
fernwärmetage 2017

8.-9. März - Loipersdorf

Tagungsband

INHALT

PROGRAMM Programm Mittwoch, 8, M

1)
1
1

VORTRÄGE: BLOCK I

Begrüßung und Präsentation E-Steiermark DI (FH) Mag. (FH) Martin Graf, MBA, Vorstandsdirektor der Energie Steiermark AG	15
Energiepolitik in Brüssel DI Werner Lutsch, <i>Euroheat & Power</i>	27
Key Note Kritik – die Waffe des Kunden im 21. Jahrhundert Thomas Wollner, Geschäftsführer der Rosenberger Gruppe	43
"Clean Energy for all Europeans" Sektionschef Dr. Michael Losch, BMWFW	45
Fernwärmewirtschaft am Abgrund? DI Helmut Ernst, AGFW	47

VORTRÄGE: BLOCK II

Von der Herzgasse in die ganze Welt –	
Produkte für Fernwärme und Fernkälte	69
DI (FH) Christian Buchbauer, MBA, Herz Armaturen GmbH	
Alternative Wärmeversorgung für Stadtentwicklungsgebiete DI Christof Amann, e7 Energie Markt Analyse GmbH	83
Ausfallsreserve Puchstraße – von der Idee bis zur Inbetriebnahme DI Martin Zimmel, <i>Energie Steiermark</i>	9
Power-to-Heat: Langfristige Optionen und Herausforderungen Dr. Lukas Kranzl, <i>TU Wien</i>	103

Power-to-Heat: Langfristige Optionen und Herausforderungen

Lukas Kranzl, TU-Wien, Energy Economics Group

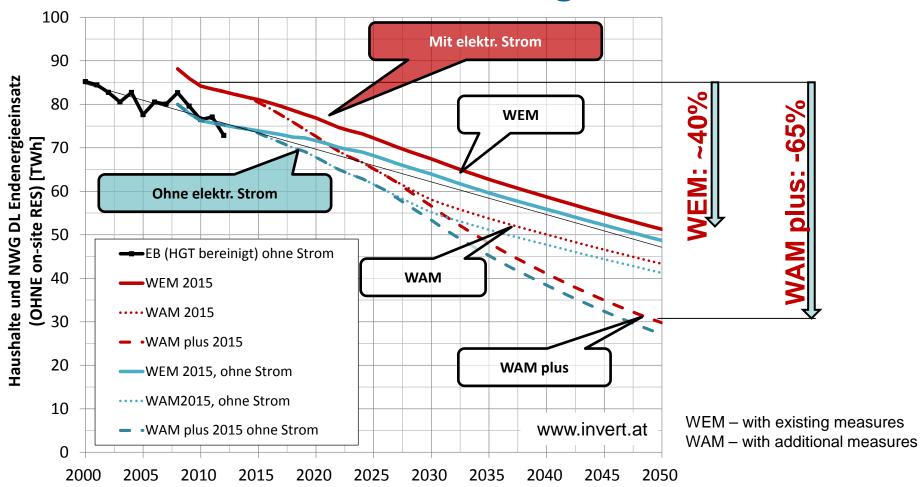
Fernwärmetage 2017 9. März 2017

Fragestellungen:

- Was sind mittel- und langfristige Optionen und Herausforderungen für Power-to-Heat im Fernwärmesektor?
- Was sind wesentliche Einflussfaktoren?
 - Entwicklung Wärmebedarf
 - Anteil der Fernwärme bei der Deckung des Wärmebedarfs
 - Erwartete Änderung der Lastprofile
 - Technologie-Konfigurationen und erzielbare Jahresarbeitszahlen
 - Energiewirtschaftliche und energiepolitische Rahmenbedingungen

Projekt-Hintergrund

- P2H-Pot: Potentiale, Wirtschaftlichkeit und Systemlösungen für Power-to-Heat
 - Gefördert im Rahmen von "STADT DER ZUKUNFT"
 - Projektabschluss: Februar 2017
 - Partner: TUWIEN EEG, IET; Energie AG OÖ Wärme GmbH; ECOP Technologies GmbH; aqotec GmbH; ENERGIANALYSE.DK; e-think
 - http://www.eeg.tuwien.ac.at/P2H-Pot
- progRESsHEAT: Fostering the use of renewable energies for heating and cooling
 - Horizon 2020 Projekt, 2015-2017
 - www.progressheat.eu
- Dissertationen an der Energy Economics Group/TU-Wien
- Neues Projekt: T2LowEx Transformation von konventionellen
 Wärmenetzen in Richtung Niedertemperaturnetze durch sekundärseitige
 Maßnahmen (2017-2020)



Zukünftige Entwicklung des Wärmebedarfs?

Energiebedarfsentwicklung

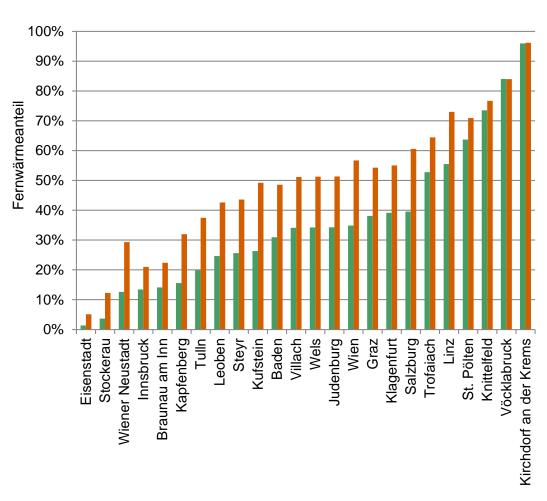
Entwicklung des Endenergieeinsatzes für Heizen und Warmwasserbereitstellung bis 2050

Quelle: Energieszenarien bis 2050: Wärmebedarf der Kleinverbraucher. Erstellung von energiewirtschaftlichen Inputparametern und Szenarien zur Erfüllung der Berichtspflichten des Monitoring Mechanisms. Wien. 2015.


Zukünftiger Anteil der Fernwärme?

Zukünftiger Anteil Fernwärme?

1. Ausgangspunkt: www.austrian-heatmap.gv.at


Optimierung Fernwärmeausbau bis 2050

Jährliche Ausbauplanung (Lineares Optimierungsmodell)

- Vollkostenvergleich für Ausbau mit Referenztechnologie
 - Investitionskosten Kessel für Referenztechnologie / Hausanschluss Fernwärme
 - Betriebskosten
 - o Investitionskosten für Bau von Fernwärmenetz
 - Energiepreis Referenztechnologie und Wärmebedarfskosten für Fernwärme
- Kesseltauschrate im Gebäudebestand definiert das jährliche Maximum für den Ausbau

Ergebnisse für das WEM-Szenario

- Zunahme von Fernwärme in allen Regionen, in denen der Initiale Anteil unter 60 % liegt
- Fokus bei bestehenden Regionen auf Verdichtung bereits angeschlossener Gebiete
- Gesamtanteil von Fernwärme steigt von 18% im Jahr 2015 auf 27 % im Jahr 2050

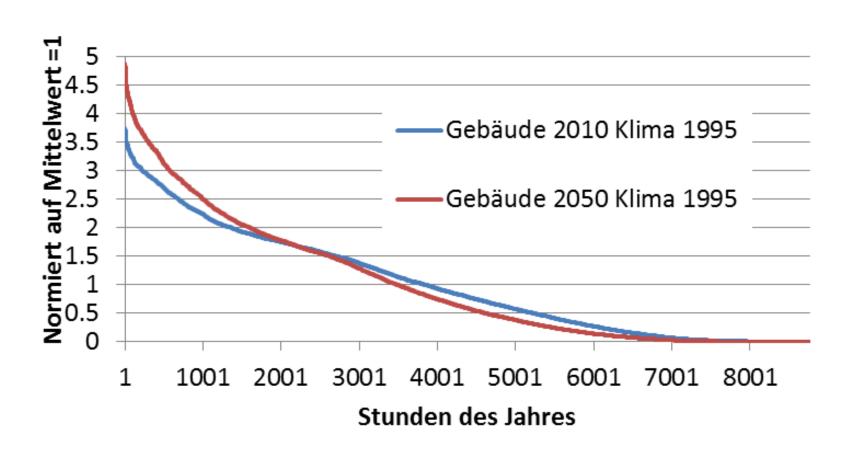
2015

2050

Zukünftiger Anteil Fernwärme?

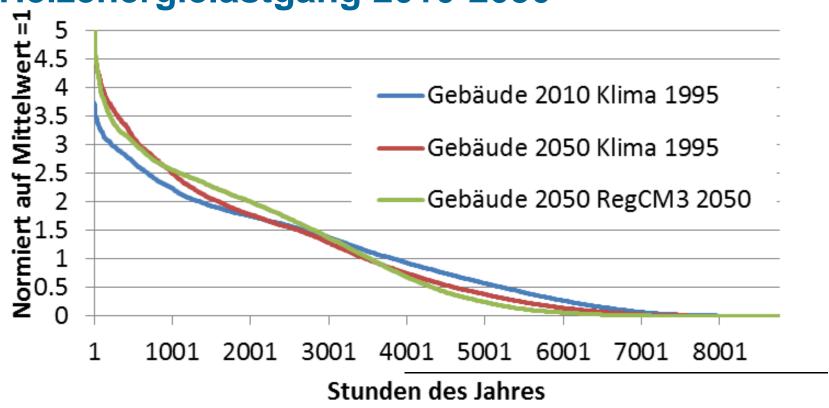
Ergebnis für ausgewählte Regionen und Österreich

	WEM-Szenario				WAMplus-Szenario		
Regionen und Fernwärmebedarf [GWh]	2015	2020	2030	2050	2020	2030	2050
Wien	5,914	7,166	9,686	8,023	7,012	8,594	5,303
Linz	1,171	1,307	1,136	864	1,197	924	526
Graz	1,073	1,263	1,462	1,152	1,234	1,243	741
Salzburg	722	837	963	732	818	808	460
Kirchdorf an der Krems	60	57	49	38	55	41	24
Braunau am Inn	28	33	40	32	32	29	18
Fernwärme restliche Regionen	8,303	8,777	9,408	7,266	8,515	8,376	5,354
Gesamt Fernwärmebedarf Österreich [GWh]	17,271	19,439	22,744	18,105	18,863	20,017	12,425
Gesamt Wärmebedarf Österreich [GWh]	99,605	95,643	83,359	65,856	92,935	71,434	42,363
Anteil Fernwärme an Gesamtwärmebedarf [%]	17%	20%	27%	27%	20%	28%	29%



Zukünftig erwartete Änderung des Lastgangs?

Änderung Lastgang


Dauerlinie normierter Fernwärme-Heizenergielastgang 2010-2050

Änderung Lastgang

Dauerlinie normierter Fernwärme-Heizenergielastgang 2010-2050

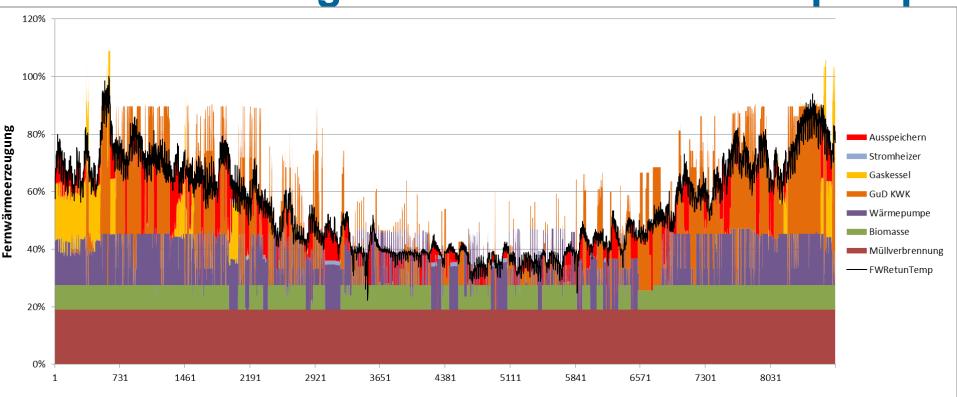
Volllaststunden Heizwärmebedarf:

	· · · · · · · · · · · · · · · · ·		
	bedarf		
Gebäude 2010 Klima 1995	2332		
Gebäude 2050 Klima 1996	1795		
Gebäude 2050 RegCM3 2050	1700		

VLS Heizenergie-

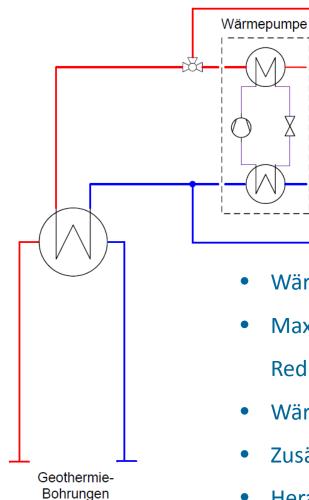
Wirtschaftlichkeit von P2H?

Wärmepumpen in der Fernwärme in zukünftigem Energiesystem


- Anwendung des Energiesystem-Optimierungsmodells HiREPS
- Energiepreis-Szenario 2050 PRIMES-Referenz, ohne Netzgebühren etc
- Szenario mit 84% CO2-Reduktion bis 2050 (Summe Deutschland und Österreich)

Exemplarische Ergebnisse:

- Fall einer Rauchgaskondensationswärmepumpe; Wärmenetz ohne Müllverbrennung und industrielle Abwärme
- Fall der Integration von Geothermie und Wärmepumpe


Simulation: FW Netze mit KWK und Rauchgaskondinations-Wärmepumpe

- FW -VL Temperaturen: 70 90°C, RL Temp.: 55-63°C
- Wärmepumpe: 22% der FW-Erz, AZ 5.8 mit 5300 VLS
- Stromheizer: 0.2% der FW-Erz, 768 VLS
- Speichergröße: 32h des mittleren Winterwärmebedarfes

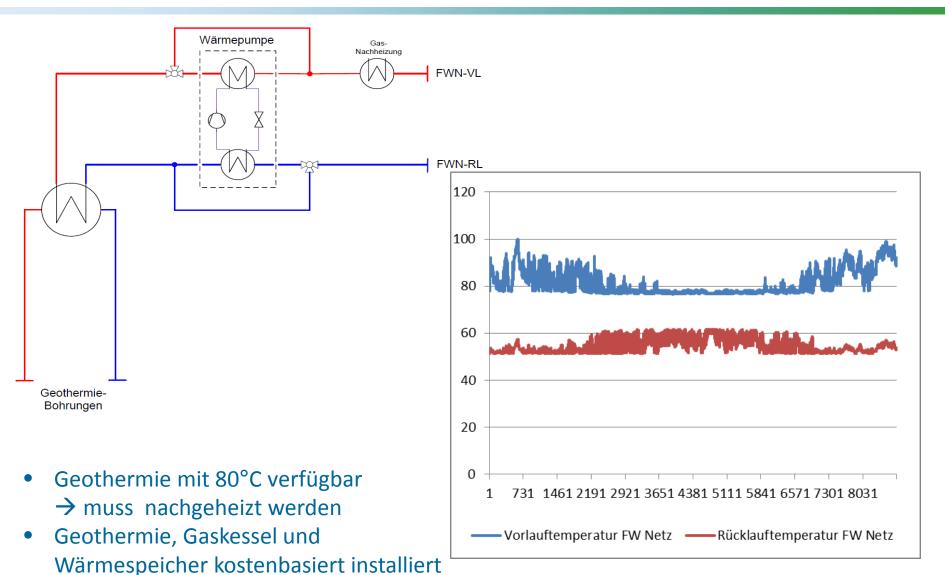
Geothermie und Wärmepumpe

WP kann sowohl im Speicher als auch wie im Schema betrieben werden.

- Wärmequelle = Netzrücklauf Abkühlung des Netzrücklaufes
- Maximierung der Ausnutzung der Geothermiebohrung –
 Reduktion der Reinjektionstemperatur

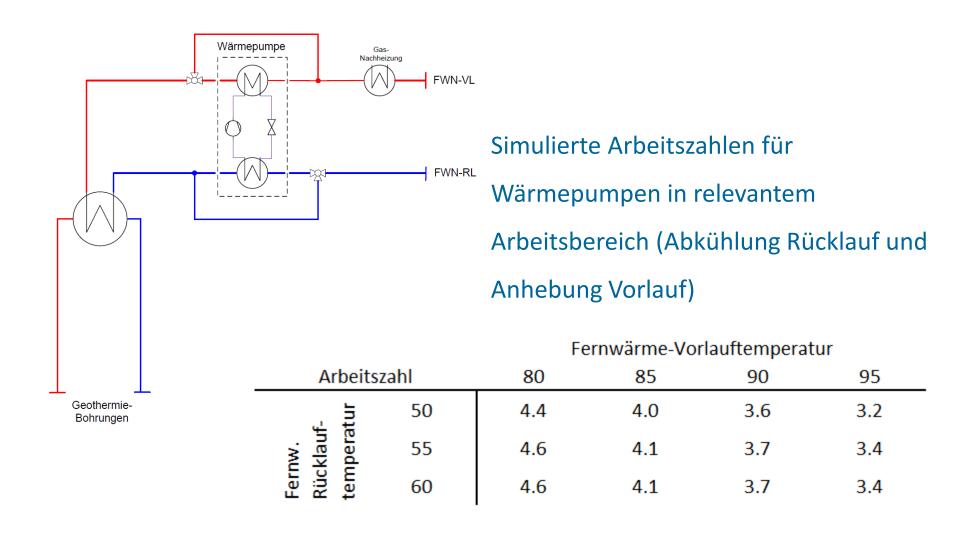
FWN-VL

FWN-RL

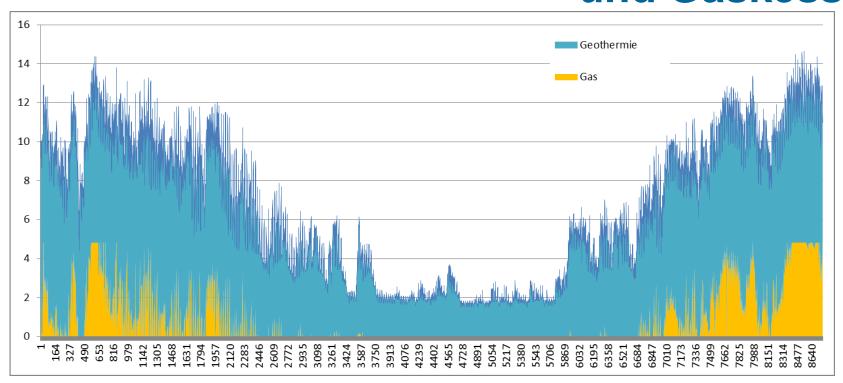

Wärmesenke = Vorlauf des Wärmenetzes

Gas-Nachheizung

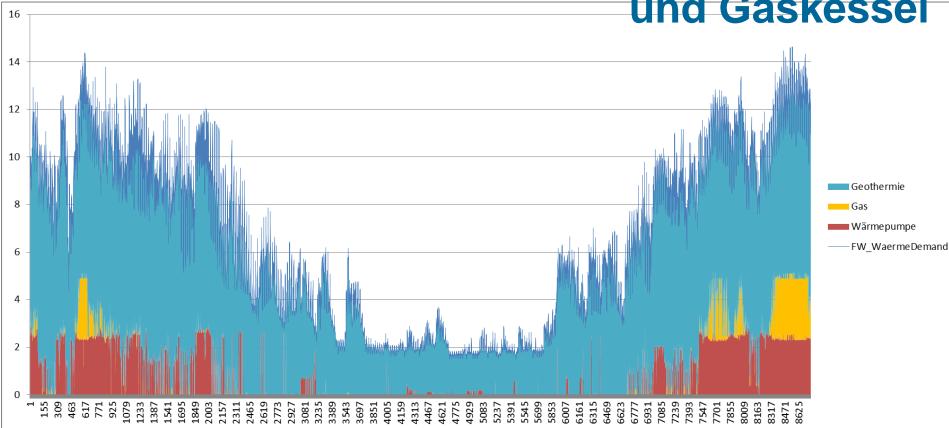
- Zusätzliche Energieerzeugung von ca. 2 MW
- Herausforderung: hohe Temperatur der Wärmesenke –
 Leistungszahl der Wärmepumpe, neue WP-Technologien


Geothermie und Wärmepumpe

• Wärmespeicher (95°C) mit 19 Speicherschichten (5°C Stufen) simuliert


Geothermie und Wärmepumpe

Quelle: Johannes Nagler, TU-Wien, IET im Rahmen des Projekts P2H-Pot

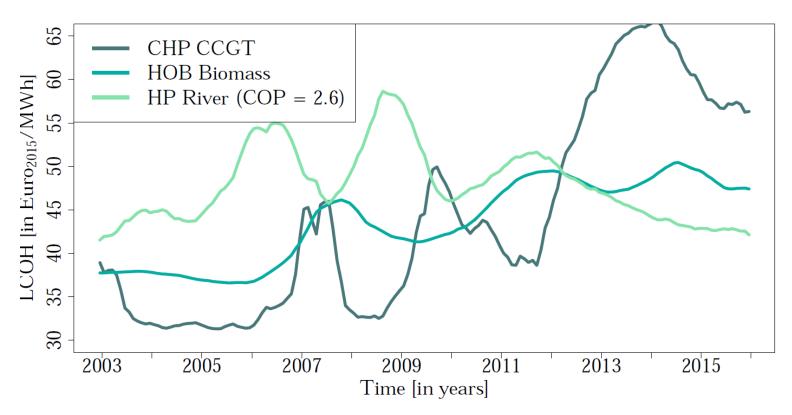

Simulation: FW Netz mit Geothermie und Gaskessel

- Speichergröße: 1200 m3 oder 6h des mittleren Winterwärmebedarfes
- Gaskessel: 4.8MW, 1600 VLS und 7.9 GWh (=14% der FW Erzeugung)

Simulation: FW Netz mit Geothermie und Gaskessel

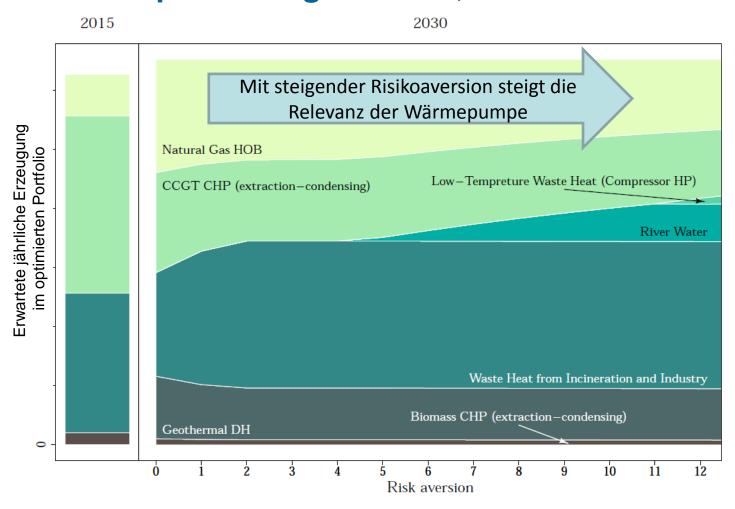
- Wärmepumpe: AZ 4,1 mit 3200 VLS
- Speichergröße: 3500 m3 oder 17h des mittleren Winterwärmebedarfes
- Gaskessel: 2,6 MW, 800 VLS und 2.1 GWh
- 5,8 GWh Gas eingespart = 10% des FW Bed., jetzt Geo+WP

Ergebnisse aus den HiReps-Modell-Rechnugen


- In den dargestellten FW Netztypen erreichen Wärmepumpen 10-22% Anteil an der FW Erzeugung.
- Die Arbeitszahl hängt von den VL,RL und Quelltemperaturen ab: in den analysierte FW Netztypen AZ: 4.1 – 5.8
- Elektroheizkessel tragen nur <0.2% zur FW Erzeugung bei.
- Wärmespeicher werden in der Optimierung so dimensioniert, dass sie 17-32 h des mittleren Winterfernwärmebedarfes speichern können.

P2H zur Diversifizierung des Fernwärmeerzeugungsportfolios

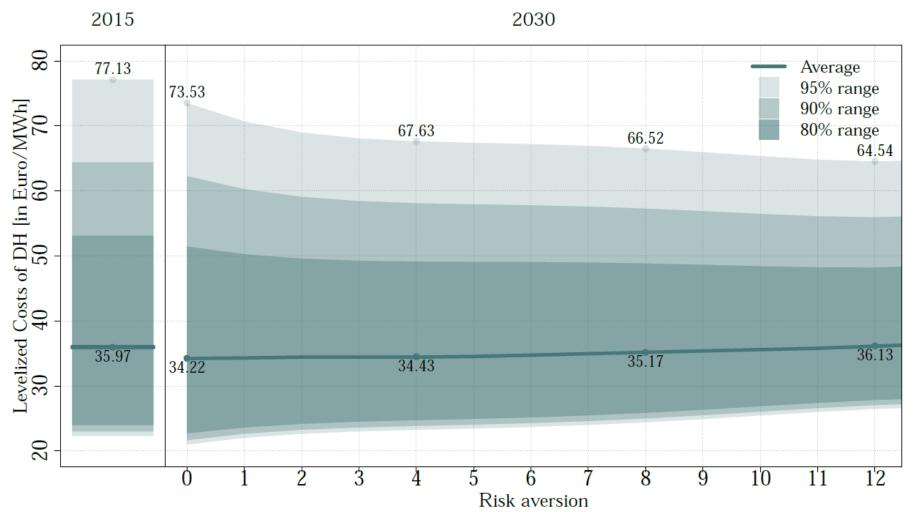
Warum ist Diversifikation essentiell?


Average costs of DH generation with a utilization of **5.000 full** load hours.

Quelle: Dissertation Nikolaus Rab, "Modern Portfolio Theory applied to District Heating Generation Expansion Planning", geplante Veröffentlichung April 2017

Wärmepumpen im Portfolio?

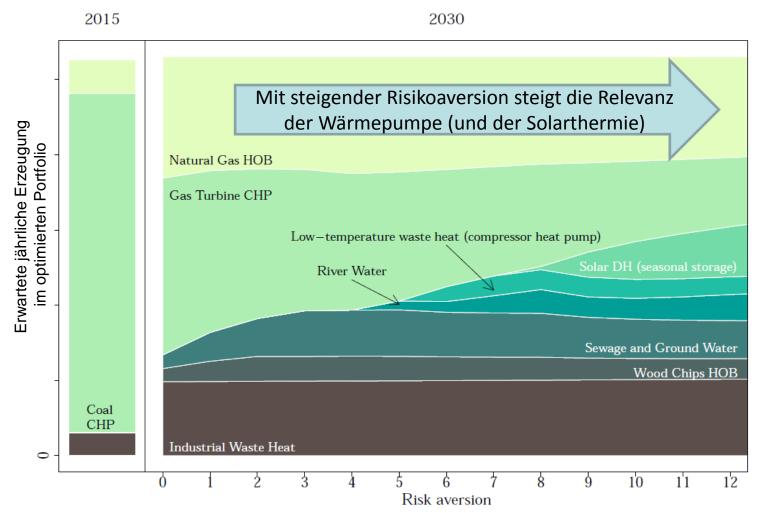
Unsicherheit und Risikoaversion, dynamische, stochastische Optimierung bis 2040, z.B. Wien



Quelle: Dissertation Nikolaus Rab, "Modern Portfolio Theory applied to District Heating Generation Expansion Planning", geplante Veröffentlichung Anfang 2017

Wärmepumpen im Portfolio?

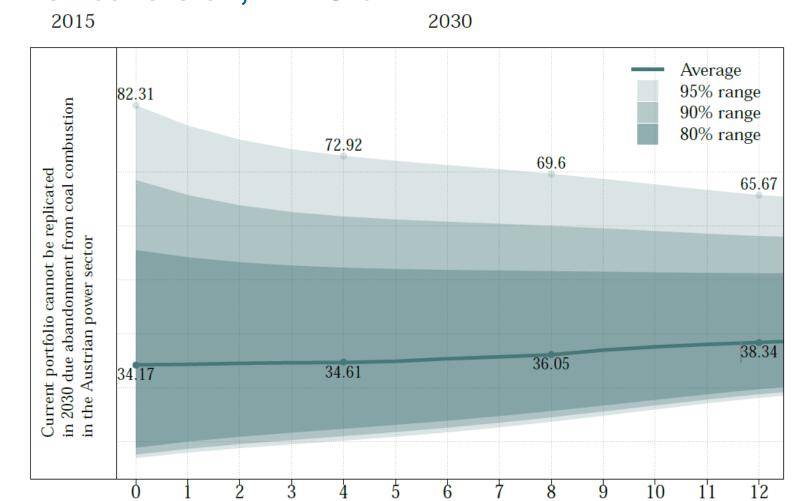
Verteilung der Erzeugungskosten für verschiedene Stufen der Risikoaversion, z.B. Wien



Quelle: Dissertation Nikolaus Rab, "Modern Portfolio Theory applied to District Heating Generation Expansion Planning", geplante Veröffentlichung Anfang 2017

Wärmepumpen im Portfolio?

Unsicherheit und Risikoaversion, dynamische, stochastische Optimierung bis 2040, z.B. Graz


Quelle: Dissertation Nikolaus Rab, "Modern Portfolio Theory applied to District Heating Generation Expansion Planning", geplante Veröffentlichung Anfang 2017

Levelized Costs of DH [in Euro/MWh]

Wärmepumpen im Portfolio?

Verteilung der Erzeugungskosten für verschiedene Stufen der Risikoaversion, z.B. Graz

Risk aversion
Quelle: Dissertation Nikolaus Rab, "Modern Portfolio Theory applied to District Heating Generation Expansion Planning", geplante Veröffentlichung Anfang 2017

Schlussfolgerungen

Schlussfolgerungen

- Power to Heat könnte mittel- und langfristig eine größere Rolle über den Regelenergiemarkt hinaus einnehmen
 - Rolle von P2H zur Diversifizierung der Fernwärme-Erzeugungsportfolios
 - P2H ist günstiger als viele andere Flexibilitätsoptionen im Stromsektor
- Voraussetzung: geänderter Rahmen hinsichtlich Netzentgelten, Steuern und Abgaben?
- Nutzen-statt-Abregeln Neue Regelung im deutschen Energiewirtschaftsgesetz 2017?
- Entwicklungen in Richtung Niedertemperatur-Fernwärme

Weitere Informationen:

Lukas Kranzl

TU-Wien, Energy Economics Group

email: lukas.kranzl@tuwien.ac.at

tel: +43 1 58801 370351

web: www.eeg.tuwien.ac.at

www.invert.at
www.e-think.ac.at
www.progressheat.eu
www.hotmaps-project.eu
www.austrian-heatmap.gv.at