

Towards an EC-QCL based Sensor for Monitoring Side Products of Formaldehyde Production

Andreas Genner, Christoph Gasser, Harald Moser, Johannes Ofner, Bernhard Lendl

Institute of Chemical Technologies and Analytics, Vienna University of Technology

Introduction

Quantum Cascade Lasers are, since their first demonstration in 1994, a powerful light source for infrared spectroscopy. Compared with a thermal infrared source, they offer a much higher intensity (several magnitudes) and the emitted radiation shows a spectral bandwidth <50 cm⁻¹ (with a Fabry Perot cavity). Adding an optical grating (either external [EC] or monolithic integrated [DFB, DBR]) allows single mode operation and the spectral bandwidth is <1 cm⁻¹. The extremely narrow bandwidth makes DFB and DBR-QCLs perfectly suited for resolving the ro-vibrational absorption bands of small gas molecules. EC-QCLs, however, are not commonly used for quantifying gases, as single mode operation is difficult to achieve. In this work we present the applicability of an EC-QCL for measuring two gaseous analytes which show absorption bands $>50 \text{ cm}^{-1}$.

Industrial Process - Production of Formaldehyde

Formaldehyde is an important compound for the chemical industry (e.g. formaldehyde based resins, disinfectant, ...) Partial oxidation of methanol on silver catalyst:

Fig. 1: Basic scheme of a formaldehyde production plant (silver catalyst).

Calibrating the Sensor

- Custom built gas mixing rig to mix up to 4 gases
- Saturation module creates a constant vapor stream of the target analytes
- Bruker Matrix and PNNL database for reference measurements (4 cm gas cuvette)

Fig. 4: Gas mixing rig, prototype and Bruker Matrix

Analytes of Interest: Methyl Formate, Methanol

- Side products of formaldehyde production
- Exemplary spectra are shown in Fig. 5 (top)
- Linear regressions are plotted in Fig. 5 (bottom)

Prototype

- ► EC-QCL: 890-1240 cm⁻¹ (Daylight Solutions)
- Measurement cell: 10 cm pathlength, ZnSe windows, custom built
- Detector: PCI-2-TE-12 (VIGO System)
- Signal acquisition: detector \rightarrow boxcar integrator \rightarrow ADS1115 (16 bit ADC) \rightarrow SAM Cortex M3 \rightarrow PC

Fig. 5: Examples of recorded spectra and linear regressions for MF (left) and MeOH (right)

LOQ=34.918 ppm/m LOQ=113.752 ppm/m

Outlook

Fig. 2: CAD drawing of the EC-QCL based prototype.

Fig. 3: Optical Power of the EC-QCL at three different gain chip temperatures (13, 18, 23 °C).

- On-site experiments at Metadynea Austria GmbH
- Additional data processing to improve LOD

Acknowledgments

Financial support was provided by the Austrian research funding association (FFG) under the scope of the COMET programme within the research project Industrial Methods for Process Analytical Chemistry - From Measurement Technologies to Information Systems (imPACts) (contract No. 843546).

