceeds the solid solubility of < 1 % according to the binary phase diagram of Ge and Sn [2]. Therefore thermodynamically controlled processes are not feasible for the growth of this metastable material composition.

We are interested in the growth of $Ge_{1-x}Sn_x$ nanowires with Sn contents above the predicted transition point of x = 0.11. The nanowires are synthesised in a low temperature solution based process using metalorganic precursors in combination with microwave assisted heating enabling growth by kinetically driven processes [3, 4]. The successful synthesis enabled the incorporation of up to 30 % of Sn into the Ge lattice by this procedure, paving the way to potential band gap engineering of bottom-up grown $Ge_{1-x}Sn_x$ nanowires.

Independent and complementary methods including X-ray diffraction, Raman spectroscopy, and EDX elemental mapping are used to determine the Sn content, while TEM confirms the high crystallinity of the obtained products. The results presented in our contribution show new features of a low temperature nucleation regime and the impact on the obtained Sn concentration within the nanowires as well as their thermal stability [5]. These results will help to understand the nucleation and growth process in absence of a template and undesired growth promoters.

^[1] K. Lu Low, Y. Yang, G. Han, W. Fan, Y.-C. Yeo, Journal of Applied Physics 2012, 112, 103715.

^[2] R. W. Olesinski, G. J. Abbaschian, Journal of Phase Equilibria 1984, 5, 265-271.

^[3] M. S. Seifner, F. Biegger, A. Lugstein, J. Bernardi, S. Barth Chem. Mat. 2015, 27, 6125-6130.

^[4] S. Barth, M. S. Seifner, J. Bernardi, Chem. Commun. 2015, 51, 12282-12285.

^[5] M. S. Seifner, A. Romano-Rodriguez, S. Barth submitted.