

ASSESSING THE FATIGUE PERFORMANCE OF ASPHALT MASTIC

Univ. Ass. Dipl.-Ing. Markus Hospodka

Meeting at BASF, Trostberg, June 27th 2017

1. Asphalt Mastic – Basics

 Asphalt as a paving material is a mixture of mineral aggregates and bitumen with a defined void content.

coarse and fine aggregates, fines ("Filler")

Filler is the aggregate, which most of it passes a 0.063 mm sieve. [ÖNORM EN 13043:2014]

Asphalt mastic <

- ...coats the coarse and fine aggregates and works as an adhesive
- Poor quality leads to premature deterioration by loss of aggregates at the surface and decreased fatigue life of the base layer
- There is no state-of-the-art testing method available to assess the fatigue performance of asphalt mastic

- 1. Asphalt Mastic Basics
- Filler Origin and normative requirements

- Added Filler → Filler aggregate of mineral origin, that has been produced separately for asphalt paving
- Fines → Particle size fraction smaller 0.063 mm of coarse and fine aggregates (over- and undersized particles)
- **Mixed Filler** \rightarrow Filler aggregate of mineral origin, that has been mixed with calcium hydroxide Ca(OH)₂

1. Asphalt Mastic – Basics

• Filler – Origin and normative requirements

Specifications for filler according to ÖNORM B 3130:2016

Grading of filler aggregates	ÖNORM EN 933-10
Methylene blue test	ÖNORM EN 933-9
Particle density of filler	ÖNORM EN 1097-7
Voids of dry compacted filler (Rigden)	ÖNORM EN 1097-4
Delta ring and ball test	ÖNORM EN 13179-1
Water susceptibility of fillers	ÖNORM EN 1744-4
Chemical analysis	ÖNORM EN 1744-1
Content of calcium carbonate in added fillers	ÖNORM EN 196-21
Content of calcium hydroxide in mixed fillers	ÖNORM EN 459-1
Bitumen number	ÖNORM EN 13179-2

- Requirements to the fines of the fine and coarse aggregates (applicable when mass fraction is at least 10 %) → quality requirements sufficient?
- Mineralogy, aggregate geometry, chemical weathering, surface chemistry (chemical affinity) and bitumen compatibility are not addressed.

2. Scientific Approach

- Aim: Development of a performance criterion for asphalt mastic based on fatigue life.
- Fatigue: ... is the deterioration of a material due to repeatedly applied loads
- Fatigue test is already standardized for asphalt mixture
 → 4-Point Bending Beam Test (ÖNORM EN 12697-24)

- Challenge: Tests are time-intense and material-consuming
- Wanted: Suitable testing device and setup for asphalt mastic

- 2. Scientific Approach
- Dynamic Shear-Rheometer (DSR):
 - Fatigue failure caused by oscillatory shear stress
 - Device is highly available due to the use for binder testing
 - Only a small sample volume is needed for DSR tests
 - Please note: The device has to meet minimum

requirements in terms of electrical torque.

[ASPHALT INSTITUTE, Lexington 1994]

2. Scientific Approach

- Dynamic Shear-Rheometer (DSR):
 - Results:
 - Complex shear modulus |G*| Ratio of peak stress to the peak strain in harmonic sinusoidal oscillation
 - Phase lag δ

Phase difference (time lag) between stress and strain to characterize a material regarding to

elasticity (e.g. rubber band)

and

viscosity (e.g. play doh).

[TechGalerie GmbH, Düsseldorf 2016]

[Lemerg.com, Uploaded by A_Arina, 2015]

- 3. Sample Preparation & Testing Parameter
- **Bitumen:** 70/100 \rightarrow rheologically simple material
- Sample type: Mixing ration of mass fraction bitumen:filler = 1:1.5
 Manually mixing of preheated bitumen and filler with a stirring rod
- DSR testing parameter:

Plate-Plate testing system with Ø 8 mm

Sample height:	3 mm	\rightarrow Cooling capacity
Test temperature:	10 °C	\rightarrow Creep (deformation)
Test frequency:	30 Hz	\rightarrow Test duration
Test mode:	Controlled stress (CSS)	

[SCHRAMM, Karlsruhe 1995]

- 3. Sample Preparation & Testing Parameter
- First attempt, first failure:
 - Failure at the lower interface / bottom plate
 - Partially adhesion / cohesion failure at the upper interface / top plate
 - Aim: pure cohesion failure within the mastic specimen
 - \rightarrow Cylindrical specimen shape is not suitable for fatigue testing!

Lower interface / bottom plate

Upper interface / top plate

- 3. Sample Preparation & Testing Parameter
- Solution: Sample geometry with predetermined point of failure

• Fatigue curve – Crack propagation till fatigue failure

- Mastic sample after successful fatigue test
 - Cohesion failure at the predetermined point of failure

Results – Comparing two different asphalt mastic mixtures

5. Summary & Conclusions

- High performance demands to asphalt pavements need high quality components:
 - Bitumen
 - Aggregates (Filler / Fines!)

[dpa/Picture Alliance, Deutschland 2013]

- Assessment of the fatigue performance of asphalt mastic by DSR
- Correlation analysis of various filler parameters and results of fatigue tests:
 - No significant impact of filler mineralogy
 - Significant impact of filler grading curve
 - Impact of filler morphology highly likely
- Additional filler analysis
- Impact of water exposure on fatigue performance

QUESTIONS?