

Auswirkung des Feinanteils auf das Gebrauchsverhalten der **Asphaltmastix**

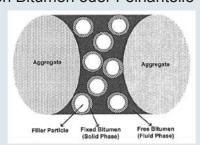
Dipl.-Ing. Markus Hospodka

19. Sitzung des Arbeitskreises 7.6.2 Mörtelkomponenten, 28.-29.09.2017

- 1. Problemstellung & Motivation
- 2. Theoretische Grundlagen & Entwicklungsansatz
- 3. Entwicklung der Ermüdungsprüfung
- 4. Schaffung eines Bewertungshintergrunds
- 6. Zusammenfassung & Ausblick

Inhalt

- 1. Problemstellung & Motivation
- 2. Theoretische Grundlagen & Entwicklungsansatz
- 3. Entwicklung der Ermüdungsprüfung
- 4. Schaffung eines Bewertungshintergrunds
- 6. Zusammenfassung & Ausblick



1. Problemstellung & Motivation

Auftreten frühzeitiger Schäden an Deckschichten (Kornausbrüche) ohne Zusammenhang zu klimatischer oder verkehrlicher Belastung

- Mögliche Ursache:
- Mangelndes Gebrauchsverhalten der Asphaltmastix → Mangelnde Qualität von Bitumen oder Feinanteile
- Mastix umhüllt den groben Gesteinsanteil und wirkt dabei als Klebstoff
- Derzeit fehlt ein geeignetes Prüfkriterium zur Beschreibung der Dauerhaftigkeit der Mastix

[RIGDEN,1947]

Inhalt

- 1. Problemstellung & Motivation
- 2. Theoretische Grundlagen & Entwicklungsansatz
- 3. Entwicklung der Ermüdungsprüfung
- 4. Schaffung eines Bewertungshintergrunds
- 6. Zusammenfassung & Ausblick

- 2. Theoretische Grundlagen & Entwicklungsansatz
- Wichtige Begriffe Füller / Feinanteile / Mastix

Fremdfüller \rightarrow Füller mineralischen Ursprungs, der getrennt hergestellt wurde Der Füller ist jener Teil der Gesteinskörnung, dessen überwiegender Teil durch ein 0,063 mm Sieb hindurchgeht.

[ÖNORM EN 13043:2014]

Feinanteile \rightarrow ...der groben und feinen Gesteinskörnung (Teil des Unterkorns) alte Bezeichnung: "Eigenfüller"

- Mischfüller → Füller mineralischen Ursprungs, der mit Kalkhydrat gemischt wurde
- Mastix \rightarrow Füller oder Feinanteile + Bitumen

2. Theoretische Grundlagen & Entwicklungsansatz

Prüfmethoden für Füller und Feinanteile

Anforderungen gemäß ÖNORM B 3130:2016

Korngrößenverteilung	ÖNORM EN 933-10
Schädliche Feinanteile (Methylenblau)	ÖNORM EN 933-9
Rohdichte	ÖNORM EN 1097-7
Trockenhohlraumgehalt (Ridgen)	ÖNORM EN 1097-4
Delta-Ring und Kugel	ÖNORM EN 13179-1
Wasserlöslichkeit	ÖNORM EN 1744-4
Wasserempfindlichkeit	ÖNORM EN 1744-1
Calcium-Carbonatgehalt von Carbonatfüllern	ÖNORM EN 196-21
Calciumhydroxidgehalt von Mischfüllern	ÖNORM EN 459-1
Bitumenzahl	ÖNORM EN 13179-2

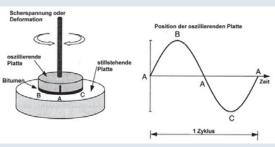
- Anforderungen an die Feinanteile der groben und feinen Gesteinskörnung bei >10 % Massenanteil → Qualitätsgesichert?
- Keine Ansprache der Mineralogie, Korngeometrie, Verwitterungsgrad, Oberflächenchemie (Affinität), Bitumenkompatibilität

2. Theoretische Grundlagen & Entwicklungsansatz

- Entwicklung eines geeigneten Prüfkriteriums für Asphaltmastix basierend auf Materialermüdung
- **Ermüdung:** Materialversagen infolge wiederholter Beanspruchung
- Ermüdungsversuch für Asphaltmischgut bereits Teil der Erstprüfung für Asphaltmischgut → 4-Punkt Biegebalken (ÖNORM EN 12697-24)

Nachteile: Prüfungen sind zeit- und materialaufwändig

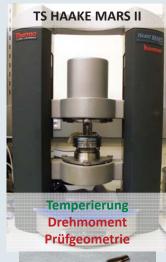
Gesucht: Prüfmaschine und Versuchsaufbau für Asphaltmastix



2. Theoretische Grundlagen & Entwicklungsansatz

- Dynamischer Scher-Rheometer (DSR):
 - Materialermüdung durch oszillierende Scherbeanspruchung
 - Durch den Einsatz zur Bindemittelprüfung in Labors bereits weit verbreitet
 - DSR benötigt nur eine geringe Probenmenge
 - Achtung: Nicht jedes Rheometer geeignet!

[ASPHALT INSTITUTE, Lexington 1994]


- 1. Problemstellung & Motivation
- 2. Theoretische Grundlagen & Entwicklungsansatz
- 3. Entwicklung der Ermüdungsprüfung
- 4. Schaffung eines Bewertungshintergrunds
- 6. Zusammenfassung & Ausblick

Herausforderung Prüfgerät DSR

3. Entwicklung der Ermüdungsprüfung

Bitumen: 70/100 (PG 64-22) → rheologisch einfaches Material

Probenart: Mischungsverhältnis Masse Bitumen: Füller = 1:1.5

Erhitzen von Bitumen und Füller im Trockenschrank und

händisches Mischen mit Metall- oder Glasstab

Prüfparameter Rheometer:

obere Platte Prüfsubstanz im Meßspalt untere Platte

[SCHRAMM, Karlsruhe 1995]

Platte-Platte Messsystem mit Ø 8 mm

Probekörperhöhe: 3 mm → Temperierung

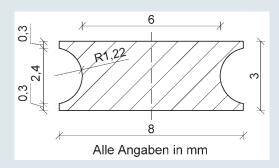
Prüftemperatur: **10 °C** → Materialkriechen

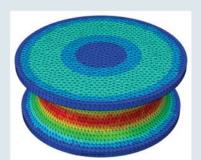
Prüffrequenz: 30 Hz → Prüfdauer

Prüfmodus: Schubspannungsvorgabe

- Der erste Fehlschlag:
 - Glatter Abriss der Probekörper am unteren Interface / Platte
 - Teilweiser Adhäsionsbruch am oberen Interface / Platte
 - Ziel: reiner Kohäsionsbruch

→ Zylindrischer Vollquerschnitt nicht geeignet!





3. Entwicklung der Ermüdungsprüfung

Lösung: Probekörpergeometrie mit Einschnürung Die Einschnürung bewirkt Sollbruchstelle durch Schubspannungsspitze.

• Einbringen der Mastixprobe in das Rheometer:

3. Entwicklung der Ermüdungsprüfung

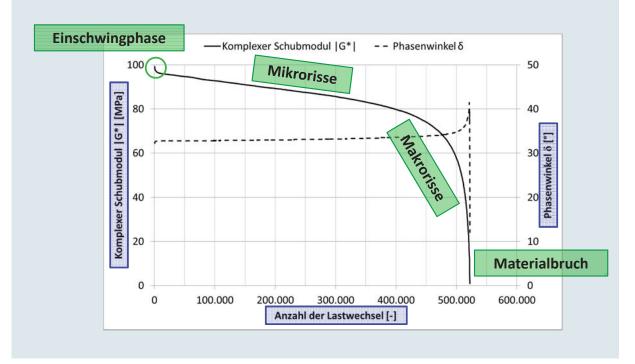
· Einbringen der Mastixprobe in das Rheometer:

• Einbringen der Mastixprobe in das Rheometer:

3. Entwicklung der Ermüdungsprüfung

• Einbringen der Mastixprobe in das Rheometer:

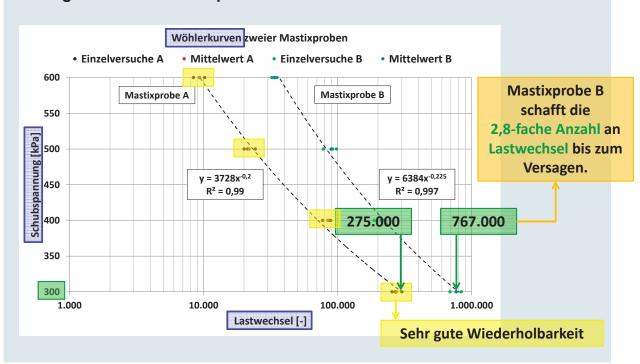
Einbringen der Mastixprobe in das Rheometer:



3. Entwicklung der Ermüdungsprüfung

Ermüdungskurve bis zum Versagen des Probekörpers

- Nach erfolgreicher Ermüdungsprüfung
 - Klarer Kohäsionsbruch in der eingebauten Sollbruchstelle



3. Entwicklung der Ermüdungsprüfung

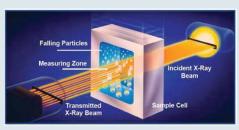
Vergleich zweier Mastixproben

- 1. Problemstellung & Motivation
- 2. Theoretische Grundlagen & Entwicklungsansatz
- 3. Entwicklung der Ermüdungsprüfung
- 4. Schaffung eines Bewertungshintergrunds
- 6. Zusammenfassung & Ausblick

- 4. Schaffung eines Bewertungshintergrunds
- Übersicht der untersuchten Proben und Feinanteile zur Erstellung eines Bewertungshintergrunds

Probe	Bezeichnung	Herkunft
F036	Kalksteinmehl	als Füller erhalten
F038	Kalksteinmehl	als Füller erhalten
F039	quarzreiches Kalksteinmehl	als Füller erhalten
F040	Kalksteinmehl	als Füller erhalten
F041	reines Quarzmehl	Laborbedarf Carl Roth GmbH & Co. KG
F042	reines Kalkhydrat	Laborbedarf Carl Roth GmbH & Co. KG
F051	Kersantit / Granitporphyr	aus 0/2 bis 125 μm ausgesiebt
F052	schichtsilikat-/feldspatreiches Quarzmehl	aus 0/2 bis 125 μm ausgesiebt
F053	Kalksteinmehl	als Füller erhalten
F099	Kalksteinmehl	aus 0/2 bis 125 μm ausgesiebt
F100	Basalt (Klöch)	aus 0/2 bis 125 μm ausgesiebt
F101	Natursand aus reinem Quarz	aus 0/2 bis 125 μm ausgesiebt
F104	Granit (Limberg)	aus 0/2 bis 125 μm ausgesiebt
F105	Mischprobe	1 Teil F040 + 1 Teil F101

- Untersuchungen an Füller und Feinanteile
 - Rohdichte mittels Pyknometer-Verfahren
 - Trockenverdichtbarkeit (Rigden)
 - Gesamtmineralienbestand mittels Röntgendiffraktometrie XRD
 - Korngrößenverteilung mittels Nasssiebung und Sedigraphie


3. Probenvorbereitung & Prüfparameter

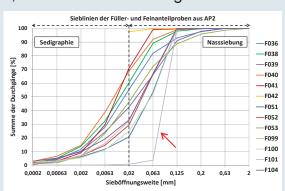
- Röntgendiffraktometrie XRD
 - Proben mit Scheibenschwingmühle vermahlen und zu einem Probekörper verpresst
 - Beugungsreflexion der Röntgenstrahlung gibt Auskunft über Mineralienbestand

Sedigraphie

- Analyse der Anteile <20 µm
- Proben werden dispergiert und im Sedigraphen mittels Röntgenstrahl nach dem Stoke'schen Gesetz analysiert

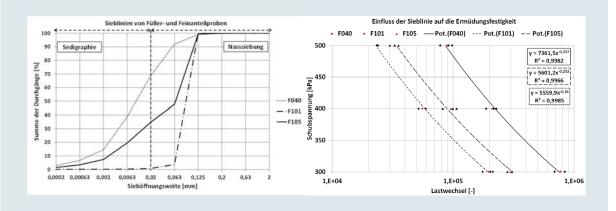
- Röntgendiffraktometrie XRD Ergebnisse
 - Auszugsweise Darstellung des Mineralienbestands
 - Kalzit und Dolomit als Gesamtkarbonatgehalt zusammengefasst

Probe	Bezeichnung	Mineralienbestand (Auszug)
F036	Kalksteinmehl	96 % Gesamtkarbonatgehalt
F038	Kalksteinmehl	90 % Gesamtkarbonatgehalt
F039	quarzreiches Kalksteinmehl	56 % Gesamtkarbonatgehalt
F040	Kalksteinmehl	99 % Gesamtkarbonatgehalt
F041	reines Quarzmehl	99 % Quarz
F042	reines Kalkhydrat	99 % Kalkhydrat
F051	Kersantit / Granitporphyr	typischer Mineralienbestand
F052	schichtsilikat-/feldspatreiches Quarzmehl	54 % Quarz
F053	Kalksteinmehl	99 % Gesamtkarbonatgehalt
F099	Kalksteinmehl	67 % Gesamtkarbonatgehalt
F100	Basalt (Klöch)	typischer Mineralienbestand
F101	Natursand aus reinem Quarz	100 % Quarz
F104	Granit (Limberg)	typischer Mineralienbestand
F105	Mischprobe	50 % Quarz + 50 % Karbonate

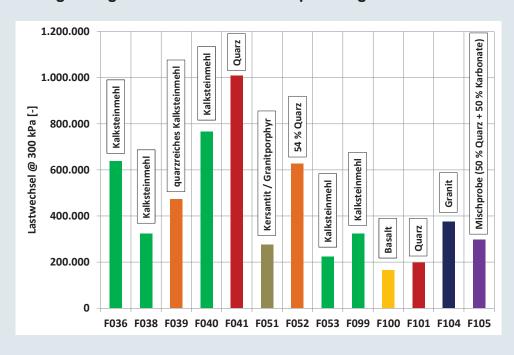


4. Schaffung eines Bewertungshintergrunds

- Weitere Ergebnisse
 - Rohdichte mittels Pyknometer-Verfahren Dichte plausibel zum ermittelten Mineralienbestand
 - Trockenverdichtbarkeit (Rigden) Kalksteinmehle und Quarz(-reiche) Proben und Hartgesteine können jeweils einer Gruppe zugeordnet werden
 - Sieblinien mittels Nasssiebung und Sedigraph Kurven zum Teil sehr unterschiedlich, F101 kein Füller im eigentlichen Sinn Auswertung von:
 - o Krümmungszahl C_C
 - Ungleichförmigkeitszahl C_{II}
 - o Anteil <6,3 μm
 - o Anteil <63 μm
 - o Anteil <125 μm



- Einfluss der Sieblinie
 - Ermittlung mittels 50:50 Mischung von gutem Kalksteinmehl F040 mit ungünstigem Feinsand F105
 - Großer Einfluss der Sieblinie auf die Ermüdungsfestigkeit
 - 50 M.-% Beigabe des guten Füllers bringt keine Verbesserung auf das arithmetische Mittel beider Proben



4. Schaffung eines Bewertungshintergrunds

Ermüdungsfestigkeit bei 300 kPa Schubspannung

- **Lineare Korrelationsanalyse**
 - R²: Wie gut werden die Daten durch die Gerade beschrieben
 - Signifikanz: Wie hoch ist die Irrtumswahrscheinlichkeit, dass die Daten nur zufällig miteinander korrelieren
 - → Signifikanter Einfluss der Sieblinien-Parameter d₆₀, Anteil <6,3 & <63 µm
 - →Offenbar kein Einfluss der Mineralogie, Beurteilung jedoch schwierig (Vielzahl an unterschiedlicher Minerale, Verwitterungsgrad,...)

Parameter	R ²	Signifikanz in %		
Dichte	0,13	22,0		
Rigden	0,01	69,6		
d ₁₀	0,10	28,5		
d ₃₀	0,09	31,1		
d ₆₀	0,50	0,7		
Cu	0,02	68,4		
Cc	0,09	33,5		
Anteil <6,3 μm	0,39	2,4		
Anteil <63 µm	0,46	1,1		
Anteil <125 µm	0,001	92,2		
Gehalt an Quarz	0,07	37,4		
Gehalt an Karbonate	0,002	87,3		
Stichprobenumfang n = 14				

- 1. Problemstellung & Motivation
- 2. Theoretische Grundlagen & Entwicklungsansatz
- 3. Entwicklung der Ermüdungsprüfung
- 4. Schaffung eines Bewertungshintergrunds
- 6. Zusammenfassung & Ausblick

6. Zusammenfassung & Ausblick

- Erfolgreiche Entwicklung einer Ermüdungsprüfung für **Asphaltmastix** auf vorhandenem Prüfgerät (DSR)
- Signifikanter Einfluss der Sieblinie bzw. daraus berechneter Faktoren auf die Ermüdungsfestigkeit. Keine vollständige Erklärung der erzielten Ermüdungsfestigkeit möglich
- Kein direkter Einfluss der Mineralogie ableitbar
- Die Schäden der Deckschichten der Teststrecken stehen nicht im **Zusammenhang mit schlechter Performance der Feinanteile**
- Bitumenkennwerte weisen auf Probleme beim Bitumen hin

6. Zusammenfassung & Ausblick

- Sieblinienparameter nicht ausreichend, Ermüdungsfestigkeit der Mastix vollständig zu beschreiben
- Kornformverwandte Parameter haben wahrscheinlich ebenso signifikanten Einfluss. Vertiefende Untersuchungen der Kornform empfohlen
- Sämtliche Versuche sind ohne Einfluss von Wasser durchgeführt worden. Vorversuche zeigen keine Änderung der Ermüdungsfestigkeit mit vorheriger Konditionierung,

Dehnungsgesteuerte Versuche zum Vergleich mit dem 4PBB

Herzlichen Dank für Ihre Aufmerksamkeit!

Dieses Projekt wurde ermöglicht durch:

