
Splitting Proofs for Interpolation

Bernhard Gleiss, Laura Kovács, and Martin Suda

TU Wien, Austria

Abstract. It is known that Craig interpolants can be efficiently computed from
special kind of proofs, called local or split proofs. In this paper we focus on local
proofs and describe a novel algorithm for computing first-order interpolants from
such proofs. Compared to previous approaches to interpolation, our work gener-
ates interpolants in full first-order logic with theories and produces interpolants
that are “smaller” than the ones generated before. By smaller we mean, for exam-
ple, that the interpolant contains less symbols and/or literals. Our algorithms uses
splitting functions on local proofs and computes optimized interpolants, possi-
bly with quantifiers, wrt. to these functions. We implemented our approach in the
first-order theorem prover VAMPIRE and evaluated on a large number of examples
coming from the first-order proving community. Our experiments give practical
evidence that our work improves the state-of-the-art in first-order interpolation.

1 Introduction

Starting with the pioneering work of McMillan [14], interpolation became a powerful
approach in verification thanks to its use in predicate abstraction and model check-
ing [15, 1, 18]. To prove program properties over a combination of data structures, such
as integers, arrays and pointers, several approaches based on theory-specific reasoning
have been proposed, see e.g. [13, 5, 4]. While powerful, these techniques are limited
to quantifier-free fragments of first-order logic. Addressing reasoning in full first-order
theories, quantified interpolants are computed in [16, 10, 3, 22] and further optimized
with respect to various measures in [8].

In this paper, we address interpolation in full first-order logic and introduce a novel
approach to generate interpolants, possibly with quantifiers. Our approach improves
and simplifies the aforementioned techniques, in particular [10, 8]. In [10, 8], the size
of computed interpolants is in the worst case quadratic in the size of the proof and the
generated interpolants may contain redundant subformulas. Our work addresses these
issues and infers interpolants that are linear in the size of the proof and are much sim-
pler than in [10, 8]. We proceed as follows. We separate the requirements on a formula
being an interpolant into a part restricting the logical strength of an interpolant and a
part restricting which symbols are allowed to be used in an interpolant. This way, we
first handle formulas, called intermediants, satisfying the requirements on the logical
strength of interpolants, and only then we restrict the generated space of intermediants
to the ones that satisfy the restriction on the interpolants signature.

The work of [10] relies on so-called local proofs (or split proofs) and constructs
interpolants by splitting local proofs into (maximal) subproofs. Splitting proofs is de-
termined by the signature of formulas used in the proofs. We observed however that



there are many ways to split a proof, resulting in interpolants that are different in size
and strength. We therefore propose a general framework for splitting proofs and using
the boundaries of the resulting subproofs to construct the intermediants. The key fea-
ture of our work is that the interpolants inferred from our various proof splits are linear
in the size of the proof. When constructing interpolants from proof splits, we note that
local proofs are exactly the ones that ensure that proof splits yield intermediants that
satisfy the requirements of interpolants. Using local proofs and proof splits, we then
describe a powerful heuristic and an optimality criterion how to choose the “best” proof
split, and hence the resulting interpolant.

Contributions. The main contributions of this paper are as follows.
– We present a new algorithm for first-order-interpolation using local proofs in arbi-

trary sound inference systems. That is, our work can be used in any sound calculus
and derives interpolants, possibly with quantifiers, in arbitrary first-order theories.

– Our interpolation algorithm is the first algorithm ensuring that the size of the in-
terpolant is linear in the size of the proof while working with an arbitrary sound
logical calculus. This result improves [10] and generalises the work of [16] to any
sound inference system.

– We implemented our work in the VAMPIRE theorem prover [12] and evaluated our
method on a large number of examples coming from the TPTP library [21]. Our
experimental results confirm that our work improves the state-of-the-art in first-
order interpolation.

The rest of this paper is structured as follows. The background notation on proofs and
interpolation is covered in Section 2. We then show how to construct linear sized in-
terpolants in Section 3 and present optimisations to the procedure in Section 4. We
compare to related work in Section 5, describe our experimental results in Section 6,
and conclude in Section 7.

2 Preliminaries

This section introduces the relevant theoretical notions to our work.

Formulas. We deal with standard first-order predicate logic with equality. We allow all
standard boolean connectives and quantifiers in the language and, in addition, assume
that it contains the logical constants >, ⊥ for true and false, respectively. Without loss
of generality, we restrict ourselves to closed formulas, i.e. we do not allow formulas to
contain free variables. The non-logical symbols of a formula F , denoted by N (F ), are
all the predicate symbols and function symbols (including constants) occurring in F .
Note that this excludes (quantified) variables and the equality symbol.

An axiomatisable theory, or simply a theory is any set of formulas. For example,
we can use the theory of linear integer arithmetic or the theory of lists. We will from
now on restrict ourself to a fixed theory T and give all definitions relative to T . This
includes that we write F1, . . . , Fn � F (instead of F1, . . . , Fn �T F ) to denote that
every model of T which satisfies each F1, . . . , Fn also satisfies F .

Definition 1. Let F1, . . . , Fn, F be formulas, n ≥ 0. An inference rule R is a tuple
(F1, . . . , Fn, F ). An inference system S is a set of inference rules.

2



Definition 2. An inference rule R = (F1, . . . , Fn, F ) is called sound, if F1, . . . , Fn �
F . An inference system S is called sound, if it only consists of sound inference rules.

From now on, we further restrict ourselves to a fixed inference system S which is
sound (relative to T ) and give all definitions relative to that system.
Derivations and proofs. We model logical proofs as directed hypergraphs in which
vertices are associated with formulas and (hyper-)edges with inferences. Because an in-
ference always has exactly one conclusion, we only need hypergraphs where each edge
has exactly one end vertex. Moreover, because the order of premises of an inference
may be important, we use tuples to model the edges. We will from now on refer to such
(hyper-)edges simply as inferences.

Definition 3. Let G be a formula and F a set of formulas. A proof of G from axioms
F is a finite acyclic labeled directed hypergraph P = (V,E, L), where V is a set of
vertices, E a set of inferences, and L is a labelling function mapping each vertex v ∈ V
to a formula L(v). For an inference r ∈ E of the form (v1, . . . , vn, v), where n ≥ 0,
we call v1, . . . , vn the premises of r and v the conclusion of r.

Additionally, we require the following:
1. Each vertex v ∈ V is a conclusion of exactly one inference r ∈ E.
2. There is exactly one vertex v0 ∈ V that is not a premise of any inference r ∈ E

and L(v0) = G.
3. each r ∈ E is either

– an inference of the form (v) and L(v) ∈ F , or
– an inference of the form (v1, . . . , vn, v) and (L(v1), . . . , L(vn), L(v)) ∈ S.

In the first case, we call r an axiom inference, in the second case, r is called a proper
inference. A refutation from axioms F is a proof of the formula ⊥ from F .

Note that in order to support multiple occurrences of the same formula in a proof,
one needs to distinguish between vertices and the formulas assigned to them via the
labelling function L. However, because this generality is orthogonal to the ideas we
want to present, we will from now on identify each node v ∈ V with its formula L(v)
and stop referring to the labelling function explicitly.

In the above definition, condition 1 ensures that any formula of the proof is justified
by exactly one inference. Later on we will look at subgraphs of a proof, which are not
necessarily proofs themselves and in particular do not satisfy condition 1, since they
contain formulas, which are not justified by any inference of the subgraph. We call such
a subgraph a derivation and call the formulas which are not justified by any inference
the premises of the derivation. We can see a proof as a derivation having no premises.

Definition 4. The definition of a derivation of G from axioms F is the same as that of
a proof P = (V,E, L) of G from F , except that condition 1 is generalised to:
1. Each formula F ∈ V is a conclusion of at most one inference r ∈ E.

The set of premises of a derivation P , denoted by Prem(P ), consists of all formulas
F ∈ V , such that there exists no inference r ∈ E with conclusion F .

The definition of a derivation is not natural as it distinguishes between axioms and
premises. This distinction is, however, very important for us, as it enables a succinct
presentation of the results in Sect. 3.

3



Lemma 5 (Soundness). Let P be a derivation of G from axioms F . Then we have

F � (
∧

Fk∈Prem(P ) Fk)→ G.

To formalise the idea of a proof traversal in which the inferences are considered one
by one from axioms to the final formula G, we make use of topological orderings.

Definition 6. Let P = (V,E, L) be a derivation. A topological ordering <T for P is a
linear ordering <T on E such that for any two inferences r1, r2 ∈ E if the conclusion
of r1 is a premise of r2 then r1 <T r2.

A topological ordering exists for every derivation, because proofs, and thus also deriva-
tions, are required to be acyclic.
Interpolation. We now recall the notion of a logical interpolant.

Definition 7. Let A and B be formulas.
1. A non-logical symbol s ∈ N (A → B) is called A-local, if s ∈ N (A) \ N (B),

B-local, if s ∈ N (B) \ N (A), and global otherwise.
2. An interpolant for A,B is a formula I such that � A → I , � I → B and all

non-logical symbols of I are global.

Craig’s interpolation theorem [6] guarantees the existence of an interpolant for any pair
of formulas A,B for which � A → B. In the sequel, we assume A and B to be fixed
and give all definitions relative to A and B.
Refutational theorem proving. To prove a first-order formula F in practice, a refuta-
tional theorem prover proceeds by negating the input formula, applying a normal form
transformation, such as the Conjunctive Normal Form transformation, to the negation,
and deriving a contradiction ⊥ from the obtained set of formulas C¬F = CNF (¬F ).
More specifically, in the case of proving the implication A→ B, the prover starts with
axioms CNF (A ∧ ¬B).

This is relevant for our work, because we rely on refutations as input for our method.
However, a complication arises, because the normal form transformations CNF typi-
cally involves steps like sub-formula naming and Skolemisation [17, 19], which 1) in-
troduce new non-logical symbols, 2) in general do not preserve logical equivalence.

To deal with 1) we impose a restriction on CNF which dictates that the symbols
newly introduced on behalf of A and ¬B do not overlap. Formally, we require

N (A) ∩N (¬B) = N (CNF (A)) ∩N (CNF (¬B)), (1)

which is a very natural condition, because the newly introduced symbols are invariably
required to be fresh.1

To deal with 2), let us first recall that steps like sub-formula naming and Skolemisa-
tion, although they do not preserve logical equivalence, do preserve satisfiability. While
this is sufficient to guarantee soundness of refutational theorem proving, it is not enough
for the purposes of interpolation. Fortunately, a stronger property, which is rarely stated
explicitly, usually holds for the normal form transformation, namely the preservation of
models over the common symbols. Formally, we require for every formula F that

1 This could potentially be violated by an advanced transformation based on formula sharing. In
particular, the case would need to involve a common sub-formula of A and ¬B.

4



– every modelM′ of CNF (F ) is also a model of F , and
– every modelM of F can be extended toM′ which is a model of CNF (F ),

where extended means thatM′ restricted to N (F ) equalsM.
Equipped with a transformation CNF satisfying the above requirements, the general

approach to interpolation from refutations consists of the following steps:
1. Given formulas A and B, compute the respective normal forms CA = CNF (A)

and C¬B = CNF (¬B).
2. Find a refutation P from axioms CA ∪ C¬B .
3. Extract from P a formula I such that CA � I , C¬B , I � ⊥, and all non-logical

symbols of I are global.2

Lemma 8. The formula I obtained in the last step is an interpolant for A and B.

3 Interpolants from refutations

We can separate the properties of an interpolant into two parts, the logical part and the
restriction to the global symbols. Instead of considering only interpolants, we now want
to look more generally at the formulas, which satisfy the logical part of the properties
of interpolants, but not necessarily the restriction to the global symbols. We call such
formulas intermediants.

Definition 9. Let A,B be two formulas. An intermediant for A,B is a formula I such
that we have both � A→ I and � I → B.

In the first part of this section, we want to investigate the space of intermediants,
which is induced by a given refutation. In the second part, we look at the subspace of
those intermediants which also respect the restriction on the global symbols, i.e. the
formulas which are interpolants.

3.1 Splitting refutations
Let us now show how to use a refutation of A → B to construct intermediants. In-
tuitively, we want to split the refutation into two parts and construct a formula which
describes the boundaries between the parts.

In the light of the discussion at the end of the last section, we assume the formulas
A and ¬B have been transformed to sets of axioms CA and C¬B . It is also natural to
extend the notion of an intermediant to axiom sets:

Definition 10. Let CA and C¬B be two sets of axioms. An intermediant for CA, C¬B is
a formula I such that we have both CA � I and C¬B , I � ⊥.

Splitting a proof into two parts for us means mapping each inference to one of the
two parts. Formally, we introduce a two element set {A,B} to serve as a co-domain
of such mapping, where A denotes the A-part and B the B-part. It is natural to map
the axioms from CA to A and the axioms from C¬B to B, therefore we only consider
mappings of this form. All other inferences can be mapped to any part.

2 Note that the symbols are global with respect to A and B if and only if they are global with
respect to CA and C¬B thanks to the requirement (1).

5



Definition 11. Let P be a refutation from axioms CA ∪ C¬B . A splitting function S is
a function assigning each inference of P to either A or B, such that for each axiom
inference r = (F ), if S(r) = A then F ∈ CA and r is called an A-axiom, and if
S(r) = B then F ∈ C¬B and r is called a B-axiom.

A given splitting function S splits a proof into several maximal subderivations. We
now want to caption this intuitive notion formally. We start with the concept of In-
formulas (resp. Out-formulas) of P and S. Intuitively, these are the formulas which
occur at the boundary between the subderivations.

Definition 12. Let P = (V,E, L) be a refutation from axioms CA ∪ C¬B and let S be
a splitting function on P . The set of in-formulas, which is denoted In(P,S), consists of
every formula F ∈ V , which has the following properties:

– There exists an inference r1 ∈ E with conclusion F and S(r1) = B.
– There exists an inference r2 ∈ E with premise F and S(r2) = A.

The set of out-formulas, which is denoted Out(P,S), consists of every formula F ∈ V ,
which has the following properties:

– There exists an inference r1 ∈ E with conclusion F and S(r1) = A.
– Either there exists an inference r2 ∈ E with premise F and S(r2) = B, or F = ⊥.

We are now able to formally introduce the maximal subderivations.

Definition 13. Let P = (V,E, L) be a refutation from axioms CA ∪ C¬B and let S be
a splitting function on P . Let r ∈ E be an inference and let {r1, . . . , rl} be the set of
those inferences which derive a premise of r and are mapped by S to the same part as
r, i.e. S(r) = S(ri) for i = 1, . . . l. Then we define Sub(r) recursively as

Sub(r) = {r} ∪ Sub(r1) ∪ · · · ∪ Sub(rl).

Now let F ∈ Out(P,S) (resp. F ∈ In(P,S)) be a formula and r be the inference
deriving F . We define the maximal A-subderivation (resp. B-subderivation) of F , de-
noted by Sub(F ), as the induced derivation (V ′,Sub(r), L), where V ′ contains every
vertex which is either a premise or a conclusion of an inference in Sub(F ). We call F
the conclusion of Sub(F ).

The dependencies of F , written Dep(F ), are defined as the premises of Sub(F ).

We can observe that the In-formulas (resp. Out-formulas) are the premises (resp. con-
clusions) of all maximal A-subderivations. Dually, the In-formulas (resp. Out-formulas)
are the conclusions (resp. premises) of all maximal B-subderivations. The use of the in-
troduced concepts is demonstrated in Fig. 3.1.

Note that the A-subderivations contain all A-axioms, but no B-axiom. Therefore
the A-axioms’s contribution to the derivation is captured by the A-subderivations. The
key idea of this subsection is that encoding the contribution of the A-subderivations as
a formula therefore yields the formula I we are looking for. The following lemma tells
use how to describe the contribution of an A-subderivation.

Lemma 14. Let P be a refutation from axioms CA ∪ C¬B and let S be a splitting
function on P .

6



⊥
F5 F10

F3 F4

F1 F2

F8 F9

F6 F7

Fig. 1. Consider the proof above along with the splitting function which is denoted by drawing
the inferences assigned to A using solid red lines and the inferences assigned to B using dashed
blue lines. The maximal A-subderivation of F5 has premises F1, F2 (and conclusion F5), the
maximal A-subderivation of F10 has premise F8. The maximal B-subderivation of F1 has no
premises, the maximal B-subderivation of ⊥ has premises F5 and F10. The In-formulas are
F1, F2 and F8 and the Out-formulas are F5 and F10. The induced simple splitting formula is
((F1 ∧ F2)→ F5) ∧ (F8 → F10).

1. Let F ∈ Out(P,S). Then we have CA � (
∧

Fk∈Dep(F ) Fk)→ F .
2. Let F ∈ In(P,S). Then we have C¬B � (

∧
Fk∈Dep(F ) Fk)→ F .

We therefore arrive at the following definition.

Definition 15. Let P be a refutation from axioms CA ∪ C¬B and let S be a splitting
function on P . The formula

I :=
∧

F∈Out(P,S)

((
∧

Fk∈Dep(F )

Fk)→ F )

is called the simple splitting formula of P induced by S.

Theorem 16. Let P be a refutation from axioms CA ∪ C¬B and let S be a splitting
function on P . Then the simple splitting formula I induced by S is an intermediant.

Proof.
1. For each F ∈ Out(P,S), we can use Lemma 14.1 to get CA � (

∧
Fk∈Dep(F ) Fk)→

F . Therefore we have CA �
∧

F∈Out(P,S)((
∧

Fk∈Dep(F ) Fk)→ F ).
2. Let <T be a topological ordering for P and let F1, . . . , Fn denote the formulas of

In(P ) ∪ Out(P ) in the order induced by <T . We visit the formulas from F1 to
Fn and prove by complete induction that I, C¬B � F1, . . . , Fi. Since Fn = ⊥, we
afterwards are able to conclude I, C¬B � ⊥.
Inductive step: Let us assume, by the induction hypothesis, that I, C¬B � F1, . . . , Fi−1.
We make a case distinction on S(r), where r is the inference which derived Fi:

– Case S(r) = A: By the definition of I , we know that I � (
∧

Fk∈Dep(Fi)
Fk)→

Fi. Using both the definition of topological orderings and the definition of Dep
we know that Dep(Fi) ⊆ {F1, . . . Fi−1}, so we can combine the previous facts
to obtain I, C¬B � F1, . . . , Fi.

– Case S(r) = B: We use Lemma 14.2 to conclude C¬B � (
∧

Fk∈Dep(Fi)
Fk)→

Fi. As in the previous case, we can use Dep(Fi) ⊆ {F1, . . . Fi−1} to conclude
I, C¬B � F1, . . . , Fi.

We summarise the ideas of this subsection in Simple-splitting-formula (Algorithm 1).

7



Algorithm 1 Simple-splitting-formula
choose a splitting function on P .
compute Out(P ) and Dep(F ) for all F using depth first search
return I as defined in Definition 15

⊥
F3 F5 F4

r4

F1 F2
r1 r2

Fig. 2. Let r1 = (F1, F3), r2 = (F2, F4), r3 = (F1, F2, F5), and r4 = (F3, F4, F5,⊥). Let
further S(r1) = S(r2) = S(r3) = A and S(r4) = B. Then Algorithm 1 generates the simple
splitting formula I = (F1 → F3) ∧ (F2 → F4) ∧ ((F1 ∧ F2)→ F5). There is no intermediant
which is both logically equivalent to I and contains each formula of the given proof at most once.

3.2 Intermediants of linear size

Simple-splitting-formula yields an intermediant of size which is in the worst case quad-
ratic in the size of the proof. This may be prohibitively large for large proofs. In this
subsection, we describe an algorithm which yields intermediants of size which is linear
in the size of the proof. Modifying Algorithm 1 to generate such an intermediant is
nontrivial: there are examples, where the simple splitting formula is provably logically
stronger than any intermediant which uses every formula of the refutation only once, cf.
Fig. 2. We therefore need to modify the algorithm such that it produces an intermediant
which is logically weaker but still sufficiently strong to be inconsistent with CB .

The key idea for the new algorithm is contained in the following definition.

Definition 17. Let P be a refutation from axioms CA ∪ C¬B , S a splitting function on
P , and let <T be a topological ordering for P . Furthermore let F1, . . . , Fn denote the
formulas of In(P ) ∪Out(P ) ordered by <T . Now let

Ii =


> if i = n+ 1

Fi → Ii+1 if Fi ∈ In(P )

Fi ∧ Ii+1 if Fi ∈ Out(P )

Then I1 is called linear splitting formula of P induced by S and <T .

Note that the size of I1 is linear in the size of P in Definition 17.

Theorem 18. Let P be a refutation from axioms CA∪C¬B , let S be a splitting function
on P and let <T be a topological ordering for P . Then the linear splitting formula I
induced by S and <T is an intermediant.

Proof. Let
I ′ =

∧
Fi∈Out(P )

((
∧

Fk∈In(P ),k<T i

Fk)→ Fi).

8



Algorithm 2 Linear-splitting-formula
choose a splitting function and a topological ordering on P .
compute In(P ) and Out(P )
return I1 as defined in Definition 17

First note that I ′ is logically equivalent to I: This can be proved by a simple induction
using the two facts that conjunction on the right distributes over implication and that
A→ (B → C) is equivalent to (A ∧B)→ C.

Now we complete the proof by showing that I ′ is an intermediant:
1. Using both the definition of topological orderings and the definition of Dep we

know that Dep(Fi) ⊆ {Fk ∈ In(P ) | k <T i}, so I ′ is logically weaker than the
simple splitting formula. Therefore CA � I ′ follows from Theorem 16.1.

2. We can show C¬B , I ′ � ⊥ by re-using the proof of Theorem 16.2 with <T as the
topological ordering and by replacing Dep(P ) with {Fk ∈ In(P ) | k <T i}.

We summarise the presented ideas in Linear-splitting-formula (Algorithm 2) and con-
clude this subsection by pointing out the following basic lemma, which will become
useful later in the paper.

Lemma 19. Let P = (V,E,L) be a refutation from axioms CA ∪ C¬B and let S be a
splitting function on P . Let further I be the linear splitting formula induced by S and let
F ∈ V be an arbitrary formula different from⊥. Then F occurs in I if and only if there
are two inferences r1, r2, where r1 derives F , F is a premise of r2 and S(r1) 6= S(r2).

3.3 Interpolants as special intermediants

In the previous subsections, we discussed how to construct intermediants given a split-
ting function. We now look closer at the question which splitting function to choose.
While studying the intermediants induced by different choices of a splitting function
is an interesting topic in general, we turn our attention to the problem of choosing a
splitting function such that the induced intermediant is an interpolant, i.e. we have the
additional requirement that the intermediant contains no local symbols.

Let us recall the notion of local proofs—also called split proofs—introduced by
Jhala and McMillan [9]:

Definition 20 (Local Proof). A proof P = (V,E, L) from axioms CA ∪ C¬B is local
if for every inference (F1, . . . , Fn, F ) ∈ E we have either:

– N (F1) ∪ . . . ∪N (Fk) ∪N (F ) ⊆ N (CA) or
– N (F1) ∪ . . . ∪N (Fk) ∪N (F ) ⊆ N (C¬B).

The definition of local proofs ensures that we can define a splitting function S which
maps all inferences with A-local symbols to A and those with B-local symbols to B.

Definition 21. Let P be a local proof. A local splitting function on P is a splitting
function S on P such that S(r) = A (resp. S(r) = B) for all inferences r having as
premise or conclusion a formula containing an A-local (resp. a B-local) symbol.

9



The corollary of the following lemma represents the central observation of this sub-
section: local proofs are exactly the proofs on which we can define a splitting function
which induces an intermediant which is an interpolant.

Lemma 22. Let P = (V,E, L) be a refutation from axioms CA ∪ CB , S be a local
splitting function on P , and I the corresponding simple (resp. linear) splitting formula.

i) Then any formula F ∈ In(P,S) ∪ Out(P,S) contains neither an A-local nor a
B-local symbol.

ii) I contains neither A-local nor B-local symbols.

Proof. i) Consider any formula F ∈ Out(P,S). If F = ⊥ then F trivially contains
neither an A-local nor a B-local symbol. Otherwise, we know that there exists an
inference r1 ∈ E with premise F and S(r1) = B. By the locality of S we get that F
contains no A-local symbol. Furthermore, we know that there exists an inference
r2 ∈ E with conclusion F and S(r2) = A. By the locality of S we get that F
contains no B-local symbol.
Now consider any formula F ∈ In(P,S). We can use a similar argument to show
that F contains neither an A-local nor a B-local symbol.

ii) Follows immediately from i) and the definition of the simple (resp. linear) splitting
formula.

Corollary 23. Let P be a local refutation, let S be a local splitting function on P and
let I be either the simple splitting formula or the linear splitting formula. Then I is an
interpolant for A,B.

4 Implementing Local Splitting Functions

By the definition of a local splitting function we know that we need to assign axioms
and inferences with local symbols to the corresponding part. All the other inferences—
the inferences forming the so called grey area [8]—can be assigned freely to either
part. Different choices on how to split the grey area result in different A-subproofs and
therefore in different interpolants, which vary, e.g., in size, the number of contained
quantifiers and in logical strength.

We want to minimize the interpolant with respect to a given weight function w,
which maps each formula F to its weight w(F ). The task we want to solve in this sec-
tion is, therefore, to be able to come up with a local splitting function which minimises
the weight of the resulting interpolant.

We present two different solutions, a heuristical greedy approach and one of ex-
pressing the optimal splitting as a minimisation problem. Both solutions are based on
the insight from Lemma 19 of Sect. 3: A conclusion F of an inference r1 occurs in the
linear splitting formula if and only if there is an inference r2 with F as a premise such
that the splitting function maps r1 and r2 to different parts.

4.1 Greedy weighted sum heuristic
Consider an inference r of the grey area with premises C1, . . . Cn, D1, . . . , Dm and
assume that the inferences deriving C1, . . . , Cn are already assigned to A and that the
inferences deriving D1, . . . , Dm are already assigned to B. Using Lemma 19, we know

10



⊥
F4 F5

i6

F1 F2
i4

i1 i2
F3

i5

i3

Fig. 3. Let S(i1) = S(i3) = A and S(i2) = B. Let further w(F1) = w(F3) = 2 and w(F2) =
3. For both inferences i4 and i5, the assignment of the inference to A is locally optimal, then
causes the assignment of i6 to A and finally yields an interpolant of size 4. Note that F2 is used
as a premise of both i4 and i5, so due to the DAG-structure we would only include it once if we
assigned both i4 and i5 to B. This would then cause the assignment of i6 to B and finally yield a
smaller interpolant of size 3.

⊥
F2 F3

i3

i2
F1

i1

Fig. 4. Let S(i1) = A and S(i3) = B. Let further w(F1) < w(F2). Algorithm 3 would now
assign i2 to A and therefore include F2 in the interpolant. It would be better to assign i2 to B in
order to include F1 in the interpolant instead of F2.

that if we assign r to A, then D1, . . . , Dm will be added to the interpolant and if we
assign r to B, then C1, . . . , Cn will be added to the interpolant.

We can therefore use the following greedy strategy to locally minimize the weight of
the interpolant: for any inference r of the grey area, if

∑n
k=1 w(Ck) >

∑m
k=1 w(Dk),

map r to A, otherwise to B.

This results in Top-down-weighted-sum-heuristic (Algorithm 3):

Algorithm 3 Top-down-weighted-sum-heuristic
for each inference r of P (top-down) do

if r is an A-axiom or r contains an A-local symbol then
set S(r) to A

else if i is a B-axiom or r contains a B-local symbol then
set S(r) to B

else
if
∑n

k=1 w(Ck) >
∑m

k=1 w(Dk) then
set S(r) to A

else
set S(r) to B

return S

The two reasons why a locally optimal choice is not a globally optimal choice can
be seen in Figures 3 and 4.

11



4.2 Encoding optimal splitting as a minimisation problem
Similar to the idea presented in [8], we can alternatively encode the problem of finding
an optimal local splitting function as a minimisation problem and pass it to a pseudo-
boolean constraint solver. This yields an optimal assignment, but is computationally
more expensive.

The encoding works as follows. We use propositional variables xi to denote that in-
ference i is assigned to A and use propositional variables Li to denote that the conclu-
sion of i occurs in the interpolant. We again predict the size of the resulting interpolant
using Lemma 19, but this time use the optimisation procedure to make globally opti-
mal choices instead of greedily making locally optimal ones. This leads to algorithm
Weighted-sum-optimal (Algorithm 4).

Algorithm 4 Weighted-sum-optimal
for each inference r of P do

if r is an A-axiom or r contains an A-local symbol then
assert xr

else if r is a B-axiom or r contains a B-local symbol then
assert ¬xr

for each parent inference r′ of r do
assert (¬(xr ↔ xr′))→ Lr′

compute model M which minimises
∑

r∈P w(concl(r)) · Lr

for each inference r of P do
if xr evaluates to true in M then

set S(r) to A
else

set S(r) to B
return S

5 Discussion and Related Work
The work of [16] generates quantified interpolants that are linear in the size of the
proofs. The approach is however restricted to the superposition inference system. Our
work generalises [16] as our interpolation algorithm can be used in any sound logical
calculus. Interpolation in superposition proving is also studied in [2] where a method
for computing interpolants from arbitrary proofs in first-order logic without equality
is presented. While our proof splits are restricted to local proofs, in our approach we
handle first-order theories with equality.

The first approach to constructing interpolants in first-order logic with equality us-
ing an arbitrary sound inference system was introduced in [11] and later improved by
an optimisation technique in [8]. Let us refer to the interpolation algorithm from [11]
as SE . In a nutshell, SE uses two main concepts:

As a first concept, it constructs the largest subderivations containing only symbols
from one of the two partitions (cf. Lemma 8 of [11]). This construction corresponds to
a commitment to a specific choice of local splitting function in our framework. In con-
trast, both Algorithm 1 and Algorithm 2 are parametrized by an arbitrary local splitting
function and different choices yield different interpolants.

12



⊥
R4

R3 G6

G3 B1 G2

R1 G1

Fig. 5. Consider the proof above, taken from Example 5.2 in [8]. Let R1, R3 and R4 be formulas
containing A-local symbols, B1 a formula containing B-local symbols and let G1, G2, G3 and
G6 be formulas containing no local symbols. Then the digest contains only G6, but the algorithm
from [11] would construct the interpolant G3 ∧ ¬G6, which also contains G3.

As the main contribution of [8], the authors extend algorithm SE such that it also
considers a space of different interpolants and optimise over this space. We can see that
the extension simulates different choices of splitting function by merging proof steps.
Both the algorithm from [8] and our Algorithm 4 encode the space of candidates and
the minimisation objective as a pseudo-boolean constraint problem and then ask an opti-
mising SMT-solver for an optimal solution. While encoding the space of splitting func-
tions is trivial using Algorithm 4, encoding the space of local proofs, which are results
from repeated pairwise merging of inferences, is much more involved. More critically,
while we can make use of Lemma 19 to predict the size of the resulting interpolant,
the approach from [8] uses a notion of so called digest to predict the size of the inter-
polant computed from the transformed proof. The authors claim that the interpolant is
a boolean combination of formulas in the digest (Theorem 3.6, [8]). Unfortunately, this
claim is wrong, which can be concluded from the counterexample presented in Fig. 5.
Therefore the technique presented in [8] can potentially yield sub-optimal interpolants.

As the second concept, the algorithm SE from [11] relies on a recursive construction
to compute the interpolant: The construction computes for each largest subderivation a
formula such that the formula of the outermost call yields an interpolant (cf. Lemma 10
of [11]). We now want to hint at the relation of algorithm SE and Algorithm 1. Consider
a subderivation with premises F1, . . . , Fk and conclusion F . Let further I1, . . . , Ik de-
note the recursively computed formulas. Algorithm SE now constructs the following
formulas:

– Case A: I = ((I1 ∨ F1) ∧ · · · ∧ (Ik ∨ Fk)) ∧ ¬(F1 ∧ · · · ∧ Fk).
– Case B: I = ((I1 ∨ F1) ∧ · · · ∧ (Ik ∨ Fk)).

It is not difficult to see that one can reformulate the construction of SE as the following
one, which we will refer to as SE ′:

– Case A: I = ((I1 ∨ F1) ∧ · · · ∧ (Ik ∨ Fk)) ∨ F ∧ ((F1 ∧ · · · ∧ Fk)→ F ).
– Case B: I = (I1 ∧ · · · ∧ Ik).

Note that although the intermediate formulas of algorithm SE and SE ′ are potentially
different, the result of the outermost call is the same for SE and SE ′.

We now state a recursive presentation of our Algorithm 1 in order to compare it
to SE ′. The idea is to replace the global view on the refutation, i.e. the iteration over
all elements of Out(P,S), by a recursive construction which collects all the formulas
describing the boundaries of maximal A-subderivations.

13



Let P be a local proof of a formula F and let r be the inference which derives F . Let
further S be a local splitting function on P . We compute a formula using the following
recursive construction: Let F1, . . . , Fk denote the elements of Dep(F ) and let Ii denote
the formula computed recursively from Fi.

– Case S(r) = A: I = (I1 ∧ · · · ∧ In) ∧ ((F1 ∧ · · · ∧ Fn)→ F ).
– Case: S(e) = B: I = (I1 ∧ · · · ∧ In).

If we now compare algorithm SE ′ and the recursive presentation of Algorithm 1 and
see that they are the same with the exception that SE ′ contains redundant sub-formulas.
More critically, since we know that Algorithm 1 yields an interpolant of size which is
worst-case-quadratic in the size of the proof, we know that the same holds for SE ′ and
therefore for SE , i.e. for the interpolation algorithm of [11]. This represents the most
important downside of the approach of [11] and makes it inferior to Algorithm 2.

6 Experimental Results

We implemented Linear-splitting-formula (Algorithm 2, Sect. 3) in the automated the-
orem prover VAMPIRE [12] and combined it with the two approaches for obtaining a
local splitting function: the Top-down-weighted-sum-heuristic (Algorithm 3) and the
Weighted-sum-optimal (Algorithm 4). In this experiment, we focus on evaluation the
latter combination and refer to it as LinOpt. The aim of the experiment is to compare
the performance of the new algorithm to algorithm from [11] equipped with its opti-
mising improvement from [8], which were already implemented in a previous version
of the prover. We will from now on refer to this combination as SEOpt. We are mainly
interested in learning to which extent do the obtained interpolants differ in size, but also
in the time needed to obtain an interpolant by each algorithm.

To compensate for the lack of a representative set of benchmarks explicitly focusing
on first-order interpolation, we made use of the first-order problems from the TPTP
library [21] (version 6.4.0). We clausified each problem using VAMPIRE and split the
obtained set of clauses into halves, treating the first half as CA and the the second as
C¬B . We attempted to refute each of the obtained problems using VAMPIRE (which
was instructed to generate only local proofs as described in [11]) and followed up by
one of LinOpt or SEOpt to compute an interpolant. We imposed a 60 s time limit on
the proof search in VAMPIRE and a total limit of 100 s on each whole run. We ran the
experiment on the StarExec compute cluster [20].

In total, we obtained 7442 local refutations. Out of these SEOpt failed to construct
an interpolant in 723 cases. In contrast, LinOpt failed to construct an interpolant in
only 16 cases. Furthermore, there were 353 cases in which SEOpt returned only an ap-
proximate result and 108 cases where optimisation failed and the simple unoptimized
version of [11] was used as a fallback instead. Although the observed higher compu-
tational demands of SEOpt can be partly ascribed to reliance on a different pseudo-
boolean solver, we would like to point out that the optimisation problem SEOpt con-
structs is arguably much more complex than the one stemming from Weighted-sum-
optimal employed by LinOpt.

Fig. 6 contains a scatter plot comparison of the sizes of obtained interpolants for
SEOpt and LinOpt. When either SEOpt or LinOpt failed to provide an interpolant
an artificial large value was substituted which is reflected by the data points on the

14



Fig. 6. Size comparison of interpolant produced by SEOpt and LinOpt. Each point corresponds
to a single refutation and its position to the sizes of the respective interpolants.

right and the upper border, respectively. The plot further separates the points to cate-
gories based on the optimality guarantee provided by SEOpt. We can see that LinOpt
consistently yields better results. Moreover, the improvement tends to get more pro-
nounced with the growing size of the instances. Finally, even when just focusing on
instances where SEOpt finished optimising, there are numerous cases where the in-
terpolant from LinOpt is several times smaller than that of SEOpt. This is because
SEOpt cannot avoid repeating certain formulas from the refutation many times in the
interpolant and corresponds to the worst case quadratic complexity discussed in Sect. 5.

Given the encouraging results we intend to officially replace SEOpt by LinOpt in
VAMPIRE and make it available with the next release of the prover.

7 Conclusion

We presented a new technique for constructing interpolants from first-order local refuta-
tions. The technique is based on an idea of proof splitting and on a novel non-inductive
construction which arguably gives more insight than previous work and yields inter-
polants of linear size. This leads to a new interpolation algorithm which we imple-
mented in the automated theorem prover VAMPIRE. Finally, we confirmed in an exten-
sive experiment that the algorithm also improves over the state-of-the-art in practice.

References

1. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy abstraction with
interpolants for arrays. In Logic for Programming, Artificial Intelligence, and Reasoning -
18th International Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceed-
ings, vol. 7180 of Lecture Notes in Computer Science, pp. 46–61. Springer, 2012.

15



2. M. P. Bonacina and M. Johansson. On Interpolation in Automated Theorem Proving. J.
Autom. Reasoning, 54(1):69–97, 2015.

3. J. Christ and J. Hoenicke. Instantiation-based interpolation for quantified formulae. In De-
cision Procedures in Software, Hardware and Bioware, 18.04. - 23.04.2010, vol. 10161 of
Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Ger-
many, 2010.

4. J. Christ and J. Hoenicke. Proof Tree Preserving Tree Interpolation. J. Autom. Reasoning,
57(1):67–95, 2016.

5. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in satisfiability
modulo theories. In TACAS, vol. 4963 of LNCS, pp. 397–412. Springer, 2008.

6. W. Craig. Linear reasoning. A new form of the herbrand-gentzen theorem. J. Symb. Log.,
22(3):250–268, 1957.

7. G. Gallo, G. Longo, S. Nguyen, and S. Pallottino. Directed hypergraphs and applications.
Discrete Applied Mathematics, 42(2):177–201, 1993.

8. K. Hoder, L. Kovács, and A. Voronkov. Playing in the grey area of proofs. In Principles of
Programming Languages, pp. 259–272. ACM, 2012.

9. R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In
TACAS, vol. 3920 of LNCS, pp. 459–473. Springer, 2006.

10. L. Kovács and A. Voronkov. Interpolation and symbol elimination. In CADE, vol. 5663 of
LNCS, pp. 199–213. Springer, 2009.

11. L. Kovács and A. Voronkov. Interpolation and symbol elimination. In Automated Deduction
- CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada,
August 2-7, 2009. Proceedings, vol. 5663 of Lecture Notes in Computer Science, pp. 199–
213. Springer, 2009.

12. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol.
8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.

13. S. K. Lahiri and K. K. Mehra. Interpolant based decision procedure for quantifier-free Pres-
burger arithmetic. Technical Report MSR-TR-2005-121, Microsoft Research, 2005.

14. K. L. McMillan. Interpolation and SAT-based model checking. In CAV, vol. 2725 of LNCS,
pp. 1–13. Springer, 2003.

15. K. L. McMillan. Lazy abstraction with interpolants. In Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
vol. 4144 of Lecture Notes in Computer Science, pp. 123–136. Springer, 2006.

16. K. L. McMillan. Quantified invariant generation using an interpolating saturation prover. In
TACAS, vol. 4963 of LNCS, pp. 413–427. Springer, 2008.

17. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In Handbook of
Automated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT Press, 2001.

18. A. Podelski, M. Schäf, and T. Wies. Classifying Bugs with Interpolants. In TAP, vol. 9762
of LNCS, pp. 151–168, 2016.

19. G. Reger, M. Suda, and A. Voronkov. New techniques in clausal form generation. In GCAI
2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC Series in Computing,
pp. 11–23. EasyChair, 2016.

20. A. Stump, G. Sutcliffe, and C. Tinelli. StarExec, a cross community logic solving service.
https://www.starexec.org, 2012.

21. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

22. N. Totla and T. Wies. Complete instantiation-based interpolation. In Principles of Program-
ming Languages, pp. 537–548. ACM, 2013.

16


