
A Unifying Principle for
Clause Elimination in First-Order Logic?

Benjamin Kiesl and Martin Suda

Institute of Information Systems, Vienna University of Technology

Abstract. Preprocessing techniques for formulas in conjunctive normal
form play an important role in first-order theorem proving. To speed up
the proving process, these techniques simplify a formula without affect-
ing its satisfiability or unsatisfiability. In this paper, we introduce the
principle of implication modulo resolution, which allows us to lift sev-
eral preprocessing techniques—in particular, several clause-elimination
techniques—from the SAT-solving world to first-order logic. We analyze
confluence properties of these new techniques and show how implication
modulo resolution yields short soundness proofs for the existing first-
order techniques of predicate elimination and blocked-clause elimination.

1 Introduction

Automated theorem provers often have to deal with formulas that contain a
considerable amount of redundant information. To speed up the proving pro-
cess, they therefore usually employ dedicated preprocessing methods that aim
at simplifying formulas as much as possible [1, 2]. Since most provers are based
on proof systems that require formulas to be in conjunctive normal form (CNF),
preprocessing techniques operating on the clause level play a particularly impor-
tant role. Research in both the SAT and the QSAT community has given rise to
a wide variety of CNF preprocessing techniques that significantly improve the
performance of modern solvers [3], but for many of these techniques it was not
clear whether they could be lifted to the level of first-order logic.

In this paper, we address this issue and introduce the principle of implica-
tion modulo resolution—a first-order generalization of quantified implied outer
resolvents as introduced by Heule et al. [4] in the context of QSAT solving.
Informally, a clause C is implied modulo resolution by a CNF formula F if C
contains a literal such that all resolvents upon this literal are implied by F . If C
is implied modulo resolution by F , then C can be added to or removed from F
without affecting its satisfiability or unsatisfiability.

The importance of implication modulo resolution lies in the fact that it allows
us to construct soundness proofs for numerous preprocessing techniques. We

? This work has been supported by the Austrian Science Fund (FWF) under projects
W1255-N23 and S11409-N23, by the ERC Starting Grant 2014 SYMCAR 639270,
and by the National Science Foundation (NSF) under grant number CCF-1618574.

therefore use the principle of implication modulo resolution to lift several SAT-
preprocessing techniques to first-order logic. These techniques include, besides
others, clause-elimination procedures for covered clauses (CC) [5], asymmetric
tautologies (AT) [6], resolution asymmetric tautologies (RAT) [7], and resolution
subsumed clauses (RS) [7]. Moreover, we show how the use of implication modulo
resolution yields short soundness proofs for the existing first-order preprocessing
techniques of predicate elimination [2] and blocked-clause elimination [8, 9].

Covered clauses are a generalization of the above-mentioned blocked clauses.
To detect whether a clause is covered, one first adds a number of so-called cov-
ered literals to it and then checks whether the resulting clause is a blocked
clause. Covered-clause elimination is more powerful than blocked-clause elimi-
nation in the sense that it implicitly removes all blocked clauses from a formula.
As blocked-clause elimination leads to significant performance improvements of
first-order theorem provers [8] and since the elimination of covered clauses has
shown to speed up modern SAT solvers [10], we expect covered-clause elimina-
tion to further boost prover performance.

Asymmetric tautologies and resolution asymmetric tautologies owe their pop-
ularity to the fact that their addition and elimination can simulate most of the
reasoning techniques employed by state-of-the-art SAT solvers [7]. Due to this,
they provide the basis for the famous DRAT proof system [11]—the de-facto
standard for unsatisfiability proofs in practical SAT solving. Finally, the elimi-
nation of resolution subsumed clauses is another promising technique from the
SAT world whose soundness on the first-order level can be easily shown using
the principle of implication modulo resolution.

An important property of clause-elimination techniques is confluence. Intu-
itively, confluence of a technique tells us that the order in which we eliminate
clauses from a formula is not relevant to the final outcome of the elimination
procedure. For instance, assume we are given a formula F from which we elim-
inate covered clauses until we finally arrive at some subformula F ′ that does
not contain any more covered clauses. If covered-clause elimination is confluent,
which it indeed is, we could have performed the clause-elimination steps in a
different order and yet still arrived at F ′. We analyze confluence properties of
our newly introduced techniques.

The main contributions of this paper are as follows: (1) We introduce the
principle of implication modulo resolution. (2) We use implication modulo reso-
lution to lift several clause-elimination techniques from the SAT world to first-
order logic. (3) We analyze confluence properties of the new techniques. (4) We
show how implication modulo resolution yields short soundness proofs for exist-
ing preprocessing techniques from the literature.

2 Preliminaries

We assume the reader to be familiar with the basics of first-order logic. As
usual, formulas of a first-order language L are built using predicate symbols,
function symbols, and constants from some given alphabet together with logical

connectives, quantifiers, and variables. We use the letters a, b, c, . . . for constants
and x, y, z, u, v, . . . for variables (possibly with subscripts). An expression (i.e., a
term, literal, formula, etc.) is ground if it contains no variables.

A literal is an atom or the negation of an atom, and a disjunction of literals
is a clause. For a literal L, we define L̄ = ¬P if L = P and L̄ = P if L = ¬P ,
where P is an atom. In the former case, L is of positive polarity ; in the latter
case, it is of negative polarity. If not stated otherwise, formulas are assumed to
be in conjunctive normal form (CNF), i.e., a conjunction of clauses. Without loss
of generality, clauses are assumed to be variable disjoint. Variables occurring in
a CNF formula are implicitly universally quantified. We treat CNF formulas as
sets of clauses and clauses as multisets of literals. A clause is a tautology if it
contains both L and L̄ for some literal L.

Regarding the semantics, we use the standard notions of interpretation,
model, validity, satisfiability, logical equivalence, and satisfiability equivalence.
A propositional assignment is a mapping from ground atoms to the truth val-
ues 1 (true) and 0 (false). Accordingly, a set of ground clauses is propositionally
satisfiable if there exists a propositional assignment that satisfies F under the
usual semantics for the logical connectives. We sometimes write propositional as-
signments as sequences of literals where a positive (negative) polarity of a literal
indicates that its corresponding atom is assigned to true (false, respectively).

A substitution is a mapping from variables to terms that agrees with the
identity function on all but finitely many variables. Let σ be a substitution. The
domain, dom(σ), of σ is the set of variables for which σ(x) 6= x. The range,
ran(σ), of σ is the set {σ(x) | x ∈ dom(σ)}. A substitution is ground if its range
consists only of ground terms. As common, Eσ denotes the result of applying σ to
the expression E. If Eσ is ground, it is a ground instance of E. Juxtaposition of
substitutions denotes their composition, i.e., στ stands for τ ◦σ. The substitution
σ is a unifier of the expressions E1, . . . , En if E1σ = · · · = Enσ. For substitutions
σ and τ , we say that σ is more general than τ if there exists a substitution λ
such that σλ = τ . Furthermore, σ is a most general unifier (mgu) of E1, . . . , En

if, for every unifier τ of E1, . . . , En, σ is more general than τ . It is well-known
that whenever a set of expressions is unifiable, there exists an idempotent most
general unifier of this set. In the rest of the paper, we use a popular variant of
Herbrand’s Theorem [12]:

Theorem 1. A formula F is satisfiable if and only if every finite set of ground
instances of clauses in F is propositionally satisfiable.

Next, we introduce a formal notion of clause redundancy. Intuitively, a clause
C is redundant w.r.t. a formula F if its removal from F does not affect the
satisfiability or unsatisfiability of F [4]:

Definition 1. A clause C is redundant w.r.t. a formula F if F \ {C} and F
are satisfiability equivalent.

Note that this notion of redundancy does not require logical equivalence of
F \ {C} and F and that it is different from the Bachmair-Ganzinger notion

of redundancy usually employed within the context of ordered resolution [13].
It provides the basis for clause-elimination procedures. Note also that the re-
dundancy of a clause C w.r.t. a formula F can be shown by proving that the
satisfiability of F \ {C} implies the satisfiability of F .

Finally, given two clauses C = L1 ∨ · · · ∨Lk ∨C ′ and D = N1 ∨ · · · ∨Nl ∨D′
such that the literals L1, . . . , Lk, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause
C ′σ∨D′σ is said to be a resolvent of C and D. If k = l = 1, it is a binary resolvent
of C and D upon L1.

3 Implication Modulo Resolution

In this section, we introduce the central concept of this paper—the principle
of implication modulo resolution for first-order logic. We use the results of this
section in subsequent sections to prove the soundness of various first-order pre-
processing techniques. The definition of implication modulo resolution relies on
the notion of L-resolvents:

Definition 2. Given two clauses C = L ∨ C ′ and D = N1 ∨ · · · ∨Nl ∨D′ such
that the literals L, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause C ′σ ∨ D′σ
is called L-resolvent of C and D.

Example 1. Let C = P (x)∨Q(x), D = ¬P (y)∨¬P (z)∨R(y, z), and L = P (x).
Then, the substitution σ = {y 7→ x, z 7→ x} is an mgu of P (x), P (y), and P (z).
Therefore, Q(x) ∨R(x, x) is an L-resolvent of C and D. ut

We can now define what it means for a clause to be implied modulo resolution:

Definition 3. A clause C is implied modulo resolution upon L ∈ C by a for-
mula F if all L-resolvents of C, with clauses in F \{C}, are implied by F \{C}.

We say that a clause C is implied modulo resolution by F if F implies C modulo
resolution upon one of its literals.

Example 2. Let C = P (x) ∨Q(x) and

F = {P (x) ∨Q(x),

¬P (y) ∨R(y),

R(z) ∨ S(z),

¬S(u) ∨Q(u)}.

There is one P (x)-resolvent of C, namely Q(x) ∨R(x), obtained by resolving C
with ¬P (y) ∨R(y). Clearly, this resolvent is implied by the clauses R(z) ∨ S(z)
and ¬S(u) ∨Q(u). Therefore, F implies C modulo resolution upon P (x). ut

In the following, we prove that implication modulo resolution implies redun-
dancy, i.e., if a clause C is implied modulo resolution by a formula F , then
C is redundant w.r.t. F . The proof relies on Herbrand’s Theorem (Theorem 1),

which tells us that a formula F is satisfiable if and only if all finite sets of ground
instances of clauses in F are propositionally satisfiable. To prove that the satisfi-
ability of F \{C} implies the satisfiability of F , we show how to obtain satisfying
propositional assignments for finite subsets of ground instances of clauses in F
from assignments that satisfy the ground instances of clauses in F \{C}. In order
to do so, we modify the assignments by flipping (interchanging) the truth values
of certain ground literals. We illustrate this by the following example:

Example 3. Consider C and F from Example 2 and let P (a)∨Q(a) be a ground
instance of C, and F ′ = {P (a)∨Q(a),¬P (a)∨R(a), R(a)∨S(a), ¬S(a)∨Q(a)}
a finite set of ground instances of F . Clearly, F ′\{C ′} is propositionally satisfied
by the assignment α = ¬P (a)R(a)¬S(a)¬Q(a), but α falsifies C ′. However, we
can turn α into a satisfying assignment of P (a)∨Q(a) by flipping the truth value
of P (a)—the instance of the literal upon which C is implied modulo resolution.
The resulting assignment α′ = P (a)R(a)¬S(a)¬Q(a) could possibly falsify the
clause ¬P (a)∨R(a) since it contains ¬P (a) which is not satisfied anymore. But,
the clause stays true since R(a) is satisfied by α′. Therefore, α′ satisfies F ′. ut

In the above example, it is not a coincidence that ¬P (a) ∨R(a) is still satisfied
after flipping the truth value of P (a). The following lemma tells us that this is
actually guaranteed by the fact that F implies C modulo resolution upon P (x):

Lemma 2. Let C be a clause that is implied modulo resolution upon L by F .
Let furthermore α be an assignment that propositionally satisfies all ground in-
stances of clauses in F \ {C} but falsifies a ground instance Cλ of C. Then, the
assignment α′, obtained from α by flipping the truth value of Lλ, still satisfies
all ground instances of clauses in F \ {C}.

Proof. Let Dτ be a ground instance of a clause D ∈ F \ {C} and suppose α
satisfies Dτ . If Dτ does not contain L̄λ, it is trivially satisfied by α′. Assume
therefore that L̄λ ∈ Dτ and let N1, . . . , Nl be all the literals in D such that
Niτ = L̄λ for 1 ≤ i ≤ l. Then, the substitution λτ = λ ∪ τ (note that C
and D are variable disjoint by assumption) is a unifier of L, N̄1, . . . , N̄l. Hence,
R = (C \ {L})σ ∨ (D \ {N1, . . . , Nl})σ, with σ being an mgu of L, N̄1, . . . , N̄l, is
an L-resolvent of C and thus implied by F \ {C}.

As σ is most general, it follows that there exists a substitution γ such that
σγ = λτ . Therefore,

(C \ {L})σγ ∨ (D \ {N1, . . . , Nl})σγ
= (C \ {L})λτ ∨ (D \ {N1, . . . , Nl})λτ
= (C \ {L})λ ∨ (D \ {N1, . . . , Nl})τ

is a ground instance of R and so it must be satisfied by α. Thus, since α falsifies
Cλ, it must satisfy a literal L′τ ∈ (D \ {N1, . . . , Nl})τ . But, as all the literals in
(D \ {N1, . . . , Nl})τ are different from L̄λ, flipping the truth value of Lλ does
not affect the truth value of L′τ . It follows that α′ satisfies L′τ and thus it
satisfies Dτ . ut

We can therefore satisfy a ground instance Cλ of C without falsifying ground
instances of clauses in F \ {C}, by flipping the truth value of Lλ—the ground
instance of the literal L upon which C is implied modulo resolution. Still, there
could be other ground instances of C that contain the complement L̄λ of Lλ.
That this is not a serious problem is shown in the proof of our main result:

Theorem 3. If a clause C is implied modulo resolution by a formula F , it is
redundant w.r.t. F .

Proof. Assume that F implies C modulo resolution upon L ∈ C and that
F \ {C} is satisfiable. We show that F is satisfiable. By Herbrand’s theorem
(Theorem 1), it suffices to show that every finite set of ground instances of
clauses in F is propositionally satisfiable. Let therefore F ′ and FC be finite sets
of ground instances of clauses in F \{C} and {C}, respectively. Since F \{C} is
satisfiable, there exists an assignment α that propositionally satisfies all ground
instances of clauses in F \ {C} and thus it clearly satisfies F ′. Assume now that
α falsifies some ground instances of C that are contained in FC .

By Lemma 2, for every falsified ground instance Cλ of C, we can turn α into
a satisfying assignment of Cλ by flipping the truth value of Lλ, and this flipping
does not falsify any ground instances of clauses in F \ {C}. The only clauses
that could possibly be falsified are other ground instances of C that contain the
literal L̄λ. But, once an instance Lτ of L is true in a ground instance Cτ of C, Lτ
cannot (later) be falsified by making other instances of L true. As there are only
finitely many clauses in FC , we can therefore turn α into a satisfying assignment
of F ′∪FC by repeatedly making ground instances of C true by flipping the truth
values of their instances of L. Hence, all finite sets of ground instances of clauses
in F are propositionally satisfiable and so F is satisfiable. ut

In the following, we use Theorem 3 to prove the soundness of several first-
order preprocessing techniques. We start with blocked-clause elimination, since
both resolution asymmetric tautologies (RATs) and covered clauses—which we
introduce later—can be seen as generalizations of blocked clauses.

4 Blocked Clauses

Blocked clauses have been introduced by Kullmann [14], and their elimination
significantly improves the performance of SAT [9] and QSAT solvers [15, 16].
Also the first-order variant of blocked-clause elimination has shown to speed up
automated theorem provers, especially on satisfiable formulas [8]. In proposi-
tional logic, a clause C is blocked in a formula F if it contains a literal L such
that all binary resolvents of C upon L, with clauses in F \ {C}, are tautologies.
In first-order logic, the notion of binary resolvents is replaced by L-resolvents [8]:

Definition 4. A clause C is blocked by a literal L ∈ C in a formula F if all
L-resolvents of C, with clauses in F \ {C}, are tautologies.

Example 4. Let C = P (x) ∨ ¬Q(x) and F = {P (x) ∨ ¬Q(x), ¬P (y) ∨ Q(y)}.
There is only one P (x)-resolvent of C, namely the tautology ¬Q(x) ∨ Q(x),
obtained by using the mgu σ = {y 7→ x}. Therefore, C is blocked in F . ut

Since tautologies are trivially implied by every formula, blocked clauses are im-
plied modulo resolution. The redundancy of blocked clauses, and therefore the
soundness of blocked-clause elimination, is thus a consequence of the fact that
implication modulo resolution ensures redundancy (Theorem 3):

Theorem 4. If a clause is blocked in a formula F , it is redundant w.r.t. F .

5 Asymmetric Tautologies and RATs

In this section, we first discuss the propositional notions of asymmetric tau-
tologies and resolution asymmetric tautologies before lifting them to first-order
logic. We start with asymmetric tautologies, which we use later to define reso-
lution asymmetric tautologies. An asymmetric tautology is a clause that can be
turned into a tautology by repeatedly adding so-called asymmetric literals to it.
In propositional logic, a literal L is an asymmetric literal w.r.t. a clause C in a
formula F if there exists a clause D∨ L̄ ∈ F \{C} such that D subsumes C, i.e.,
D ⊆ C. The addition of an asymmetric literal L to a clause C yields a clause
that is logically equivalent in the sense that F \ {C} |= C ≡ C ∨ L [6].

Example 5. Let C = P and F = {P, P ∨ Q, ¬Q ∨ R, ¬Q ∨ ¬R ∨ P}. Then,
since the subclause P of P ∨ Q subsumes C, the literal ¬Q is an asymmetric
literal w.r.t. C. We thus add it to C obtain C1 = P ∨ ¬Q. We then use ¬Q ∨R
for adding ¬R to C1 and obtain C2 = P ∨ ¬Q ∨ ¬R. Finally, we add ¬P to
C2 by using ¬Q ∨ ¬R ∨ P , and so we end up with C3 = P ∨ ¬Q ∨ ¬R ∨ ¬P ,
which is a tautology. Therefore, C is an asymmetric tautology in F . Moreover,
by transitivity, F \ {C} |= C ≡ C3 and thus C is redundant w.r.t. F . ut

To recap, in first-order logic, a clause C subsumes a clause D if there exists
a substitution λ such that Cλ ⊆ D. This motivates the following first-order
variants of asymmetric literals and asymmetric tautologies.

Definition 5. A literal L is an asymmetric literal w.r.t. a clause C in a for-
mula F if there exist a clause D ∨ L̄′ ∈ F \ {C} and a substitution λ such that
Dλ ⊆ C and L = L̄′λ.

Example 6. Consider the clause C = P (x) ∨Q(x) ∨ R(x) and the formula F =
{P (x)∨Q(x)∨R(x), P (y)∨Q(y)∨¬S(y)}. Then, S(x) is an asymmetric literal
w.r.t. C in F since, for λ = {y 7→ x}, (P (y)∨Q(y))λ ⊆ C and S(x) = S(y)λ. ut

Like its propositional variant, first-order asymmetric-literal addition is harmless:

Lemma 5. Let F be a formula, C a clause, and L an asymmetric literal w.r.t.
C in F . Then, F \ {C} |= C ≡ C ∨ L.

Proof. Clearly, C → C∨L is valid. It therefore suffices to prove that C is implied
by (F \ {C}) ∪ {C ∨ L}. Since L is an asymmetric literal w.r.t. C in F , there
exist a clause D ∨ L′ ∈ F \ {C} and a substitution λ such that D′λ ⊆ C and
L̄′λ = L. But then C is a binary resolvent of C ∨ L and Dλ ∨ L′λ upon L. It
follows that C is implied by (F \ {C}) ∪ {C ∨ L}. ut

An asymmetric tautology is now a clause that can be turned into a tautology
by repeatedly adding asymmetric literals (asymmetric-literal addition, ALA):

Definition 6. A clause C is an asymmetric tautology in a formula F if there
exists a sequence L1, . . . , Ln of literals such that each Li is an asymmetric literal
w.r.t. C ∨ L1 ∨ · · · ∨ Li−1 in F \ {C} and C ∨ L1 ∨ · · · ∨ Ln is a tautology.

Example 7. Consider the clause C = Q(x) ∨ R(x) and the following formula
F = {Q(x)∨R(x), R(z)∨S(z), ¬S(u)∨Q(u)}. The subclause R(z) of R(z)∨S(z)
subsumes R(x) via {z 7→ x} and so ¬S(x) is an asymmetric literal w.r.t. to C. We
add it and obtain the clause Q(x) ∨ R(x) ∨ ¬S(x). After this, ¬S(u) subsumes
¬S(x) via {u 7→ x} and thus ¬Q(x) can be added to obtain the tautology
Q(x) ∨R(x) ∨ ¬S(x) ∨ ¬Q(x). Thus, C is an asymmetric tautology in F . ut

Theorem 6. If C is an asymmetric tautology in F , it is implied by F \ {C}.

Proof. Suppose C is an asymmetric tautology in F , i.e., there exists a sequence
L1, . . . , Ln of literals such that each Li is an asymmetric literal w.r.t. the clause
C ∨ L1 ∨ · · · ∨ Li−1 in F \ {C} and C ∨ L1 ∨ · · · ∨ Ln is a tautology. By the
repeated application of Lemma 5 (an easy induction argument), it follows that
F \{C} |= C ≡ C∨L1∨· · ·∨Ln. But then, since C∨L1∨· · ·∨Ln is a tautology,
it trivially holds that F \ {C} |= C ∨L1 ∨ · · · ∨Ln. Therefore, F \ {C} |= C. ut

Unlike in propositional logic, the first-order variant of asymmetric-literal addi-
tion is not guaranteed to terminate. Consider the following example:

Example 8. Let C = P (a) and F = {P (x) ∨ ¬P (f(x))}. Then, since P (x) sub-
sumes P (a) via λ = {x 7→ a}, we can add the asymmetric literal P (f(a)) to
obtain P (a) ∨ P (f(a)). After this, we can add P (f(f(a)) via λ = {x 7→ f(a)},
then P (f(f(f(a)))) and so on. This can be repeated infinitely many times. ut

A resolution asymmetric tautology in first-order logic is then a clause C that
contains a literal L such that all L-resolvents of C are asymmetric tautologies:

Definition 7. A clause C is a resolution asymmetric tautology (RAT) on a
literal L ∈ C w.r.t. a formula F if all L-resolvents of C, with clauses in F \{C},
are asymmetric tautologies in F \ {C}.

Example 9. Consider the clause C = P (x) ∨ Q(x) and the following formula
F = {P (x)∨Q(x), ¬P (y)∨R(y), R(z)∨S(z), ¬S(u)∨Q(u)} (cf. Example 2).
There is one P (x)-resolvent of C, namely Q(x)∨R(x). Now, R(z) subsumes R(x)
via {z 7→ x} and thus ¬S(x) is an asymmetric literal w.r.t. to the resolvent. We
therefore add it and obtain Q(x) ∨ R(x) ∨ ¬S(x). After this, ¬S(u) subsumes
¬S(x) via {u 7→ x} and thus ¬Q(x) can be added to obtain the tautology
Q(x) ∨R(x) ∨ ¬S(x) ∨ ¬Q(x). Therefore, C is a RAT w.r.t. F . ut

Theorem 7. If a clause C is a RAT w.r.t. a formula F , then it is redundant
w.r.t. F .

Proof. Assume that C is a RAT w.r.t. F . Then, every L-resolvent of C with
clauses in F \ {C} is an asymmetric tautology in F \ {C} and therefore, by
Theorem 6, implied by F \ {C}. It follows that C is implied modulo resolution
upon L by F and thus, by Theorem 3, C is redundant w.r.t. F . ut

6 Covered Clauses

In this section, similar to the preceding one, we first recapitulate the notions of
covered literals and covered clauses from propositional logic and then lift them to
the first-order level. Informally, a clause C is covered in a propositional formula
F , if the addition of so-called covered literals to C turns C into a blocked clause.
A clause C covers a literal L′ in F if C contains a literal L such that all non-
tautological resolvents of C upon L contain L′. The crucial property of covered
literals is, that they can be added to C without affecting satisfiability [5]. More
precisely, given a formula F , a clause C ∈ F , and a literal L′ that is covered
by C in F , it holds that the formula F ′, obtained from F by replacing C with
C ∨ L′, is satisfiability equivalent to F .

Example 10. Consider the clause C = L and the propositional formula F =
{L, ¬L∨¬P ∨Q, ¬L∨¬P ∨R}. There are two resolvents of C upon L, namely
¬P ∨Q and ¬P ∨ R. As ¬P is contained in both resolvents, it is covered by C
in F . Therefore, replacing C with C ∨¬P in F does not affect satisfiability. ut

We next introduce a first-order variant of covered literals. Our definition guar-
antees that covered-literal addition (CLA) has no effect on satisfiability:

Definition 8. A clause C covers a literal L′ in a formula F if C contains a
literal L such that all non-tautological L-resolvents of C, with clauses in F ∪{C},
contain L′.

Note that resolvents of C with itself are required to contain the literal L′. More-
over, when talking about resolvents of C with itself, we mean resolvents of C
with an instance Cτ of C, where τ is a renaming that maps the variables in C
to fresh variables that do not occur in F .

Example 11. Consider the clause C = L(f(x)) and the formula

F = {¬L(y) ∨ P (y) ∨Q(y),

¬L(z) ∨ P (z) ∨R(z)}.

There are two L(f(x))-resolvents of C, namely P (f(x)) ∨Q(f(x)), obtained by
using the mgu {y 7→ f(x)}, and P (f(x)) ∨R(f(x)), obtained by using the mgu
{z 7→ f(x)}. Since the literal P (f(x)) is contained in both resolvents, it is covered
by C in F . ut

As we will show below, the addition of a covered literal to the clause that covers it
has no effect on satisfiability. The following example illustrates that this were not
the case if we would not require the covered literal to be contained in resolvents
of the clause with itself:

Example 12. Consider the clause C = ¬L(x) ∨ L(f(x)) and the formula F =
{¬L(x) ∨ L(f(x)), ¬L(y) ∨ P (y), L(a), ¬P (f(f(a))}. The literal P (f(x)) is
contained in the (only) L(f(x))-resolvent ¬L(x) ∨ P (f(x)) of C with clauses
in F \ {C}. However, F is unsatisfiable whereas the formula F ′, obtained from
F by replacing C with C ∨ P (f(x)), is satisfiable. ut

Lemma 8. If a clause C covers a literal L′ in a formula F , then the formula
F ′, obtained from F by replacing C with C ∨L′, is satisfiability equivalent to F .

Proof. Assume that C covers L′ in F , i.e., L′ is contained in all non-tautological
L-resolvents of C with clauses in F . First, we add Cτ ∨ L′τ to F , with τ being
a renaming that replaces the variables in C ∨L′ by fresh variables not occurring
in F . Since Cτ ∨L′τ is subsumed by C, F and F ∪ {Cτ ∨L′τ} are satisfiability
equivalent. We next show that C is redundant w.r.t. F ∪ {Cτ ∨ L′τ} and can
therefore by removed. To do so, we show that C is implied modulo resolution
upon L by F ∪ {Cτ ∨ L′τ}. As F ∪ {Cτ ∨ L′τ} and F ∪ {C ∨ L′} are clearly
equivalent, the claim then follows.

We show that all L-resolvents of C with clauses in F are implied by the
formula (F \{C})∪{Cτ∨L′τ}. Showing that the L-resolvents of C with Cτ∨L′τ
are also implied is done in a similar way (see Appendix A for details). Since
tautological L-resolvents are trivially implied, we consider only non-tautological
ones. Let C ′σ ∨ D′σ be a non-tautological L-resolvent of C = C ′ ∨ L with a
clause D = D′ ∨ N ∈ F , where σ is an (idempotent) mgu of the literal L and
the literals in the set N̄ . Since L′ is covered by C in F , C ′σ ∨D′σ contains L′,
and L′ is of the form Pσ for some literal P ∈ C ′ ∨D′.

To prove that C ′σ ∨ D′σ is implied by (F \ {C}) ∪ {Cτ ∨ L′τ}, we show
that it can be obtained from clauses in (F \ {C}) ∪ {Cτ ∨ L′τ} via resolution,
instantiation, and factoring: Consider the clauses Cτ ∨L′τ = C ′τ ∨Lτ ∨L′τ and
D = D′ ∨N . Since L and N̄ are unified by σ and since dom(τ−1)∩ var(D) = ∅,
it follows that Lτ and N̄ are unified by τ−1σ. Therefore, there exists an mgu
σ′ of Lτ and N̄ . Hence, the clause (C ′τ ∨ L′τ ∨D′)σ′ is an Lτ -resolvent. Now,
since σ′ is most general, there exists a substitution γ such that σ′γ = τ−1σ. But
then,

(C ′τ ∨ L′τ ∨D′)σ′γ
= (C ′τ ∨ L′τ ∨D′)τ−1σ
= C ′σ ∨ L′σ ∨D′σ,

from which we obtain C ′σ ∨D′σ by factoring, since L′ ∈ C ′σ ∨D′σ and L′σ =
Pσσ = Pσ = L′. ut

Similar to asymmetric-literal addition, the addition of covered literals in first-
order logic is also not guaranteed to terminate. Consider the following example:

Example 13. Let C = L(a) and F = {L(a),¬L(x)∨L(f(x))}. Then, there exists
one L(a)-resolvent of C, namely L(f(a)). Therefore, L(f(a)) is covered by C
and thus it can be added to C to obtain C ′ = L(a)∨L(f(a)). Now, there is one
L(f(a))-resolvent of C ′, namely L(f(f(a))), and thus L(f(f(a))) can be added.
This addition of covered literals can be repeated infinitely many times. ut

Now, a clause C is covered in a formula F if the repeated addition of covered
literals can turn it into a blocked clause. In the following, we denote by F [C/D]
the formula obtained from F by replacing the clause C with the clause D:

Definition 9. A clause C is covered in a formula F if there exists a sequence
L1, . . . , Ln of literals such that each Li is covered by Ci−1 = C ∨L1 ∨ · · · ∨Li−1
in F [C/Ci−1] and Cn is blocked in F [C/Cn].

Example 14. Consider the clause C = P (a) ∨ ¬Q(a) which is contained in the
formula F = {P (a) ∨ ¬Q(a), ¬P (y) ∨ R(y), ¬R(z) ∨ Q(z)}. Although C is
not blocked in F , we can add the literal R(a) since it is contained in its only
P (a)-resolvent, obtained by resolving with ¬P (y) ∨ R(y). The resulting clause
P (a)∨¬Q(a)∨R(a) is then blocked by R(a) since there is only the tautological
R(a)-resolvent P (a) ∨ ¬Q(a) ∨Q(a), obtained by resolving with ¬R(z) ∨Q(z).
Therefore, C is covered in F . ut

Theorem 9. If a clause C is covered in a formula F , it is redundant w.r.t. F.

Proof. Assume that C is covered in F , i.e., we can add covered literals to C
to obtain a clause C ′ that is blocked in F . Now, let F ′ be obtained from F by
replacing C with C ′. Then, by Lemma 8, F and F ′ are satisfiability equivalent.
Moreover, since C ′ is blocked in F ′, it follows that F ′ \ {C ′} and F ′ are satisfia-
bility equivalent. But then, as F \{C} = F ′ \{C ′}, it follows that F and F \{C}
are satisfiability equivalent and so C is redundant w.r.t. F . ut

7 Resolution Subsumption and More

The redundancy notion of resolution subsumption (RS) from SAT [7] can also
be straightforwardly lifted to first-order logic, where redundancy is again an
immediate consequence of Theorem 3 since subsumption ensures implication:

Definition 10. A clause C is resolution subsumed (RS) on a literal L ∈ C in
a formula F if all non-tautological L-resolvents of C, with clauses in F \ {C},
are subsumed in F \ {C}.

Theorem 10. If a clause is resolution subsumed in a formula F , then it is
redundant w.r.t. F .

We already presented several popular techniques from SAT solving, but with
the methods presented in this paper, one can define other types of redundant
clauses that have been considered in the SAT literature. This is done by com-
bining asymmetric-literal addition or covered-literal addition with tautology or

ALA Resolution Look-Ahead Tautology CheckCLA ALA Subsumption Check

Fig. 1. Combination of Techniques to Obtain Redundancy Notions.

subsumption checks that can be performed either directly or in a resolution
“look-ahead” step. Fig. 1 illustrates possible combinations of techniques. Every
path from the left to the right gives rise to a particular redundancy notion.

For instance, to detect whether a clause is an asymmetric tautology, one first
performs a sequence of asymmetric-literal additions before performing a tautol-
ogy check on the resulting clause. Similarly, for blocked clauses, one combines a
resolution look-ahead with a tautology check by asking whether all L-resolvents
of the clause are tautologies. Also covered clauses, resolution subsumed clauses,
and resolution asymmetric tautologies are obtained via such combinations. This
gives rise to various other notions of redundant clauses like asymmetric blocked
clauses, asymmetric subsumed clauses [7], or asymmetric covered clauses [3].
The soundness of these methods follows from the results presented in this paper,
most importantly from the principle of implication modulo resolution.

8 Predicate Elimination

In this section, we show how the principle of implication modulo resolution allows
us to construct a short soundness proof for the predicate elimination technique
of Khasidashvili and Korovin [2]. Predicate elimination is a first-order variant
of variable elimination, which is successfully used during preprocessing and in-
processing in SAT solving [17]. The elimination of a predicate P from a formula
F is computed as follows: First, we add all the non-tautological binary resol-
vents upon literals with predicate symbol P to F . After this, all original clauses
containing P are removed. To guarantee that this procedure does not affect sat-
isfiability, the original definition requires P to be non-recursive, meaning that it
must not occur more than once per clause.

Theorem 11. If a formula F ′ is obtained from a formula F by eliminating a
non-recursive predicate, then F and F ′ are satisfiability equivalent.

Proof. Let FP be obtained from F by adding all non-tautological resolvents
upon P . Clearly, FP and F are equivalent. Now, let C be a clause that contains
a literal L with predicate symbol P . Since all non-tautological L-resolvents of C
with clauses in FP \{C} are contained in FP \{C}, C is implied modulo resolution
by FP and so it is redundant w.r.t. FP . We can thus remove all clauses containing
P from FP and the resulting formula is satisfiability equivalent to F . ut

We want to highlight that in their original paper [2], Khasidashvili and Korovin
proved the soundness of predicate elimination for first-order logic with equality
while we restrict ourselves to first-order logic without equality.

9 Confluence Properties

In this section, we analyze confluence properties of the clause-elimination and
literal-addition techniques discussed in this paper. Intuitively, confluence of a
technique tells us that the order in which we perform the literal additions or
clause eliminations is not really relevant to the final outcome of the technique.
The key to formally analyzing confluence is to interpret our techniques as ab-
stract reduction systems [18]. For instance, to analyze the confluence of a clause-
elimination technique CE, we define the (reduction) relation →CE over formulas
as follows: F1 →CE F2 if and only if F2 can be obtained from F1 by removing a
clause. Likewise, for a literal-addition technique LA, we define the relation →LA

over clauses as C1 →LA C2 if and only if C2 can be obtained from C1 by adding
a literal. Hence, when we ask whether a certain preprocessing technique is con-
fluent, what we actually want to know is whether the corresponding reduction
relation is confluent [18]:

Definition 11. Let → be a relation and →∗ its reflexive transitive closure.
Then, → is confluent if, for all x, y1, y2 with x →∗ y1 and x →∗ y2, there
exists an element z such that y1 →∗ z and y2 →∗ z.

In our context, this means that whenever the elimination of certain clauses from
a formula F yields a formula F1, and the elimination of certain other clauses
from F yields another formula F2, then there is still another formula Fz that we
can obtain from both F1 and F2. Likewise for the addition of literals to a clause.
Therefore, we do not need to worry about “missed opportunities” caused by a
bad choice of the elimination order. For some techniques in this paper, we can
show the stronger diamond property which implies confluence [18]:

Definition 12. A relation → has the diamond property if, for all x, y1, y2 with
x→ y1 and x→ y2, there exists a z such that y1 → z and y2 → z.

Next, we present the confluence results. We start with blocked-clause elimination,
for which confluence is easily shown. Define F1 →BCE F2 iff the formula F2 can
be obtained from the formula F1 by removing a clause that is blocked in F1.

Theorem 12. Blocked-clause elimination is confluent, i.e., →BCE is confluent.

Proof. If a clause C is blocked in a formula F , it is also blocked in every subset
F ′ of F , since the L-resolvents of C with clauses in F ′ \ {C} are a subset of
the L-resolvents with clauses in F \ {C}. Therefore, if all L-resolvents of C with
clauses in F \ {C} are tautologies, so are those with clauses in F ′ \ {C}. Hence,
the relation →BCE has the diamond property and thus it is confluent. ut

Similar to the propositional case, in which covered-clause elimination is conflu-
ent [3], we can prove the confluence of its first-order variant. Define F1 →CCE F2

iff the formula F2 can be obtained from the formula F1 by removing a clause
that is covered in F1.

Theorem 13. Covered-clause elimination is confluent, i.e., →CCE is confluent.

Proof. We show that→CCE has the diamond property. Let F be a formula and let
F \ {C} and F \ {D} be obtained from F by respectively removing the covered
clauses C and D. It suffices to prove that C is covered in F \ {D} and D is
covered in F \ {C}. We show that C is covered in F \ {D}. The other case is
symmetric. Since C is covered in F , we can perform a sequence of covered-literal
additions to turn C into a clause Cn = C ∨ L1 ∨ · · · ∨ Ln that is blocked in
Fn, where by Fi we denote the formula obtained from F by replacing C with
Ci = C ∨ L1 ∨ · · · ∨ Li (0 ≤ i ≤ n).

Now, if in F \ {D}, the clause Cn can be obtained from C by performing the
same sequence of covered-literal additions, then Cn is also blocked in Fn \ {D}
and thus C is covered in F \{D}. Assume now to the contrary that there exists a
literal Li that is not covered by Ci−1 in Fi−1 \ {D} and suppose w.l.o.g. that Li

is the first such literal. It follows that there exists a non-tautological L-resolvent
of Ci−1 (with a clause in Fi−1 \ {D}) that does not contain Li. But then Li is
not covered by Ci−1 in Fi−1, a contradiction. ut

Covered-literal addition is confluent. Let F be a formula and define C1 →CLA C2

iff C2 can be obtained from C1 by adding a literal L that is covered by C1 in F .

Theorem 14. Covered-literal addition is confluent, i.e., →CLA is confluent.

Proof. We show that the relation →CLA has the diamond property. Let F be
formula and C a clause. Let furthermore C1 = C ∨ L1 and C2 = C ∨ L2 be
obtained from C by respectively adding literals L1 and L2 that are both covered
by C in F . We have to show that C1 covers L2 and, analogously, that C2 covers
L1. Since C covers L2, it follows that C contains a literal L such that L2 is
contained in all non-tautological L-resolvents of C. But, as L ∈ C1, every non-
tautological L-resolvent of C1 must also contain L2. It follows that C1 covers
L2. The argument for L1 being covered by C2 is symmetric. ut

Asymmetric-literal addition is also confluent. Let F be a formula and define
C1 →ALA C2 iff C2 can be obtained from C1 by adding a literal L that is an
asymmetric literal w.r.t. C1 in F .

Theorem 15. Asymmetric-literal addition is confluent, i.e., the relation →ALA

is confluent.

Proof. If a literal L1 is an asymmetric literal w.r.t. a clause C in a formula F ,
then there exists a clause D∨L̄ ∈ F \{C} and a substitution λ such that Dλ ⊆ C
and L1 = L̄λ. Therefore, Dλ is a subset of every clause C∨L2 that was obtained
from C by adding another asymmetric literal L2, and thus L1 is an asymmetric
literal w.r.t. every such clause. It follows that →ALA has the diamond property
and so it is confluent. ut

For asymmetric-tautology elimination, the non-confluence result from proposi-
tional logic [3] implies non-confluence of the first-order generalization. Finally,
the following example shows that RS and RAT elimination are not confluent:

Example 15. Let F = {¬Q ∨ P, ¬R ∨ Q, ¬P ∨ R, ¬Q ∨ R}. Then, ¬Q ∨ R is
a RAT and RS as there is only one R-resolvent, namely the tautology ¬Q ∨ Q,
obtained by resolving with Q∨¬R. If we remove ¬Q∨R, none of the remaining
clauses of F is a RAT or RS. In contrast, suppose we start by removing ¬Q∨P ,
which is a RAT and RS (via resolution upon P), then all the other clauses become
RAT and RS and so we can remove them. ut

A summary of the confluence results is given in Table 1.

Technique Confluent

Blocked-Clause Elimination yes
Covered-Clause Elimination yes
Asymmetric-Tautology Elimination no
Resolution-Asymmetric-Tautology Elimination no
Resolution-Subsumed-Clause Elimination no
Covered-Literal Addition yes
Asymmetric-Literal Addition yes

Table 1. Confluence Properties of the First-Order Preprocessing Techniques.

10 Conclusion

We introduced the principle of implication modulo resolution for first-order logic
and showed that if a clause C is implied modulo resolution by a formula F , then
C is redundant with respect to F . Using implication modulo resolution, we lifted
several successful SAT-preprocessing techniques to first-order logic, proved their
soundness, and analyzed their confluence properties. We furthermore demon-
strated how implication modulo resolution yields short soundness proofs for the
existing first-order techniques of predicate elimination and blocked-clause elim-
ination. For now, we have only considered first-order logic without equality.
A variant of implication modulo resolution that guarantees redundancy in first-
order logic with equality requires a refined notion of L-resolvents, possibly based
on flat resolvents [2] as in the definition of equality-blocked clauses [8]. The focus
of this paper is mainly theoretical, laying the groundwork for practical applica-
tions of the new first-order techniques. As a next step, we plan to implement and
empirically evaluate the preprocessing techniques proposed in this paper, since
we expect them to improve the performance of first-order theorem provers.

References

1. Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques
for first-order clausification. In: Proc. of the 12th Conference on Formal Methods
in Computer-Aided Design (FMCAD 2012), IEEE (2012) 44–51

2. Khasidashvili, Z., Korovin, K.: Predicate elimination for preprocessing in first-
order theorem proving. In: Proc. of the 19th Int. Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2016). Volume 9710 of LNCS., Cham,
Springer (2016) 361–372

3. Heule, M.J.H., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination
for SAT and QSAT. Journal of Artificial Intelligence Research 53 (2015) 127–168

4. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF
preprocessing. Journal of Automated Reasoning (2016) 1–29

5. Heule, M.J.H., Järvisalo, M., Biere, A.: Covered clause elimination. In: Short pa-
pers for the 17th Int. Conference on Logic for Programming, Artificial intelligence,
and Reasoning (LPAR-17-short). Volume 13 of EPiC Series., EasyChair (2010)
41–46

6. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF
formulas. In: Proc. of the 17th Int. Conference on Logic for Programming, Arti-
ficial Intelligence, and Reasoning (LPAR-17). Volume 6397 of LNCS., Heidelberg,
Springer (2010) 357–371

7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proc. of the 6th Int.
Joint Conference on Automated Reasoning (IJCAR 2012). Volume 7364 of LNCS.,
Heidelberg, Springer (2012) 355–370

8. Kiesl, B., Suda, M., Seidl, M., Tompits, H., Biere, A.: Blocked clauses in first-order
logic. arXiv:1702.00847 (2017)

9. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Proc. of the
16th Int. Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2010). Volume 6015 of LNCS., Heidelberg, Springer (2010)
129–144

10. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2016. In: Proc. of SAT Competition 2016 – Solver and Benchmark
Descriptions. Volume B-2016-1 of Dep. of Computer Science Series of Publications
B., University of Helsinki (2016) 44–45

11. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proc. of the 17th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2014). Volume 8561 of
LNCS., Cham, Springer (2014) 422–429

12. Fitting, M.: First-Order Logic and Automated Theorem Proving. 2 edn. Springer
(1996)

13. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In Robinson, J.A.,
Voronkov, A., eds.: Handbook of Automated Reasoning (in 2 volumes). Elsevier
and MIT Press (2001) 19–99

14. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97 (1999) 149–176

15. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Proc. of
the 23rd Int. Conference on Automated Deduction (CADE 2011). Volume 6803 of
LNCS., Heidelberg, Springer (2011) 101–115

16. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Proc. of the 20th Int. Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-
20). Volume 9450 of LNCS., Heidelberg, Springer (2015) 418–433

17. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Proc. of the 8th Int. Conference on Theory and Applications of
Satisfiability Testing (SAT 2005). Volume 3569 of LNCS., Heidelberg, Springer
(2005) 61–75

18. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

Appendix

A Full Proof That Covered-Literal Addition Preserves
Satisfiability

Lemma 8. If a clause C covers a literal L′ in a formula F , then the formula
F ′, obtained from F by replacing C with C ∨L′, is satisfiability equivalent to F .

Proof. Assume that C covers L′ in F , i.e., L′ is contained in all non-tautological
L-resolvents of C with clauses in F . First, we add Cτ ∨ L′τ to F , with τ being
a renaming that replaces the variables in C ∨L′ by fresh variables not occurring
in F . Since Cτ ∨L′τ is subsumed by C, F and F ∪ {Cτ ∨L′τ} are satisfiability
equivalent. We next show that C is redundant w.r.t. F ∪ {Cτ ∨ L′τ} and can
therefore by removed. To do so, we show that C is implied modulo resolution
upon L by F ∪ {Cτ ∨ L′τ}. As F ∪ {Cτ ∨ L′τ} and F ∪ {C ∨ L′} are clearly
equivalent, the claim then follows. To show that all L-resolvents of C with clauses
in F ∪ {Cτ ∨L′τ} are implied by (F \ {C})∪ {Cτ ∨L′τ}, we proceed by a case
distinction.

Case 1: C ′σ∨D′σ is a non-tautological L-resolvent of C = C ′∨L with a clause
D = D′ ∨ N ∈ F , where σ is an (idempotent) mgu of the literal L and the
literals in the set N̄ . Since L′ is covered by C in F , C ′σ ∨D′σ contains L′, and
L′ is of the form Pσ for some literal P ∈ C ′ ∨D′. To prove that C ′σ ∨D′σ is
implied by (F \{C})∪{Cτ ∨L′τ}, we show that it can be obtained from clauses
in (F \ {C}) ∪ {Cτ ∨ L′τ} via resolution, substitution, and factoring: Consider
the clauses Cτ ∨ L′τ = C ′τ ∨ Lτ ∨ L′τ and D = D′ ∨ N . Since L and N̄ are
unified by σ and since dom(τ−1) ∩ var(D) = ∅, it follows that Lτ and N̄ are
unified by τ−1σ. Therefore, there exists an mgu σ′ of Lτ and N̄ . Hence, the
clause (C ′τ ∨L′τ ∨D′)σ′ is an Lτ -resolvent. Now, since σ′ is most general, there
exists a substitution γ such that σ′γ = τ−1σ. But then,

(C ′τ ∨ L′τ ∨D′)σ′γ
= (C ′τ ∨ L′τ ∨D′)τ−1σ
= C ′σ ∨ L′σ ∨D′σ,

from which we obtain C ′σ ∨D′σ by factoring, since L′ ∈ C ′σ ∨D′σ and L′σ =
Pσσ = Pσ = L′.

Case 2: R = (C ′ ∨ N ∨ C ′τ ∨ Lτ ∨ L′τ)σ is a non-tautological L-resolvent
of C = C ′ ∨ N ∨ L with Cτ ∨ L′τ = C ′τ ∨ Nτ ∨ Lτ ∨ L′τ . Since every non-
tautological L-resolvent of C with Cτ contains L′, it follows that R contains L′,
and L′ is of the form Pσ for some literal P . We show that R can be obtained
from Cτ ∨ L′τ via resolution, substitution, and factoring. Consider the clause
(C ′ ∨N ∨ L ∨ L′)τ and the clause (C ′ ∨N ∨ L ∨ L′)τ1, obtained from (C ∨ L′)
by applying the renaming τ1, which maps to new variables that do not occur in

F ∪ {Cτ ∨ L′τ}. Since σ unifies L and N̄τ , it follows that τ−11 σ unifies Lτ1 and
N̄τ and thus there exists an (idempotent) mgu σ′ of Lτ1 and N̄τ . Therefore,
(C ′τ1 ∨Nτ1 ∨L′τ1 ∨C ′τ ∨Lτ ∨L′τ)σ′ is a resolvent of Cτ1 ∨L′τ1 and Cτ ∨L′τ .
Since σ′ is most general, there exists a substitution γ such that σ′γ = τ−11 σ. But
then,

(C ′τ1 ∨Nτ1 ∨ L′τ1 ∨ C ′τ ∨ Lτ ∨ L′τ)σ′γ

= (C ′τ1 ∨Nτ1 ∨ L′τ1 ∨ C ′τ ∨ Lτ ∨ L′τ)τ−11 σ

= (C ′ ∨N ∨ L′ ∨ C ′τ ∨ Lτ ∨ L′τ)σ

from which we obtain the desired clause R by factoring since L′ ∈ R and L′σ =
Pσσ = Pσ = L′. ut

