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Abstract. In this paper we study dielectric elastomers accounting for constitutive cou-
pling by means of electrostriction using a multiplicative decomposition of the deformation
gradient tensor. The resulting constitutive relations are reduced to the special case of thin
single layer plates made of incompressible dielectric elastomers. As an example problem
we study the electro-mechanically coupled behavior of such a single layer plate in the ab-
sence of mechanical forces with special emphasis on the effect of electrostriction on the
breakdown instability.

1 Three-dimensional constitutive relations

This section discusses relations involving certain physical entities, which are the non-
symmetric Cauchy stress tensor σ and the spatial polarization vector p, as well as their
material counterparts, the second Piola-Kirchhoff stress tensor S = JF−1 · σ · F−T and
the material electric polarization vector P = JF−1 · p. F is the deformation gradient
tensor, J = detF its determinant and C = FT · F is the symmetric right Cauchy-Green
tensor. Moreover, we have the spatial electric field vector e and the material one E = e ·F.
With the free energy per unit mass Ψ = Ψ(C,E) and the mass density ρ0 in the reference
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configuration we write the thermodynamic relation

ρ0Ψ̇ =
(
S + PE ·C−1

)
· · 1

2
Ċ−P · Ė, (1)

in which Spol = PE ·C−1 is the so-called second Piola-Kirchhoff polarization stress tensor.
We also note that the skewsymmetric part of the bracketed term must vanish due to the
local balance of moment of momentum, which reads

skew
(
S + PE ·C−1

)
= 0; (2)

SS = S + PE ·C−1 is denoted as the symmetric stress tensor in the following. The above
thermodynamic relation is a well known form of the time derivative of the free energy as
it has been frequently reported in the literature, see e.g. [1], [2].

1.1 Multiplicative decomposition

Following the approach proposed in [3] we introduce a multiplicative decomposition of the
deformation gradient tensor as

F = Fme · Fel, (3)

with a mechanical part Fme and an electrical part Fel = Fel(E), such that the right Cauchy-
Green tensor is C = FT

el ·Cme · Fel with the mechanical part Cme = FT
me · Fme. Now, the

free energy is assumed as the sum of a purely mechanical part depending only on Cme and
an electrical part; hence, we write

Ψ = Ψme(Cme) + Ψel(C,E), (4)

and compute the time derivative to

Ψ̇ =
∂Ψme

∂Cme
· · Ċme +

∂Ψel

∂C
· · Ċ +

∂Ψel

∂E · Ė. (5)

All second rank tensors in this relation are symmetric. It remains to compute the time
derivative Ċme. Using Cme = F−T

el ·C · F−1
el we find

Ċme = F−T
el · Ċ · F−1

el − 2sym
(
Cme · Ḟel · F−1

el

)
. (6)

With the symmetry of ∂Ψme/∂Cme and Fel = Fel(E) the first term in the above relation
for Ψ̇ becomes

∂Ψme

∂Cme
· · Ċme = F−1

el ·
∂Ψme

∂Cme
· F−T

el · · Ċ−
(

2F−1
el ·

∂Ψme

∂Cme
·Cme · ·

∂Fel

∂E

)
· Ė, (7)
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and eventually we find

Ψ̇ =

(
F−1
el ·

∂Ψme

∂Cme
· F−T

el +
∂Ψel

∂C

)
· · Ċ−

(
2F−1

el ·
∂Ψme

∂Cme
·Cme · ·

∂Fel

∂E −
∂Ψel

∂E

)
· Ė. (8)

Comparing the two relations for Ψ̇ renders two constitutive relations, one for the symmetric
second Piola-Kirchhoff stress tensor and one for the material polarization vector,

SS = S + PE ·C−1 = 2ρ0F
−1
el ·

∂Ψme

∂Cme
· F−T

el + 2ρ0
∂Ψel

∂C
,

P = 2ρ0F
−1
el ·

∂Ψme

∂Cme
·Cme · ·

∂Fel

∂E − ρ0
∂Ψel

∂E . (9)

Here, the material polarization is composed of two parts, an electrical one Pel and Pcoup

that accounts for the constitutive coupling; these two are

Pel = −ρ0
∂Ψel

∂E and Pcoup = 2ρ0F
−1
el ·

∂Ψme

∂Cme
·Cme · ·

∂Fel

∂E . (10)

Hence, the polarization stress tensor can as well be decomposed into two parts, Spol =
Spol,el + Spol,coup, with

Spol,el = PelE ·C−1 = −ρ0

(
∂Ψel

∂E

)
E ·C−1,

Spol,coup = PcoupE ·C−1 = ρ0

(
2F−1

el ·
∂Ψme

∂Cme
·Cme · ·

∂Fel

∂E

)
E ·C−1. (11)

In particular, we consider Ψel(C,E) as

ρ0Ψel = −1

2
χε0E ·

(
C−1 · E) , (12)

with the permittivity in vacuum ε0 and the constant susceptibility χ. This specific form of
Ψel differs from the one used in [3] as it does not involve J . The derivatives with respect
to E and C are easily computed and result into

−ρ0
∂Ψel

∂E E ·C−1 = χε0

(
C−1 · E) (E ·C−1

)
= χε0C

−1 · (EE) ·C−1,

2ρ0
∂Ψel

∂C
= χε0C

−1 · (EE) ·C−1, (13)

such that

Spol,el = −ρ0
∂Ψel

∂E E ·C−1 = 2ρ0
∂Ψel

∂C
(14)
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holds. Therefore, the constitutive relation for the sum of the stress tensor and the po-
larization stress tensor due to the coupling polarization Pcoup, the so-called symmetric
electro-mechanical stress tensor Sem = S + PcoupE ·C−1 can be written as

Sem = 2ρ0F
−1
el ·

∂Ψme

∂Cme
· F−T

el . (15)

Moreover, with Cme = F−T
el ·C · F−1

el , the coupling polarization vector can be written as

Pcoup = Sem ·C · F−1
el · ·

∂Fel

∂E . (16)

This completes the constitutive modelling, which we summarize as follows:

SS = S + PE ·C−1 = Sem + Spol,el and P = Pel + Pcoup, (17)

with

Sem = 2ρ0F
−1
el ·

∂Ψme

∂Cme
· F−T

el and Spol,el = 2ρ0
∂Ψel

∂C
,

Pel = −ρ0
∂Ψel

∂E and Pcoup = Sem ·C · F−1
el · ·

∂Fel

∂E . (18)

With the aid of these constitutive relation the thermodynamic relation can also be written
as

ρ0Ψ̇ = Fel · Sem · FT
el · ·

1

2
Ċme︸ ︷︷ ︸

=ρ0Ψ̇me(Cme)

+ Spol,el · · 1
2
Ċ−Pel · Ė︸ ︷︷ ︸

=ρ0Ψ̇el

. (19)

In this sub-section the multiplicative decomposition was introduced as proposed by [3]; in
addition the constitutive relations resulting from this decomposition have been discussed
in detail and an alternative form for the electrical part of the free energy was proposed.

1.2 Total stress formulation

In this sub-section we introduce the notion of the the Maxwell stress tensor and of the
total stress tensor, which are common in the field of nonlinear electro-elasticity to account
for pondomotive forces. We begin by augmenting the free energy by a term accounting for
the polarization in vacuum,

ρ0Ω = ρ0Ψ− 1

2
ε0JE ·

(
C−1 · E) = ρ0Ψ + ρ0Ψaug. (20)

Now we compute ρ0Ω̇; with Ψaug = Ψaug(C,E) this results into

ρ0Ω̇ = ρ0Ψ̇ + ρ0
∂Ψaug

∂C
· · Ċ + ρ0

∂Ψaug

∂E · Ė, (21)
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which immediately finds

ρ0Ω̇ =

(
S + PE ·C−1 + 2ρ0

∂Ψaug

∂C

)
· · 1

2
Ċ−

(
P − ρ0

∂Ψaug

∂E

)
· Ė. (22)

With the derivative of the augmentation term in the free energy with respect to E, which
is

ρ0
∂Ψaug

∂E = −ε0JC−1 · E (23)

and the derivative with respect to C,

ρ0
∂Ψaug

∂C
=

1

2
ε0J

[
C−1 · EE − 1

2
I
(EE · ·C−1

)]
·C−1 =

1

2
SMax (24)

we have

ρ0Ω̇ =

(
S + DE ·C−1 − 1

2
ε0JC−1

(EE · ·C−1
))
· · 1

2
Ċ−D · Ė, (25)

in which D = P + ε0JC−1 · E is the material electric displacement vector. The brack-
eted term is the total second Piola-Kirchhoff stress tensor Stot, which is the sum of the
mechanical stress S, the polarisation stress Spol and the Maxwell stress SMax. Therefore,

ρ0Ω̇ = Stot · · 1
2
Ċ−D · Ė (26)

holds. Finally, without presenting a derivation, we note that the material electric displace-
ment vector can be written in the well known form

D = −ρ0
∂Ψme

∂E − ρ0
∂Ψel

∂E − ρ0
∂Ψaug

∂E = −ρ0
∂Ω

∂E (27)

as the derivative of the augmented free energy with respect to the material electric field,
and the total second Piola-Kirchhoff stress tensor follows from

Stot = 2ρ0
∂Ψme

∂C
+ 2ρ0

∂Ψel

∂C
+ 2ρ0

∂Ψaug

∂C
= 2

∂Ω

∂C
(28)

as twice the derivative of the augmented free energy with respect to the right Cauchy-
Green tensor. Both, the total stress tensor as well as the material displacement vector
are involved in the balance / equilibrium conditions as well as the continuity conditions.
We introduce the total first Piola-Kirchhoff stress tensor as Ptot = F · Stot and note the
relations

∇0 ·Ptot = bme , n · [[Ptot]] = 0 and ∇0 ·D = 0 , n · [[D]] = 0, (29)

which can be found for instance in [4],[5]. bme are mechanical body forces and ∇0 is the
invariant differential operator of the reference configuration.
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1.3 The concept of a fictitous intermediate “stress-free” configuration

The symmetric electro-mechanical stress tensor

Sem = S + PcoupE ·C−1 = 2ρ0F
−1
el ·

∂Ψme

∂Cme
· F−T

el (30)

vanishes, if Cme = I as long as the specific form of the mechanical part of the free energy
Ψme(Cme) ensures this condition. In the absence of a rigid-body rotation this also results
into Fme = I, and hence, F = Fel, which constitutes an intermediate configuration. The
deformation from this configuration to the actual configuration by means of Fme results
into a stress Sem, which can be computed from a purely elastic constitutive relation. AInhaltsverzeichnis 1

Reference configuration

Intermediate configuration

Actual configuration

F = I , SS = 0
E = 0 , P = 0

F = Fel , SS = Spol,el

E , P = Pel

F = Fme · Fel

SS = Spol,el + Sem

E , P = Pel + Pcoup

Fel(E)

Ψel(C, E)

Fme

Ψme(Cme)

F

Ψ(C, E)

Figure 1: Schematic overview of involved configurations for constitutive modelling within the
multiplicative decomposition

schematic overview of the three configurations is shown in Figure 1.

• In the reference configuration the electric field vector and the electric polarization
vector vanish, E = 0 and P = 0, and the deformation gradient tensor equals the
identity tensor, F = I. Hence, the symmetric stress tensor is trivial as well, SS = 0.

• In the intermediate configuration, which emerges due to to the electric field E by
means of the electrical deformation gradient tensor Fel = Fel(E), the polarization
vector is equal to its electrical part, P = Pel, and the symmetric stress tensor equals
the electrical part of the polarization stress tensor, SS = Spol,el. To a certain degree
the constitutive process, which corresponds to the deformation from the reference
configuration to the intermediate configuration, is characterized by the electrical part
of the free energy Ψel(C,E).
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• The actual configuration, which is a result of any type of sources, emerges by means
of the mechanical deformation gradient tensor Fme; hence, it is charcterized by F =
Fme · Fel. The symmtric electro-mechanical stress tensor Sem is assigned to this
deformation, and the symmetric stress tensor is SS = Spol,el + Sem. The electric
field vector E is kept constant, but the polarization vector contains the coupling
polarization as well, P = Pel + Pcoup. This constitutive process is characterized by
the mechanical part of the free energy Ψme(Cme).

Allthough this concept of an intermediate “stress-free” configuration in terms of the sym-
metric electro-mechanical stress tensor is quite appealing for the constitutive modelling,
this intermediate configuration does not exist in the real problem, even if Fel is compat-
ible and no mechanical forces act on the body. This can be explained with the presence
of the Maxwell stress tensor as soon as an electrical deformation gradient Fel = Fel(E),
and therefore an electric field is applied. The Maxwell stress tensor represents additional
source terms - in terms of a body force as well as a surface traction - preventing this
“stress-free” intermediate configuration to exist. It is however possible that a “stress-free”
configuration with F 6= Fel exists, in which the total stress tensor vanishes, rather than
the electro-mechanical stress tensor.

1.4 Specific constitutive relations

We introduce the electrical part of the deformation gradient tensor Fel as

Fel = expD, (31)

in which D is a second rank symmetric tensor; this specific law was proposed in [3].
Then, we may as well write D = lnFel and by a proper choice of D we ensure that the
electrical part of the deformation gradient tensor is actually an electrical right stretch
tensor, Fel = Rel ·Uel ≡ Uel. Therefore, D is identical to an electrical logarthmic strain
tensor D = lnUel. We introduce a unit vector in the direction of the material electric field
vector E, which we denote as m. Then, we choose

D = c1 (E · E) mm + c2 (E · E) (I−mm) , (32)

in order to account for electrostriction, which we consider to be quadratic in E. c1 and
c2 are electrostrictive material parameters. Moreover, we can write Fel = λel,3mm +
λel (I−mm), in which

λel,3 = exp (c1E · E) and λel = exp (c2E · E) . (33)

It remains to specify the specific form of the mechanical part Ψme(Cme) of the free en-
ergy Ψ = Ψme(Cme) + Ψel(C,E). In the present paper we will be using a neo-Hookean
hyperelastic strain energy function,

ρ0Ψme(Cme) = Ψme (ICme , IICme , IIICme) =
µ

2
(ICme − 3− 2lnJ) +K(lnJ)2, (34)
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with the Lame parameter µ and the bulk modulusK. The purely electrical part ρ0Ψel(C,E)
and the augmentation term ρ0Ψaug(C,E) have already been defined.

2 Thin dielectric elastomer single layer plates

We consider thin single layer plates made of a dielectric elastomer with a constitutive
relation as introduced above. The dielectric elastomer layer is equipped with electrodes at
its horizontal surfaces; hence, it is near at hand to approximate the material electric field
vector E as E = Em, in which m is the unit vector in thickness direction in the reference
configuration. Moreover, we assume the right-Cauchy Green tensor as C = C2 +C33mm,
in which C2 refers to the plane part of C. Likewise, Cme = C2,me + C33,memm holds due
to the specific form of Fel. With these assumptions, we specify the augmented free energy
Ω as

ρ0Ω = ρ0Ψme (ICme , IICme , IIICme)−
1

2
ε0 (χ+ J)

E2

C33
, (35)

in which ICme = trCme, IICme = Cme ··Cme and IIICme = detCme are the three invariants
of Cme. With Cme = F−T

el ·C · F−1
el , we can write these invariants as

ICme = λ−2
el IC2 + λ−2

el,3C33 , IICme = λ−4
el,3C

2
33 + λ−4

el IIC2 , IIICme = λ−4
el λ

−2
el,3C33IIIC2 .

(36)

We study only incompressible materials and we apply the incompressibility condition to
both, Fel and F. Concerning Fel this results into detFel = 1; hence, we have

detFel = λel,3λ
2
el = exp

(
(c1 + 2c2)E2

)
= 1 → c1 = −2c2, (37)

such that λ−2
el = λel,3 = exp

(
c1E2

)
≡ λ−2

e . Moreover, detC = 1 results into C33 =
detC−1

2 = III−1
C2

. Then, the invariants of Cme are

ICme = λ−2
e IC2 + λ4

eIII
−1
C2

, IICme = λ8
eIII

−2
C2

+ λ−4
e IIC2 , IIICme = 1. (38)

For the incompressible neo-Hookean material we write the augmented free energy as

ρ0Ω =
µ

2

(
λ−2
e trC2 + λ4

eIII
−1
C2
− 3
)
− 1

2
εIIIC2E2 ≡ ρ0Ω2, (39)

with the permittivity ε = ε0(χ + 1) = εrε0, with the relative permittivity εr = χ + 1 and
the electrical stretch λe = exp

(
c2E2

)
= exp

(
(−c1/2)E2

)
. The plane part Stot2 of the total

stress tensor and the thickness component D3 of the material electric displacement vector,
which are the only non-zero parts of the total stress tensor and of the electric displacement
vector, are

Stot2 = 2ρ0
∂Ω2

∂C2
and D3 = −ρ0

∂Ω2

∂E = εIIIC2E − ρ0
∂Ω2

∂λel

∂λel
∂E . (40)
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3 Electromechanical stability

As a preliminary study we consider a plate, for which the deformation is not constrained
and no mechanical forces are applied. We denote the thickness with h and we apply a
voltage V between the two electrodes; hence, E3 = V/h ≡ E holds. In such a problem the
resulting in-plane deformation is homogenous and characterized by a constant spherical
plane right Cauchy-Green tensor. Therefore, C2 = CI2 with C = λ2 applies; here, λ is the
principal stretch in both in-plane directions, λ1 = λ2 = λ, and I2 = I −mm is the plane
part of I. Moreover, the two invariants of C2 are

IC2 = 2C = 2λ2 , IIIC2 = C2 = λ4. (41)

Under these conditions, the augmented free energy for the incompressible neo-Hookean
material is written in terms of the principal stretch λ as

ρ0Ω2 =
µ

2

(
2λ−2

e λ2 + λ4
eλ

−4 − 3
)
− 1

2
ελ4E2. (42)

The plane part of the total second Piola-Kirchhoff stress tensor follows from

Stot2 = 2ρ0
∂Ω2

∂C2
= 2ρ0

∂Ω2

∂λ

∂λ

∂C2
= ρ0

1

λ

∂Ω2

∂λ
I2; (43)

here, we have used the relation ∂C2/∂λ = 2λI2. We assume the contribution to the surface
tractions at the vertical edges, which results from the Maxwell stress in the surrounding
medium to be negligible, such that the plane part of the total second Piola-Kirchhoff stress
tensor vanishes in this specific problem. With the augmented free energy ρ0Ω2 for the
conservative problem at hand, the equilibrium condition can be stated in the form of the
Principle of Gibbs,

ρ0
∂Ω2

∂λ
=
(
λ−2
e λ− λ4

eλ
−5
)
− λ3 ε

µ
E2 = 0, (44)

from which equilibrium stretches λ are obtained. It remains to specify the material param-
eters µ, εr and c1. We use a polyurethane elastomer, for which material parameters were
reported in [6] as εr = 8.8, Y = 3µ with Y = 3.6MPa. In order to proceed with identifying
the electrostrictive parameter c1, we write the equilibrium conditions using the thickness
stretch λ3, which follows from the incompressibilty condition as λ2 = λ−1

3 . Therefore, we
have (

λ−2
e λ−1

3 − λ4
eλ

2
3

)
− λ−2

3

ε

µ
E2 = F (λ3, E2) = 0. (45)

The nonlinear function F (λ3, E2) is approximated in the vicinity of λ3 ≈ 1 and E2 ≈ 0,
which results into the linear relation

ε3 = −
(
ε

3µ
− c1

)
E2 = −ME2, (46)
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with the Biot strain ε3 = λ3 − 1 and an apperant electrostrictive coefficient M . Two
particular effects contribute to the strain: the electrostrictive effect, which in our approach
is accounted for by the parameter c1 and the Maxwell effect which is mainly due to Coulomb
interaction and charcterized by the first term in this linear relation. The experimentally
identified value taken from [6] is M = 7.07× 10−16m2V−2, which results into c1 = −6.86×
10−16m2V−2. Figure 2 shows the equilibrium Biot strain as a function of the square of the
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Figure 2: Equilibrium Biot strains in the small signal and deformation regime

electric field (left) and as a function of the electric field (right) for relatively small electric
fields and strains. The presented results are very close to the experimental ones provided
in [6]. The solid line corresponds to a solution using the multiplicative decomposition
as proposed in this paper, the dashed line is the linearized response from eq. (46), and
the dotted line in the left plot shows the electrical Biot strain εel,3 = λel,3 − 1 with the
electrical part of the thickness stretch λel,3 = λ−2

e = exp(c1E2). Within the small signal
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Figure 3: Equilibrium Biot strains in the large deformation regime

and deformation regime the deviation between the different curves and solutions is quite
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small; this changes, if we increase the electric field, as shown in Figure 3. In the left plot
we compare the present solution (solid line) accounting for electrostriction with a solution,
for which electrostriction is neglected, c1 = 0, see e.g. [7]. One can see the extremely
high importance of electrostriction, which was also pointed out in [6]. Electrostriction
also significantly reduces the critical electric field and increases the corresponding critical
Biot strain, at which the so-called electromechanical breakdown occurs. Beyond this point
(horizontal tangent in the plot) no more stable equilibrium solutions exist. In the right
plot of Figure 3 we compare our solution (solid line), the linearized response (dashed line)
and the electrical part of the Biot strain (dotted line). As long as the Biot strain and the
electric field are relatively small the three curves coincide quite well, a behavior that is fully
lost for large strains. The deviation of the actual Biot strain from the electrical part of the
Biot strain characterizes the deviation of the actual configuration from the intermediate
one, and hence, the evolution of the symmetric electro-mechanical stress tensor. Finally,
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Figure 4: Critical electric field Ecrit vs. electrostrictive coefficient c1

we discuss the effect of electrostriction on the electromechanical breakdown in some more
detail. For that sake, we compute the second derivative of the augmented free energy with
respect to the stretch λ to

ρ0
∂2Ω2

∂λ2
=
(
λ−2
e + 5λ4

eλ
−6
)
− 3λ2 ε

µ
E2. (47)

Stability of an equilibrium point requires this second derivative to be positive. From the
equilibrium condition and the stability margin ρ0

∂2Ω2
∂λ2

= 0 we find(
λcrit
λe,crit

)−6

=
1

4
and

√
ε

µ

(
exp

(
−c1E2

crit

)
Ecrit

)
=

√
3

4
2
3

= 0.687, (48)

from which we can compute the critical value Ecrit, λe,crit and furthermore λcrit. For λe = 1,
which means c1 = 0, this result is well-known from the literature, see [8]. In Figure 4 we
present the dependance of the breakdown electric field Ecrit on the electrostrictive coefficient
c1, which is scaled with respect to the value c10 we have used in the above results.
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4 Concusion & Outlook

The present paper was focussed on the discussion of a multiplicative decomposition of
the deformation gradient tensor in dielectric elastomers to account for electrostriction.
Only single layered plates were studied. In the future the approach will be extended to
geometrically nonlinear shells with layers made of such dielectric elastomers. Moreover, the
specific constitutive law for the electrical part of the deformation gradient will be revisited.
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