
Measuring progress to predict success:

Can a good proof strategy be evolved?

(Extended Abstract)

Giles Reger1 and Martin Suda2

1 University of Manchester, Manchester, UK
2 TU Wien, Vienna, Austria

One of the main parameters of the superposition calculus employed by Automated Theorem
Provers (ATPs) is the simplification ordering, and the choice of an ordering can have a huge
impact on the success of a theorem proving attempt. However, it is difficult to choose a good
ordering in advance and ATPs typically provide only a few heuristical schemes for determining
an ordering from a large space of possibilities. The aim of this work is to establish to what
extent the space of possible orderings can be better utilised during the construction of new
successful proving strategies.

There is a well known principle in automated deduction which states that a strategy that
leads to a slowly growing search space will likely be more successful (at finding a proof in
reasonable time) than a strategy that leads to a rapidly growing one. We propose to employ
this principle and search for a strategy which, for a given problem, minimises the number of
derived clauses after a certain number of iterations of the saturation loop. Focusing on the
search for a good ordering as a simplifying restriction on the set of available strategies, we
experimentally investigate the practical potential of this idea.

Simplification orderings in superposition-based theorem proving. The superposition
calculus [7] used by modern ATPs such as E [9], SPASS [13], and Vampire [4] is parametrised
by a simplification ordering on terms. The two most commonly used classes of orderings are
the Lexicographic Path Ordering (LPO) [2] and the Knuth-Bendix Ordering (KBO) [3]. To get
a concrete instance of an ordering from either class one needs to specify a symbol precedence,
a total order on the predicate and function symbols occurring in the given problem.1

It is well known that the choice of a concrete ordering can have a huge impact on the
success or failure of the subsequent proof attempt. For example, giving a high precedence to
symbols introduced during clausification as names of sub-formulas [8], will effectively lead to
their immediate elimination during saturation and thus give rise to an exponential clause set.
Nevertheless, since there is no obvious general way to choose a good ordering in advance, ATPs
typically provide only a few heuristical schemes for the automatic selection of the precedence.
This leaves the majority of the n! possibilities on how to choose a precedence (for a problem
with a signature of size n) inaccessible to a typical theorem proving strategy.

The role of strategies in modern ATPs. Theorem provers typically have a large number
of options for organising proof search and a strategy is obtained by fixing concrete values for
these options. Since there cannot be a universally best strategy for solving all problems, an
ATP may try to predict the best strategy for a given problem based on the problem’s features
[6, 11, 9]. An arguably more robust approach is to split the allotted time amongst a schedule
of strategies and execute them one by one or in parallel [10, 5].2 The success of strategy

1 To fully determine a KBO, one also needs to specify an admissible weight function.
2 Vampire [4] also heavily relies on strategy scheduling, but the details are currently unpublished.



scheduling can be explained by the observation pertaining to first-order theorem proving: if a
strategy solves a problem then it typically solves it within a short amount of time. Thus there
is a demand for methods for discovering new good strategies, especially strategies able solve
previously unsolved problems [12].

Slow search space growth as a guiding principle. Previous work on literal selection
heuristics [1] experimentally established that strategies which lead to a slowly growing search
space tend to be more successful at finding proofs (within the allotted time limit). Here we
propose to use this observation as a general principle for finding good strategies for solving a
particular problem. The idea is to look for strategies which minimize the number of derived
clauses after a certain number of iterations of the saturation loop. In contrast to random
sampling of the strategy space, this approach promises to be a directed search for strategies
that can solve previously unsolved problems!

As a proof of concept, we focus here on the space of possible orderings and, more specifically,
on precedences specifying an ordering, and try to establish the extent to which the proposed
idea can be useful in practice. There is a limiting factor in the fact that a precedence must be
fixed in advance and cannot be changed during proof search. Thus, optimizing the precedence
(exploration) and utilising a precedence shown to perform well to actually solve the problem
(exploitation) must be understood as separate activities, which leads to a refinement of the
question from the title: Can a good proof strategy be evolved in time?

References

[1] K. Hoder, G. Reger, M. Suda, and A. Voronkov. Selecting the selection. In IJCAR 2016, pp.
313–329. Springer International Publishing, 2016.

[2] S. Kamin and J.-J. Levy. Two generalizations of the recursive path ordering. Departement of
Computer Science, University of Illinois, Urbana, IL, 1980.

[3] D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebras, pp. 342–376. Springer
Berlin Heidelberg, 1983.

[4] L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol. 8044
of Lecture Notes in Computer Science, pp. 1–35, 2013.

[5] D. Kühlwein, S. Schulz, and J. Urban. E-MaLeS 1.1. In CADE-24, 2013., vol. 7898 of Lecture
Notes in Computer Science, pp. 407–413. Springer, 2013.

[6] W. McCune and L. Wos. Otter - the CADE-13 competition incarnations. J. Autom. Reasoning,
18(2):211–220, 1997.

[7] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In Handbook of Automated
Reasoning, vol. I, chapter 7, pp. 371–443. Elsevier Science, 2001.

[8] G. Reger, M. Suda, and A. Voronkov. New techniques in clausal form generation. In GCAI 2016,
vol. 41 of EPiC Series in Computing, pp. 11–23. EasyChair, 2016.

[9] S. Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126, 2002.

[10] G. Stenz and A. Wolf. E-SETHEO: an automated3 theorem prover. In TABLEAUX 2000, vol.
1847 of Lecture Notes in Computer Science, pp. 436–440. Springer, 2000.

[11] T. Tammet. Gandalf. J. Autom. Reasoning, 18(2):199–204, 1997.

[12] J. Urban. BliStr: the blind strategymaker. In GCAI 2015, vol. 36 of EPiC Series in Computing,
pp. 312–319. EasyChair, 2015.

[13] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski. SPASS version
3.5. In CADE-22, 2009. Proceedings, vol. 5663 of LNCS, pp. 140–145. Springer, 2009.


