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Gradient Methods on Strongly Convex Feasible Sets and Optimal

Control of Affine Systems∗

V.M. Veliov† P.T. Vuong‡

Abstract

The paper presents new results about convergence of the gradient projection and the con-

ditional gradient methods for abstract minimization problems on strongly convex sets. In par-

ticular, linear convergence is proved, although the objective functional does not need to be

convex. Such problems arise, in particular, when a recently developed discretization technique

is applied to optimal control problems which are affine with respect to the control. This dis-

cretization technique has the advantage to provide higher accuracy of discretization (compared

with the known discretization schemes) and involves strongly convex constraints and possibly

non-convex objective functional. The applicability of the abstract results is proved in the case of

linear-quadratic affine optimal control problems, and error estimates are obtained. A numerical

example is given, confirming the theoretical findings.

Key words: optimal control, mathematical programming, numerical methods, gradient meth-

ods, affine control systems, bang-bang control
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1 Introduction

Solving numerically optimal control problems in which the control function appears linearly, and

performing error analysis, are still challenging issues due to the typical discontinuity of the optimal

control. Considerable progress was made in the past decade in the analysis of discretization schemes

in combination with various methods of solving the resulting discrete-time optimization problems.

The papers [26, 1, 24, 2] apply to problems with linear dynamics, while [10, 3] address nonlinear

affine (in the control) dynamics. Usually the discretization is performed by Runge-Kutta schemes

(mainly the Euler scheme) and the accuracy is at most of first order due to the discontinuity of

the optimal control. Discretization schemes of higher accuracy were recently proposed in [19, 23]
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for systems with linear dynamics and Mayer or Bolza problems. In both cases the error analysis is

based on the assumption that the optimal control is of purely bang-bang type.

On the other hand, the papers [11, 20] present convergence results for a version of the (abstract)

Newton method for nonlinear problems, affine with respect to the control. Every step of the Newton

method requires solving a linear-quadratic (affine in the control) optimal control problem for a linear

system, namely a problem of the following type:

minimize
x,u

J(x, u) :=
1

2
x(T )>Qx(T ) + q>x(T ) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt. (1)

subject to

ẋ(t) = A(t)x(t) +B(t)u(t) + d(t), x(0) = x0, t ∈ [0, T ], (2)

u(t) ∈ U := [−1, 1]m. (3)

Here, [0, T ] is a fixed time horizon, A(t),W (t) ∈ Rn×n, B(t), S(t) ∈ Rn×m for every t ∈ [0, T ], the

superscript > means transposition. Admissible controls are all measurable functions u : [0, T ]→ U .

The state of the system at time t is x(t) ∈ Rn, where x(·) is the (absolutely continuous) solution of

(2), given an admissible control u(·). Linear terms are not included in the integrand in (1), since

they can be shifted in a standard way into the differential equation (2).

For solving the above problem one can apply the high-order discretization scheme developed

in [19, 23]. It results in a discrete-time optimal control problem (a mathematical programming

problem), where the gradient of the objective function can be calculated following a standard

procedure involving the solution of the associated adjoint system, so that gradient-type methods are

conveniently applicable. And here we encounter a remarkable fact: although neither the objective

functional (1) of the continuous-time problem (1)–(3) nor the control constraints (3) are strongly

convex, it turns out that the feasible set of the discretized problem is strongly convex. This brings

into consideration the issue of convergence of gradient methods for problems with strongly convex

feasible sets and possibly non-convex objective functions (even if the functional J in (1) is convex

on the set of admissible control-trajectory pairs, the discretized problem may fail to be convex!).

Versions of the Gradient Projection Method (GPM) and the Conditional Gradient Method

(CGM) are widely studied (see e.g. [17, 18] and the references therein), but results about linear

convergence of the generated sequence of iterates seem to be available only for problems with

strongly convex objective functions. Exceptions are the papers [5, 14], where strong convexity is

assumed for the feasible set instead of the objective function. However, as clarified in the end of

Subsection 2.1 below, the additional assumptions in these two papers are rather strong and are not

fulfilled for the problem arising in the optimal control context as described above.

In this paper we present convergence results for the gradient projection and the conditional gradient

methods for minimization problems in a Hilbert space, where the feasible set is strongly convex but

the objective functional is not necessarily convex. These results are new even for convex or strongly

convex objective functional, but we relax the convexity assumption due to the needs of our main
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goal – to cover the problems arising in optimal control of affine systems, as described above. For

that we consider objective functionals that we called, for shortness, (ε, δ)-approximately convex.

These functions constitute a larger class than that of the weakly convex functions (see e.g. [4]). In

Subsection 2.1 we prove linear convergence of the sequence of approximate solutions generated by

the GPM, provided that the step sizes are appropriately chosen. Apart from the applicability for

non-convex objective functionals, this result does not require the additional conditions in [5, 14]. As

usual, the “appropriate” choice of the step sizes is expressed by some constants related to the data

of the problem, which are often not available (or very roughly estimated). Therefore, we present

an additional convergence result involving a rather general and constructive condition for the step

sizes (well-known in the literature).

The conditional gradient method may have some advantages (compared with the GPM) in our

optimal control application. For this reason we also prove a linear convergence result for the CGM.

This is done in Subsection 2.2.

In Section 3 we turn back to the optimal control problem (1)–(3). The first two subsections

are preliminary, where we introduce notations, formulate assumptions and present the discrete

approximation introduced in [19, 23] and the error estimate proved in [23]. All this is needed

for understanding of the implementation of the GPM and the CGM and of the proofs of the error

estimations. Then, in subsections 3.3 and 3.4 we prove the applicability of the abstract convergence

results, obtained in Section 2, to our discretized optimal control problem and present details about

the implementation of the GPM and the CGM. A numerical example that confirms the theoretical

findings is given in Subsection 3.5.

The paper concludes with indication of some open problems for further research (Section 4).

2 Gradient methods for problems with strongly convex feasible

set

In this section we investigate the convergence of certain gradient methods for an abstract mini-

mization problem of the form

min
w∈K

f(w), (4)

where K is a convex subset of a real Hilbert space H and f : H → R is a function for which

certain conditions weaker than convexity will be posed. Convergence results for gradient projection

methods for this problem in finite dimensional spaces and convex f are known (see e.g. [18]).

It has been proved that the iterative sequence generated by versions of the gradient projection

method converges linearly to a solution, provided that the objective function f is strongly convex

and its gradient is Lipschitz continuous. Extensions to infinite dimensional Hilbert spaces are

straightforward. In contrast, in our results below the function f does not need even to be convex,

while the set K is assumed strongly convex. Some convergence results for smooth convex functions

f and strongly convex sets K are obtained in [5, 14], but under suppositions that (apart from

the convexity of f) are not satisfied in our main motivation as described in the introduction (see
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Remark 2.3 below). The convergence results presented in this section are substantially stronger.

As usual, 〈·, ·〉 denotes the inner product in H and ‖ · ‖ – the induced norm.

Let K be a nonempty closed convex subset of H. For each u ∈ H, there exists a unique point

in K (see [15, p. 8]), denoted by PK(u), such that

‖u− PK(u)‖ ≤ ‖u− v‖ ∀v ∈ K.

It is well-known that the metric projection PK is a nonexpansive mapping, i.e., for all u, v ∈ H

‖PK(u)− PK(v)‖ ≤ ‖u− v‖.

Moreover for any u ∈ H and v ∈ K, it holds that

〈u− PK(u), v − PK(u)〉 ≤ 0. (5)

Conversely, if w ∈ K and 〈u− w, v − w〉 ≤ 0 for all v ∈ K, then w = PK(u).

Below we remind the following notions.

Definition 2.1 The set K ⊂ H is called strongly convex or γ-strongly convex if there exists a

number γ > 0 (called modulus of strong convexity) such that for any u, v ∈ K and any λ ∈ [0, 1] it

holds that

λu+ (1− λ)v + λ(1− λ)
γ

2
‖u− v‖2z ∈ K ∀ z with ‖z‖ ≤ 1.

Definition 2.2 A function f : H → R is called L-smooth on K if f is Fréchet differentiable and

its derivative, ∇f , is L-Lipschitz continuous on K, i.e.,

‖∇f(u)−∇f(v)‖ ≤ L‖u− v‖ ∀u, v ∈ K.

The following definition introduces a property that is usually called “weak convexity” or “para-

convexity” (see e.g. [4]).

Definition 2.3 A function f : H → R is called ε-convex (with ε ≥ 0) on a convex subset K ⊂ H

at ŵ ∈ K if the function fε(w) := f(w) + 1
2ε‖w − ŵ‖

2 is convex on K at ŵ, i.e.

fε(αw + (1− α)ŵ) ≤ αfε(w) + (1− α)fε(ŵ)

for every w ∈ K and α ∈ (0, 1).

If f : H → R is ε-convex at ŵ and differentiable, then

〈∇fε(w)−∇fε(ŵ), w − ŵ〉 ≥ 0 ∀w ∈ K.

This implies that

〈∇f(w)−∇f(ŵ), w − ŵ〉 ≥ −ε‖w − ŵ‖2 ∀w ∈ K.

In the our main application, the function f does not need to be even ε-convex with ε reasonably

small. Therefore we further weaken the convexity as in the following definition.
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Definition 2.4 A Fréchet-differentiable function f : H → R is called (ε, δ)-approximately convex

(with ε, δ ≥ 0) on a convex subset K ⊂ H at ŵ ∈ K if

〈∇f(w)−∇f(ŵ), w − ŵ〉 ≥ −ε‖w − ŵ‖2 ∀w ∈ K with ‖w − ŵ‖ ≥ δ. (6)

Notice that δ can be taken equal to zero in the above definition, in which case the (ε, δ)-

approximate convexity reduces to ε-convexity.

The following three results provide the ground for the error analysis of the GPM and the CGM.

Proposition 2.1 Assume that f is L-smooth, K is γ-strongly convex and ŵ ∈ K is a solution

of problem (4) such that ‖∇f(ŵ)‖ ≥ ρ for some number ρ > 0. Assume also that f is (ε, δ)-

approximately convex on K at ŵ and that the number ν := γρ
4 − ε is positive. Then

〈∇f(w), w − ŵ〉 ≥ ν‖w − ŵ‖2 ∀w ∈ K with ‖w − ŵ‖ ≥ δ. (7)

Moreover, any solution of problem (4) is at distance at most δ from ŵ.

Proof. Setting z = −∇f(ŵ)
‖∇f(ŵ)‖ , we have ‖z‖ = 1. By the strong convexity of K we obtain that for

any w ∈ K
y :=

1

2
(w + ŵ) +

γ

8
‖w − ŵ‖2z ∈ K.

Due to (6), for all w ∈ K with ‖w − ŵ‖ ≥ δ we have

〈∇f(w)−∇f(ŵ), w − ŵ〉 ≥ −ε‖w − ŵ‖2.

Hence,

〈∇f(w), w − ŵ〉 ≥ 〈∇f(ŵ), w − ŵ〉 − ε‖w − ŵ‖2

= 2

〈
∇f(ŵ),

w + ŵ

2
− y
〉

+ 2 〈∇f(ŵ), y − ŵ〉 − ε‖w − ŵ‖2. (8)

The optimality of ŵ implies that

〈∇f(ŵ), y − ŵ〉 ≥ 0.

Then from (8) we obtain that

〈∇f(w), w − ŵ〉 ≥ 2

〈
∇f(ŵ),

γ

8
‖w − ŵ‖2 ∇f(ŵ)

‖∇f(ŵ)‖

〉
− ε‖w − ŵ‖2

=
γ

4
‖∇f(ŵ)‖‖w − ŵ‖2 − ε‖w − ŵ‖2 ≥ ν‖w − ŵ‖2,

that is, (7).

Now assume that w̄ is another solution of (4). The optimality of w̄ implies, in particular, that

〈∇f(w̄), ŵ − w̄〉 ≥ 0.
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Assuming that ‖w̄ − ŵ‖ > δ we may substitute w = w̄ ∈ K in (7), which gives

〈∇f(w̄), w̄ − ŵ〉 ≥ ν‖w̄ − ŵ‖2.

Adding the last two inequalities we obtain that

0 ≥ ν‖w̄ − ŵ‖2.

which contradicts the assumption ‖w̄ − ŵ‖ > δ. The proof is complete. Q.E.D.

Lemma 2.1 Let the assumptions of Proposition 2.1 be satisfied. If for some w ∈ K and λ > 0 it

holds that PK(w − λ∇f(w)) = w, then ‖w − ŵ‖ ≤ δ.

Proof. Contrary to the claim of the lemma, assume that ‖w− ŵ‖ > δ. Then from Proposition 2.1

we have that the first inequality in (7) is fulfilled by w. From the condition PK(w− λ∇f(w)) = w

we have that

〈∇f(w), u− w〉 ≥ 0 ∀u ∈ K.

Applying this inequality for u = ŵ and adding it to the first inequality in (7) we obtain that

0 ≥ ν‖w − ŵ‖2,

which is a contradiction. Q.E.D.

Lemma 2.2 Let the assumptions of Proposition 2.1 be satisfied. If for some w ∈ K if holds that

∇f(w) = 0, then ‖w − ŵ‖ ≤ δ.

Proof. If we assume ‖w − ŵ‖ > δ, then from the first inequality in (7) we have

0 ≥ ν‖w − ŵ‖2,

which is a contradiction. Q.E.D.

2.1 The gradient projection method

For solving the minimization problem (4), we consider first the most classical algorithm, the Gra-

dient Projection Method (GPM) stated below. In the formulation of the algorithm we only assume

that f is L-smooth.

Algorithm GPM.

Step 0: Choose w0 ∈ K. Set k = 0.
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Step 1: If wk = PK (wk −∇f(wk)) then Stop. Otherwise, go to Step 2.

Step 2: Choose λk > 0 and calculate

wk+1 = PK (wk − λk∇f(wk)) . (9)

Replace k by k + 1; go to Step 1.

It is well-known that for convex f and K the GPM has the error estimate O( 1k ) in term of the

objective function when λk = λ ∈
(
0, 1

L

]
, see e.g. [6]. More precisely, if problem (4) has a solution

and f̂ is the minimal value of f on K, then

f(wk)− f̂ ≤
Lm0

2k
∀k,

where m0 is the distance from w0 to the solution set of (4). If in addition, f is strongly convex, then

the sequence {wk} converges to the unique solution of (4). If f is only convex (but not necessarily

strongly convex), there are no convergence results, in the known to us literature, concerning the

iterative sequence {wk}.
In this subsection, we prove that if the set K is strongly convex and the function f is (ε, δ)-

approximately convex then the sequence {wk} generated by the GPM linearly approaches ŵ at

least until entering a δ-neighborhood of ŵ. We mention that if the above algorithm of the GPM

stops at Step 1 for some k then, according to Lemma 2.1, ‖wk − ŵ‖ ≤ δ, that is, an approximate

solution is attained.

Using Proposition 2.1, we obtain the following main estimation which will be repeatedly used

in the sequel.

Proposition 2.2 Let all the assumptions in Proposition 2.1 be satisfied, and let ‖w0 − ŵ‖ ≥ δ.

Then the sequence {wk} generated by the GPM satisfies the inequality[
1 + λk

(
2ν − λkL2

)]
‖wk+1 − ŵ‖2 ≤ ‖wk − ŵ‖2 ∀k (10)

at least as long as ‖wk+1 − ŵ‖ ≥ δ.

Proof. Since wk+1 = PK(wk − λk∇f(wk)), due inequality (5) we have

〈wk − λk∇f(wk)− wk+1, w − wk+1〉 ≤ 0 ∀w ∈ K.

Substitution of w = ŵ ∈ K in this inequality yields

〈wk − λk∇f(wk)− wk+1, ŵ − wk+1〉 ≤ 0,

or equivalently

2〈wk − wk+1, ŵ − wk+1〉 ≤ 2λk〈∇f(wk), ŵ − wk+1〉

= −2λk〈∇f(wk+1), wk+1 − ŵ〉+ 2λk〈∇f(wk)−∇f(wk+1), ŵ − wk+1〉. (11)
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Since wk+1 ∈ K and λk > 0, if ‖wk+1 − ŵ‖ ≥ δ then due to Proposition 2.1

−2λk〈∇f(wk+1), wk+1 − ŵ〉 ≤ −2λkν‖wk+1 − ŵ‖2. (12)

By the Cauchy-Schwarz inequality and the Lipschitz continuity of ∇f , we obtain that

2λk〈∇f(wk)−∇f(wk+1), ŵ − wk+1〉 ≤ 2λk‖∇f(wk)−∇f(wk+1)‖‖wk+1 − ŵ‖

≤ 2λkL‖wk − wk+1‖‖wk+1 − ŵ‖

≤ ‖wk − wk+1‖2 + (λkL)2‖wk+1 − ŵ‖2. (13)

Inequalities (11), (12) and (13) imply that

2〈wk − wk+1, ŵ − wk+1〉 ≤ −2λkν‖wk+1 − ŵ‖2 + ‖wk − wk+1‖2 + (λkL)2‖wk+1 − ŵ‖2. (14)

On the other hand,

2〈wk − wk+1, ŵ − wk+1〉 = ‖wk − wk+1‖2 + ‖ŵ − wk+1‖2 − ‖(wk − wk+1)− (ŵ − wk+1)‖2

= ‖wk − wk+1‖2 + ‖wk+1 − ŵ‖2 − ‖wk − ŵ‖2.
(15)

Combining (14) and (15) we obtain that

‖wk−wk+1‖2+‖wk+1−ŵ‖2−‖wk−ŵ‖2 ≤ −2λkν‖wk+1−ŵ‖2+‖wk−wk+1‖2+(λkL)2‖wk+1−ŵ‖2,

hence (10) is satisfied. Q.E.D.

Now we can state and prove the main convergence result for the GPM.

Theorem 2.1 Let all the assumptions in Proposition 2.2 be satisfied. Let the sequence {λk} be

chosen such that

0 < a ≤ λk ≤ b <
2ν

L2
∀k, (16)

where a, b are some positive constants. Define

µ =
1√

1 + a (2ν − bL2)
∈ (0, 1). (17)

Let {wk} be the sequence generated by the GPM. Then for every k, if ‖wk+1 − ŵ‖ ≥ δ then

‖wk+1 − ŵ‖ ≤ µ ‖wk − ŵ‖. (18)

Moreover, for every k, if ‖wi+1 − ŵ‖ ≥ δ, i = 0, . . . , k, then the following a priori and a posteriori

error estimates hold:

‖wk+1 − ŵ‖ ≤
µk+1

1− µ
‖w1 − w0‖, (19)

and

‖wk+1 − ŵ‖ ≤
µ

1− µ
‖wk+1 − wk‖. (20)
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Before proving the theorem we mention that in the case of an ε-convex function f (that is, if

δ = 0) the first claim of the theorem means that the sequence generated by the GPM converges

linearly to the (unique) solution ŵ. In the case δ > 0 we also have linear convergence at least until

the generated sequence enters the δ-neighborhood of ŵ. Thus in this case the theorem is meaningful

only if δ is reasonably small.

Proof. It follows from (16) that
[
1 + λk

(
2ν − λkL2

)]
≥
[
1 + a

(
2ν − bL2

)]
> 1 for all k. By (10)

and the above inequalities,[
1 + a

(
2ν − bL2

)]
‖wk+1 − ŵ‖2 ≤ ‖wk − ŵ‖2,

provided that ‖wk+1 − ŵ‖ ≥ δ. Hence

‖wk+1 − ŵ‖ ≤ µ‖wk − ŵ‖ (21)

with µ ∈ (0, 1) being defined by (17).

The proof of (19) and (20) is standard, but we present it for completeness. By (21),

‖wk+1 − ŵ‖ ≤ µ‖wk − ŵ‖ ≤ µ2‖wk−1 − ŵ‖ ≤ . . . ≤ µk+1‖w0 − ŵ‖.

Observe that

‖wk − ŵ‖ ≤ ‖wk − wk+1‖+ ‖wk+1 − ŵ‖ ≤ ‖wk − wk+1‖+ µ‖wk − ŵ‖,

and so ‖wk − ŵ‖ ≤ 1
1−µ‖wk − wk+1‖ for all k. Hence

‖wk+1 − ŵ‖ ≤ µk+1‖w0 − ŵ‖ ≤
µk+1

1− µ
‖w0 − w1‖,

‖wk+1 − ŵ‖ ≤ µ‖wk − ŵ‖ ≤
µ

1− µ
‖wk − wk+1‖.

Q.E.D.

Remark 2.1 If the constants L, γ and ρ can be reasonably estimated, then inequalities (19) and

(20) can be used to estimate the number of iterations of the GPM needed to achieve a given

accuracy.

Remark 2.2 The value µ in (17) can be regarded as a function µ = µ(a, b) of the variable (a, b)

belonging to the domain {
(a, b) ∈ R2 : 0 < a ≤ b < 2ν

L2

}
.

It is a routine task to obtain that the minimum of µ(a, b) under the above constraints is achieved

at (a∗, b∗) := ( ν
L2 ,

ν
L2 ) and the minimal value is µ∗ := L√

L2+ν2
. Hence, λk = ν

L2 would be an optimal

choice of λk.
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Since the parameters γ, ρ and L are usually not known in advance, we can consider the step size

sequence {λk} as any non-summable converging to zero sequence of positive real numbers as it

follows in the next theorem.

Theorem 2.2 Let the assumptions in Proposition 2.2 be satisfied. Let {λk} be a sequence of

positive scalars such that
∞∑
k=0

λk = +∞, lim
k→∞

λk = 0. (22)

Then for every δ′ > δ all elements of the sequence {wk} with sufficiently large k are contained in

the δ′-neighborhood of ŵ. Moreover, there exists a natural number k0 such that for each k ≥ k0 for

which ‖wi+1 − ŵ‖ ≥ δ is fulfilled for i = k0, . . . , k, it holds that λk(2ν − λkL2) > 0, and

‖wk+1 − ŵ‖ ≤
1√∏k

i=k0
[1 + λi(2ν − λiL2)]

‖wk0 − ŵ‖. (23)

Clearly, in the case δ = 0 the first claim of the theorem implies strong convergence of the

sequence {wk}.

Proof. Since λk → 0, there exists k0 such that 4λkL
2 < γρ for every k ≥ k0. Hence,

λk
(
2ν − λkL2

)
> λk (2ν − ν) = νλk > 0,

for all k ≥ k0. If k is such that ‖wi+1 − ŵ‖ ≥ δ, i = k0, . . . , k. Then from (10) it follows that

‖wk+1 − ŵ‖2 ≤ 1

1 + λk (2ν − λkL2)
‖wk − ŵ‖2

≤ 1

[1 + λk (2ν − λkL2)]

1

[1 + λk−1(2ν − λk−1L2)]
‖wk−1 − ŵ‖2

...

≤ 1∏k
i=k0

[1 + λi(2ν − λiL2)]
‖wk0 − ŵ‖2,

which proves (23).

Let us now prove the first claim of the theorem. For each k set

αk = λk
(
2ν − λkL2

)
and rewrite (23) (if it holds for k) as

‖wk+1 − ŵ‖ ≤
1√∏k

i=k0
(1 + αi)

‖wk0 − ŵ‖. (24)

Since αk = λk(2ν − λkL2) > νλk for each k ≥ k0, it follows from (22) that

∞∑
k=k0

αk = +∞. Hence

k∏
i=k0

(1 + αi) ≥ 1 +

k∑
i=k0

αi −→ +∞

10



as k → ∞. Since (24) holds as long as ‖wk+1 − ŵ‖ ≥ δ, we obtain that either ‖wk − ŵ‖ −→ 0 or

‖wk−ŵ‖ < δ for some k ≥ k0. In the second case we either have ‖wk+1−ŵ‖ < δ, or ‖wk+1−ŵ‖ ≥ δ.
In the second case, again, we have from (10)

‖wk+1 − ŵ‖2 ≤
1

1 + αk
‖wk − ŵ‖2 ≤ δ2.

Thus wk remains in the δ-neighborhood of ŵ for all k. The proof is complete. Q.E.D.

Remark 2.3 Using the contractivity of the projection onto strongly convex sets, Balashov and

Golubev [5] and Golubev [14] obtained the linear convergence of the GPM for smooth, convex

optimization problem with the following additional conditions:

(i) For any k, there exists a unit vector n(wk) ∈ NK(wk) such that

〈n(wk),∇f(wk)〉 ≤ 0,

i.e., wk − λk∇f(wk) /∈ K for any λk > 0.

(ii) The problem (4) has a unique solution and it belongs to the boundary of K.

In our convergence analysis in Theorem 2.1, the assumptions (i), (ii) are eliminated, which is

important for our main motivation (see the next section). Also important is that our result applies

under the (ε, δ)-approximate convexity instead of convexity.

2.2 The conditional gradient method

In this subsection, we consider the Conditional Gradient Method (CGM) for solving problem (4)

with a γ-strongly convex set K and an (ε, δ)-approximate convex and L-smooth function f . This

method dates back to the original work of Frank and Wolfe [12] which presented an algorithm

for minimizing a quadratic function over a polytope using only linear optimization steps over the

feasible set. The CGM for solving (strongly) convex problem was investigated in [7, 8, 13].

Algorithm CGM.

Step 0: Choose w0 ∈ K. Set k = 0.

Step 1: If ∇f(wk) = 0, then Stop. Otherwise, find a solution xk of the problem

min
y∈K
〈∇f(wk), y〉 . (25)

Step 2: If xk = wk, then Stop. Otherwise, go to Step 3.

Step 3: If ∇f(wk) 6= 0, choose ηk ∈
(

0,min
{

1, γ‖∇f(wk)‖
4L

}]
, calculate

wk+1 = (1− ηk)wk + ηkxk, (26)
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replace k by k + 1, and go to Step 1. Else the iteration process terminates.

Notice that if the above algorithm stops at Step 1 or Step 3 for some k then, according to Lemma 2.2,

‖wk − ŵ‖ ≤ δ, that is, an approximate solution is attained.

In general, problem (25) may fail to have a solution, in which case the CGM is not executable.

Remark 2.4 The objective function in the subproblem (25) in the CGM is linear, thus if K is

a polytope, we encounter a linear programming problem which should be easier to solve than the

quadratic programming subproblem (9) in the GPM. In the case considered in this paper the set K

is strongly convex, thus (25) is not a linear programming problem. However, in our main application

(see the next section) the set K is a product of (possibly large number of) simple two-dimensional

strongly convex sets, so that (25) decomposes into two-dimensional subproblems that are easy to

solve.

We will use the following global version of (ε, δ)-approximate convexity.

Definition 2.5 A Fréchet-differentiable function f : H → R is called (ε, δ)-approximately convex

on a convex subset K ⊂ H if

f(w)− f(v) ≥ 〈∇f(v), w − v〉 − ε

2
‖w − v‖2 ∀w, v ∈ K with ‖w − v‖ ≥ δ. (27)

Clearly, (27) implies (6).

We begin the convergence analysis of the CGM with an inequality which will play a key role

for obtaining convergence results. For convenience we assume that if the CGM terminates at some

finite iteration k = i, (due to ∇f(wi) = 0) then the sequence {wk} is extended as wk = wi for

k > i.

Proposition 2.3 Assume that K is γ-strongly convex, f is L-smooth and ŵ is a solution of problem

(4) such that ‖∇f(ŵ)‖ ≥ ρ for some number ρ > 0. Assume also that f is (ε, δ)-approximately

convex on K and that the number ν := γρ
4 − ε is positive. Further, assume that at any iteration k

a solution of the subproblem (25) does exist, and let {wk} be the sequence generated by the CGM.

Denote f̂ := f(ŵ) and ∆k := f(wk)− f̂ . Then

∆k+1 ≤
(

1− νηk
2ν + ε

)
∆k −

ηk
2

(
γ‖∇f(wk)‖

4
− Lηk

)
‖xk − wk‖2, (28)

at least as long as ‖wk − ŵ‖ ≥ δ.

Proof. If ∇f(wi) = 0 for some i, we have xk = wk and ∆k = 0 for all k ≥ i, hence (28). Thus we

may assume that ∇f(wk) 6= 0 for the arbitrarily fixed k in the consideration below.

12



Since f is L-smooth we have

f(wk+1) ≤ f(wk) + 〈∇f(wk), wk+1 − wk〉+
L

2
‖wk+1 − wk‖2

= f(wk) + ηk 〈∇f(wk), xk − wk〉+
L

2
η2k‖xk − wk‖2. (29)

Subtracting f̂ from both sizes of (29), we obtain

∆k+1 ≤ ∆k + ηk 〈∇f(wk), xk − wk〉+
L

2
η2k‖xk − wk‖2. (30)

By the optimality of xk in (25), we have

〈∇f(wk), xk〉 ≤ 〈∇f(wk), ŵ〉 . (31)

Assume from now on that ‖wk − ŵ‖ ≥ δ. From (31) and the (ε, δ)-approximate convexity of f it

follows that

〈∇f(wk), xk − wk〉 ≤ 〈∇f(wk), ŵ − wk〉

≤ f(ŵ)− f(wk) +
ε

2
‖wk − ŵ‖2 = −∆k +

ε

2
‖wk − ŵ‖2. (32)

Setting z = −∇f(ŵ)
‖∇f(ŵ)‖ , we have ‖z‖ = 1. By the strong convexity of K we obtain that

yk :=
1

2
(wk + ŵ) +

γ

8
‖wk − ŵ‖2z ∈ K.

Therefore, from the (ε, δ)-approximate convexity of f and the optimality of ŵ, we obtain

∆k = f(wk)− f(ŵ) ≥ 〈∇f(ŵ), wk − ŵ〉 −
ε

2
‖wk − ŵ‖2

= 2

〈
∇f(ŵ),

wk + ŵ

2
− yk

〉
+ 2 〈∇f(ŵ), yk − ŵ〉 −

ε

2
‖wk − ŵ‖2

≥ 2

〈
∇f(ŵ),

wk + ŵ

2
− yk

〉
− ε

2
‖wk − ŵ‖2

= 2

〈
∇f(ŵ),

γ

8
‖wk − ŵ‖2

∇f(ŵ)

‖∇f(ŵ)‖

〉
− ε

2
‖wk − ŵ‖2

=
γ

4
‖∇f(ŵ)‖‖wk − ŵ‖2 −

ε

2
‖wk − ŵ‖2

≥
(γρ

4
− ε

2

)
‖wk − ŵ‖2 =

(
ν +

ε

2

)
‖wk − ŵ‖2. (33)

Combining (33) with (32) we have

〈∇f(wk), xk − wk〉 ≤ −∆k +
ε/2

ν + ε/2
∆k = − ν

ν + ε/2
∆k. (34)

Setting zk = −∇f(wk)
‖∇f(wk)‖ , we have ‖zk‖ = 1. By the strong convexity of K we have that

yk :=
1

2
(wk + xk) +

γ

8
‖wk − xk‖2zk ∈ K.
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The optimality of xk in (25) yields that

〈∇f(wk), xk − wk〉 ≤ 〈∇f(wk), yk − wk〉

=

〈
∇f(wk),

1

2
(xk − wk) +

γ

8
‖wk − xk‖2zk

〉
=

1

2
〈∇f(wk), xk − wk〉+

γ

8
‖wk − xk‖2

〈
∇f(wk),

−∇f(wk)

‖∇f(wk)‖

〉
=

1

2
〈∇f(wk), xk − wk〉 −

γ

8
‖wk − xk‖2‖∇f(wk)‖

≤ −1

2

ν

ν + ε/2
∆k −

γ

8
‖wk − xk‖2‖∇f(wk)‖, (35)

where the last inequality follows from (34). Combining (29) with (35), we obtain that

∆k+1 ≤
(

1− νηk
2ν + ε

)
∆k −

ηk
2

(
γ‖∇f(wk)‖

4
− Lηk

)
‖xk − wk‖2.

Q.E.D.

We are now in a position to establish the convergence results for the CGM.

Theorem 2.3 Let all the assumptions in Proposition 2.3 be satisfied. Assume also that ‖w0−ŵ‖ ≥
δ and the sequence {wk} generated by the CGM satisfies ‖∇f(wk)‖ ≥ ρ for all k. Let the sequence

{ηk} be chosen such that

0 < η ≤ ηk ≤ min

{
2ν + ε

ν
,
γ‖∇f(wk)‖

4L

}
∀k. (36)

Then for every k ∈ N, if ‖wk − ŵ‖ ≥ δ then

f(wk+1)− f̂ ≤ θ
(
f(wk)− f̂

)
,

where θ = 1− νη

2ν+ε ∈ (0, 1). Moreover, for every k, if ‖wi − ŵ‖ ≥ δ, i = 0, ..., k, then

‖wk − ŵ‖2 ≤
∆0

ν + ε/2
θk,

Clearly, in the case δ = 0, the first and the second claims of the theorem mean that the sequences

{f(wk)} and {wk} converge linearly to f̂ and ŵ, respectively. In the case δ > 0 we also have linear

convergence at least until the generated sequence enters the δ-neighborhood of ŵ.

Proof. From (36) we have

γ‖∇f(wk)‖
4

− Lηk ≥ 0, and 1 ≥ νηk
2ν + ε

≥
νη

2ν + ε
∀k.

Therefore, it follows from (28) that, for all k, it holds

∆k+1 ≤
(

1−
νη

2ν + ε

)
∆k,
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which implies

f(wk+1)− f∗ ≤ θ (f(wk)− f∗) . (37)

In addition, if ‖wi − ŵ‖ ≥ δ, i = 0, ..., k, then we have

∆k ≤ θk∆0.

This and (33) imply

‖wk − ŵ‖2 ≤
1

ν + ε/2
∆k ≤

∆0

ν + ε/2
θk.

Q.E.D.

3 The affine optimal control problem

In this section we turn back to the control-affine linear-quadratic problem (1)–(3) and prove that the

gradient methods considered in the previous section are applicable to the (high order) discretization

of the problem recently developed in [19, 23]. We also provide error estimates regarding both the

errors due to discretization and those due to truncation of the gradient projection iterations.

The first two subsections reproduce assumptions and results from [23] that are necessary for

understanding the implementation of the GPM and the CGM to the discretized version of problem

(1)–(3). The next subsections prove the applicability of the abstract results obtained above, present

details about the implementation of the gradient methods, and provide results of computational

experiments.

3.1 Notations and assumptions

Below Rn denotes the n dimensional Euclidean space (with its elements considered as vector-

columns), | · | and 〈·, ·〉 denote the norm and the scalar product, respectively, the superscript >
denotes transposition of vectors and matrices. When dealing with “long” sequences of vectors

w = (w0, . . . , wN−1), where wi ∈ Rp, so that w ∈ (Rp)N , it is convenient to introduce the norms

‖w‖1 := h
N−1∑
i=0

|wi|, ‖w‖2 :=

√√√√h
N−1∑
i=0

|wi|2, (38)

where h := T/N . This ensures, in particular, that ‖w‖1 ≤
√
T ‖w‖2. We also define ‖w‖∞ =

maxi |wi|. As usual, L2([0, T ];Rm) denotes the Hilbert space of all measurable square-integrable

functions [0, T ] → Rm with scalar product 〈u1, u2〉 =
∫ T
0 〈u1(t), u2(t)〉 dt and the corresponding

norm is denoted again by ‖ · ‖2.
Let H be the Hilbert space

(
R2m

)N
with the scalar product 〈w′, w′′〉 = h

∑N−1
1=0 〈w′i, w′′i 〉, where

each component, wi, of any w ∈ H is a pair (ui, vi) with ui, vi ∈ Rm.
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Assumption (A1) The matrix functions A(t), B(t),W (t) and S(t), t ∈ [0, T ], have Lipschitz con-

tinuous first derivatives, Q and W (t) are symmetric. Moreover, the matrix B>(t)S(t) is symmetric

for all t ∈ [0, T ].

Denote by F the set of all admissible control-trajectory pairs (u, x), that is, all pairs of an admissible

control u and the corresponding (absolutely continuous) solution x of (2). By a standard argument,

problem (1)–(3) has a solution, (x̂, û) ∈ F , which from now on will be considered as fixed.

Assumption (A2)

1

2
z(T )>Qz(T ) + q>x(T ) +

∫ T

0

(
1

2
z(t)>W (t)z(t) + z(t)>S(t)v(t)

)
dt ≥ 0 ∀ (z, v) ∈ F − (x̂, û).

The first part of Assumption (A1) is standard, while the last requirement is demanding but known

from the literature, usually expressed in terms of the Lie brackets of the involved controlled vector

fields see e.g. [25]. It is certainly fulfilled in the case of single-input systems, m = 1. Assumption

(A2) is a directional convexity assumption at (x̂, û), which is somewhat weaker than the usual

convexity assumption for the functional J in (1) regarded as a functional on the set of admissible

controls (viewing x as a function of u).

The Pontryagin principle implies that there exists an absolutely continuous function p̂ : [0, T ]→
Rn such that (x̂, û, p̂) satisfies the following system of generalized equations: for a.e. t ∈ [0, T ],

0 = ẋ(t)−A(t)x(t) +B(t)u(t), x(0) = x0, (39)

0 = ṗ(t) +A(t)>p(t) +W (t)x(t) + S(t)u(t), (40)

0 ∈ B(t)>p(t) + S(t)>x(t) +NU (u(t)), (41)

0 = p(T )−Qx(t)− q, (42)

where NU (u) is the normal cone to U at u:

NU (u) :=

∅ if u /∈ U,

{l ∈ Rm : 〈l, v − u〉 ≤ 0 ∀v ∈ U} if u ∈ U.

Following [23], we assume that the optimal control û is strictly bang-bang, with a finite number of

switching times on [0, T ], and that the so-called switching function,

σ̂(t) := B(t)>p̂(t) + S(t)>x̂(t),

exhibits a certain growth in a neighborhood of any zero1.

Assumption (A3) (strict bang-bang property)

There exist real numbers κ ≥ 1 and α, τ > 0 such that for all j ∈ {1, . . . ,m} and s ∈ [0, T ] with

σ̂j(s) = 0 (the j-th component of σ̂) we have

|σ̂j(t)| ≥ α|t− s|κ ∀t ∈ [s− τ, s+ τ ] ∩ [0, T ].

Assumptions (A1)–(A3) will be standing in this section.

1 A similar assumption is introduced in [9] in the case κ = 1 and in [22, 24] for κ ≥ 1.
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3.2 High-order time-discretization

In this subsection we recall the discretization scheme for problem (1)-(3) presented in [23], which has

a higher accuracy than the Euler scheme without a substantial increase of the numerical complexity

of the discretized problem. The approach uses second order truncated Volterra-Fliess series. The

discretization scheme is described as follows.

For any natural number N denote h = T/N and define the mesh {ti}N0 with ti = ih. Introducing

the notations (where a dot above the symbol of a function denotes the time-derivative)

Ai := A(ti) +
h

2

(
A(ti)

2 + Ȧ(ti)
)
,

Bi := B(ti) + hA(ti)B(ti),

Ci := −A(ti)B(ti) + Ḃ(ti),

we replace the differential equation (2) with the discrete-time controlled dynamics

xi+1 = xi + h(Aixi +Biui + hCivi), i = 0, ..., N − 1, x0 given, (43)

wi := (ui, vi) ∈ Zm, i = 0, ..., N − 1, (44)

where Zm is the Cartesian product Πm
1 Z and Z is the Aumann integral

Z :=

∫ 1

0

(
1

s

)
[−1, 1] ds.

As pointed out in [19], the set Z can be easily represented in the more convenient way as

Z = {(α, β) : α ∈ [−1, 1], β ∈ [ϕ1(α), ϕ2(α)]} , (45)

where ϕ1(α) := 1
4

(
−1 + 2α+ α2

)
and ϕ2(α) := 1

4

(
1 + 2α− α2

)
.
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Figure 1: The set Z as the area between the two parabolas ϕ1 (lower) and ϕ2 (upper).
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We introduce the discrete-time counterpart of the objective functional J in (1): for x =

(x0, ..., xN ), w = (w0, . . . , wN−1) = ((u0, v0), . . . , (uN−1, vN−1)),

Jh(x,w) :=
1

2
x>N (QxN + q) +

h

2

N−1∑
i=0

(
x>i W (ti) (xi + hA(ti)xi) +

h

2
x>i Ẇ (ti)xi

)
(46)

+h
N−1∑
i=0

(
hB(ti)(ui − vi) + x>i

(
S(ti)ui + hṠ(ti)vi

)
+ h (A(ti)xi)

> S(ti)vi +
h

2

〈
B(ti)

>S(ti)ui, ui
〉)
.

Then we consider the problem of minimization of the functional Jh defined in (46) subject to the

constraints (43)–(44). The set of admissible discrete controls in this problem is denoted by K ⊂ H,

that is,

K := {(w0, . . . , wN−1) ∈ R2m×N : wi = (ui, vi) ∈ Zm}.

We also introduce the discrete adjoint equation (see formula (3.11) in [23])

pi =
(
I + hA>i

)
pi+1 + h

(
S(ti)ui + hṠ(ti)vi + hA(ti)

>S(ti)vi

)
(47)

+h

(
W (ti) +

h

2
W (ti)A(ti) +

h

2
A(ti)

>W (ti) +
h

2
Ẇ (ti)

)
xi + h2W (ti)B(ti)(ui − vi)

with the end condition

pN = Q>xN + q. (48)

Section 3.3 in [23] presents a construction which for every sequence w = (w0, . . . wN−1) ∈ K
defines an admissible control u = Φh(w) in problem (1)–(3), with values ±1 and with at most two

switches in every interval [ti, ti+1] of each of its components. We do not reproduce this construction

here, only mentioning that it requires only a few calculations (to define the switching points), and

the restriction of u(t) = Φh(w)(t) to [ti, ti+1] depends only on wi. Moreover, the following equalities

hold (see (3.14) in [23]): for every w = ((u0, v0), . . . , (uN−1, vN−1))∫ ti+1

ti

Φh(w)(s) ds = hui,

∫ ti+1

ti

(s− ti)Φh(w)(s) ds = h2vi, i = 0, . . . , N − 1. (49)

In addition, the function Φh has the important property that there exists a constant c̄ independent

of N such that

‖Φh(w′)− Φh(w′′)‖1 ≤ c̄‖w′ − w′′‖1 ∀w′, w′′ ∈ K, (50)

Below we will use the metric

d#(u1, u2) = meas {t ∈ [0, 1] : u1(t) 6= u2(t)}

in the set of admissible controls in problem (1)–(3).

The following theorem is extracted from Theorem 3.1 in [23].

Theorem 3.1 Let Assumption (A1) be fulfilled. Let (x̂, û) be a solution of problem (1)–(3) for

which assumptions (A2) and (A3) are fulfilled with some κ ≥ 1, and let p̂ the corresponding solu-

tion of the adjoint equation (40) with end-condition (42). Then for every natural number N the
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problem of minimization of (46) under constrains (43)–(44) has a solution {(xi, wi)} and for every

such solution and the corresponding discrete adjoint sequence (p0, . . . , pN ) solving (47), (48), the

following error estimate holds:

max
i=0,...,N

(|xi − x̂(ti)|+ |pi − p̂(ti)|) + d#
(

Φh(w), û
)
≤ c h2/κ, (51)

where c is independent of N .

We mention that the above discretization scheme is meaningful only under Assumption (A1).

Assumptions (A2) and (A3) are only needed for the error estimate in Theorem 3.1.

3.3 Applicability of the results about gradient-type methods

First of all, we reformulate the problem of minimization of (46) under the constraints (43)–(44) as

a minimization problem on the set

K :=

N−1∏
0

Zm ⊂ H, (52)

namely,

minimize
w∈K

{
fh(w) := Jh(xh[w], w)

}
, (53)

where xh[w] is the solution of the discrete-time equation (43) for w = {(ui, vi)}N−1i=0 ∈ K, with the

given initial condition x0.

In this subsection we prove that the assumptions needed for applicability of the results in

Section 2 to the above problem are fulfilled.

Lemma 3.1 The set K defined in (52) is strongly convex with modulus γ ≥
√
h√
32

.

Proof. First of all, the set Z ⊂ R2 is strongly convex. This is evident from Figure 1, but the

calculation of a modulus γ0 is cumbersome and we skip the details. In this calculation we use

Theorem 1 in [27] (expressing γ0 by the Lipschitz constant of the mapping that maps a unit vector

to that point on the boundary of Z at which this vector is normal to Z) and the explicit formula for

the normal cone to Z given in [19, Section 4]. The number γ0 = 1/
√

32 turns out to be a modulus

of strong convexity of Z.

Since the norm of y = (z1, . . . , zm) ∈ R2m = (R2)
m

with zi ∈ R2 is defined as |y| =
√∑m

i=1 |zi|2,
we easily obtain that Zm is strongly convex with the same modulus γ0.

For estimating the modulus of strong convexity of K = (Zm)N we should take into account

that the norm in H is ‖ · ‖2 as defined in (38) with p = 2m. Then if we denote by IBH and by IBR2m

the unit balls in H and R2m, respectively, we have the straightforward inclusion

IBH ⊂
1√
h

N−1∏
0

IBR2m .
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The claim of the lemma directly follows from this inclusion, the definition of strong convexity, the

product structure of K, and the (upper) estimation of the modulus of strong convexity of Zm.

Q.E.D.

Let us denote by f the objective functional in problem (1)-(3), regarded as a function of the con-

trol, namely, f(u) := J(x[u], u), where x[u] is the solution of (2) corresponding to u ∈ L2([0, T ];Rm).

It is well known that the functional f : L2([0, T ];Rm) → R is Fréchet differentiable at any u and

its derivative has the functional representation

∇f(u)(t) = B(t)>p(t) + S(t)>x(t), (54)

where x and p are the solutions of (39), (40), (42) corresponding to u. Similarly, the function

fh : H → R is Fréchet differentiable, and its derivative has the representation (see (3.12) in [23])

∇wif
h(w) =

(
∇uifh(w)

∇vifh(w)

)

=

(
B>i pi+1 + S(ti)

>xi + hB(ti)
>W (ti)xi + hB(ti)

>S(ti)ui

h
(
C>i pi+1 −B(ti)

>W (ti)xi +
(
S(ti)

>A(ti) + S′(ti)
>)xi)

)
. (55)

We mention that Assumption (A2) implies that f is convex at û, hence

〈∇f(u)−∇f(û), u− û〉 ≥ 0 for all admissible controls u. (56)

In contrast, fh does not need to be convex (cf. Lemma 3.6 below).

In the proofs of the next lemmas c1, c2, ... denote non-negative constants that may depend on

the data of the problem (1)–(3) (and their derivatives) but are independent of N . These constants

may have different values in different proofs.

The following two lemmas are technical and needed only to prove the last two lemmas in this

section.

Lemma 3.2 There exist constants c′ and c′′ independent of h, such that for every w′, w′′ ∈ K and

∆w ∈ K −K

|〈∇fh(w′)−∇fh(w′′),∆w〉| ≤ c′‖w′ − w′′‖1 ‖∆w‖1 + c′′h2
N−1∑
i=1

|u′i − u′′i | |∆ui|,

where u′i, u
′′
i , ∆ui are the first coordinates of the components w′i, w

′′
i , ∆wi of the elements w′, w′′

and ∆w, respectively.

Proof. Considering the discrete equation (43), it is a standard procedure to obtain the following

estimate for the solutions x′ and x′′ corresponding to w′ and w′′:

‖x′ − x′′‖∞ ≤ c1‖w′ − w′′‖1. (57)
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Similarly, also using the last estimation, we obtain from (47), (48) that

‖p′ − p′′‖∞ ≤ c2‖w′ − w′′‖1. (58)

Then using the explicit representation (55) we obtain that

|〈∇fh(w′)−∇fh(w′′),∆w〉| ≤ c1
(
‖x′ − x′′‖∞ + ‖p′ − p′′‖∞

)
‖∆w‖1 + c2h

2
N−1∑
i=1

|u′i − u′′i | |∆ui|,

which together with (57) and (58) implies the claim of the lemma. Q.E.D.

Lemma 3.3 There exists a number c̃ such that for every natural number N , for every w̄ ∈ K and

for every ∆ ∈ L2([0, T ];Rm)∣∣∣〈∇f(Φh(w̄)),∆〉 − 〈∇fh(w̄), w(∆)〉
∣∣∣ ≤ c̃h2‖∆‖1,

where w(∆) := {(ui, vi)}N−10 is defined as

ui =
1

h

∫ ti+1

ti

∆(t) dt, vi =
1

h2

∫ ti+1

ti

(t− ti)∆(t) dt.

Proof. Denote by x̄ and p̄ the solutions of (39) and (40), (42), corresponding to the control

function ū := Φh(w̄). Similarly we denote by {x̄i} and {p̄i} the solutions of (43) and (47), (48),

corresponding to w̄. The results in points 2 and 3 (see (4.5)) in [23, Section 4] imply that for

t ∈ [ti, ti+1]

B>(t)p̄(t) + S(t)>x̄(t) = (Bi + (t− ti)Ci)>p̄i+1 +B(ti)
>((ti+1 − t)W (ti)x̄i + S(ti)

∫ ti+1

ti

ū(s) ds
)

+S(ti)
> (I + (t− ti)A(ti)) x̄i + Ṡ(ti)

>(t− ti)x̄i +O(t;h2),

where O(t;h2) is measurable in t and |O(t;h2)| ≤ c1h
2 for a.e. t. Using this expression and (54)

we obtain the following equality:

〈∇f(Φh(w̄)),∆〉 =

∫ T

0
〈B>(t)p̄(t) + S(t)>x̄(t),∆(t)〉 dt

=
N−1∑
i=0

∫ ti+1

ti

〈
(Bi + (t− ti)Ci)>p̄i+1 +B(ti)

>((ti+1 − t)W (ti)x̄i + S(ti)

∫ ti+1

ti

ū(s) ds
)

+S(ti)
> (I + (t− ti)A(ti)) x̄i + Ṡ(ti)

>(t− ti)x̄i +O(t;h2),∆(t)
〉

dt.
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Using the expressions (55) we obtain, after a simple rearrangement of terms, that

〈∇f(Φh(w̄)),∆〉

=

N−1∑
i=0

[〈
∇uifh(w̄),

∫ ti+1

ti

∆(t) dt
〉

+
〈1

h
∇vifh(w̄),

∫ ti+1

ti

(t− ti)∆(t) dt
〉]

+

∫ T

0
〈O(t;h2),∆(t)〉 dt

=
N−1∑
i=0

[〈
∇uifh(w̄), hui

〉
+
〈
∇vifh(w̄), hvi

〉]
+

∫ T

0
〈O(t;h2),∆(t)〉 dt

= h
N−1∑
i=0

〈
∇wif

h(w̄), wi(∆)
〉

+

∫ T

0
〈O(t;h2),∆(t)〉 dt = 〈∇fh(w̄), w(∆)〉+

∫ T

0
〈O(t;h2),∆(t)〉 dt.

Then the estimation |O(t;h2)| ≤ c1h2 completes the proof. Q.E.D.

Lemma 3.4 The function fh defined in (53) is L-smooth on K with the Lipschitz constant of its

derivative being independent of N :

‖∇fh(w′)−∇fh(w′′)‖2 ≤ L‖w′ − w′′‖2.

Proof. The Fréchet differentiability of fh was established in [23]), together with the representation

(55) of its derivative. The Lipschitz continuity on K follows from this representation, together with

(57) and (58) (the notations are as in the proof of Lemma 3.2). Q.E.D.

Lemma 3.5 There is a constant ρ > 0 (independent of N) such that for every sufficiently large N

and for every solution ŵh of the discrete-time problem (53) it holds that ‖∇fh(ŵh)‖2 ≥ ρ.

Proof. First of all, Assumption (A3) directly implies that there exists a number ρ0 > 0 such that

‖∇f(û)‖2 = ‖σ̂‖2 ≥ ρ0.

We remind that the notations used in the equality above are introduced in Subsection 3.1 (see also

(54)).

We utilize Lemma 3.3 with ∆ = ∇f(û)/‖∇f(û)‖2 and w̄ = ŵh, where ŵh is an arbitrary

solution of problem (53). The vector w(∆) is defined as in Lemma 3.3. We have

〈∇fh(ŵh), w(∆)〉 ≥ 〈∇f(Φh(ŵh)),∆〉 − c̃h2‖∆‖1
≥ 〈∇f(û),∆〉 − |〈∇f(Φh(ŵh))−∇f(û),∆〉| − c̃

√
Th2‖∆‖2

≥ ρ0 − L‖Φh(ŵh)− û‖2 − c̃
√
Th2 ≥ ρ0 − c1Lh1/κ − c̃

√
Th2.
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In the last row of the above inequalities we use the Lipschitz constant2, L, of ∇f and the estimation

in Theorem 3.1. We also use that ‖Φh(ŵh) − û‖2 ≤ c1
√
d#(Φh(ŵh), û) and Theorem 3.1. This

implies the claim of the lemma with ρ = ρ0/2. Q.E.D.

Lemma 3.6 There exists a constant c0 ≥ 0 such that for every natural number N , for any solution

ŵh of the discrete problem (53), and for any number ε > 0, the objective function fh is (ε, δ)-

approximately convex at ŵh with any

δ ≥ c0 max

{
1

ε
,

1√
ε

}
h2/κ.

Proof. Define the vector w̃ = {(ũi, ṽi)} with

ũi =
1

h

∫ ti+1

ti

û(t) dt, ṽi =
1

h2

∫ ti+1

ti

(t− ti+1)û(t) dt, i = 0, . . . , N − 1,

where, as before, û is the optimal control in the problem (1)–(3). According to property (49), the

functions Φh and û have the same zero-th and first integral moments on each interval [ti, ti+1].

Then formula (54) and the analysis in Section 3.1 in [23] imply the inequality

‖∇f(Φh(w̃))−∇f(û)‖∞ ≤ c1h2.

Let us fix an arbitrary solution ŵh of problem (53), an arbitrary w ∈ K. From the convexity of

the functional f at û we have

〈∇f(Φh(w))−∇f(û),Φh(w)− û〉 ≥ 0,

hence

〈∇f(Φh(w))−∇f(Φh(w̃)),Φh(w)− û〉 ≥ −c1h2‖Φh(w)− û‖1.

Now we utilize Lemma 3.3 with ∆ = Φh(w)− û, first taking w̄ = w, then taking w̄ = w̃. This yields∣∣∣〈∇f(Φh(w)),∆〉 − 〈∇fh(w), w(∆)〉
∣∣∣ ≤ c̃h2‖∆‖1,

and ∣∣∣〈∇f(Φh(w̃)),∆〉 − 〈∇fh(w̃), w(∆)〉
∣∣∣ ≤ c̃h2‖∆‖1,

correspondingly. Then

〈∇fh(w), w(∆)〉 − 〈∇fh(w̃), w(∆)〉 ≥ 〈∇f(Φh(w)),∆〉 − 〈∇f(Φh(w̃)),∆〉 − 2c̃h2‖∆‖1
≥ −c1h2‖Φh(w)− û‖1 − 2c̃h2‖∆‖1 = −c2h2‖Φh(w)− û‖1.

2 The Lipschitz continuity of ∇f (with some constant L) follows from the representation (54), similarly as for

∇fh in Lemma 3.4.
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Observe that according to its definition in Lemma 3.3, w(∆) = w − w̃. Thus

〈∇fh(w)−∇fh(w̃), w − w̃〉 ≥ −c2‖Φh(w)− û‖1.

In the last inequality we replace w̃ with ŵh obtaining that

〈∇fh(w)−∇fh(ŵh), w − ŵh〉

≥ −|〈∇fh(ŵh)−∇fh(w̃), w − ŵh〉| − |〈∇fh(w)−∇fh(w̃), ŵh − w̃〉| − c2h2‖Φh(w)− û‖1.

Now we use Lemma 3.2 to estimate the two scalar products in the right-hand side as follows:

|〈∇fh(ŵh)−∇fh(w̃), w − ŵh〉| ≤ c′‖ŵh − w̃‖1 ‖w − ŵh‖1 + c′′h2
N−1∑
i=1

|ûhi − ũi| |ui − ûhi |,

|〈∇fh(w)−∇fh(w̃), ŵh − w̃〉| ≤ c′‖w − w̃‖1 ‖ŵh − w̃‖1 + c′′h2
N−1∑
i=1

|ui − ũi| |ûhi − ũi|.

Notice, that due to (49) and Theorem 3.1

|ûhi − ũi| =
1

h

∣∣∣∣∫ ti+1

ti

[Φh(ŵh)(t)− û(t)] dt

∣∣∣∣ ≤ 1

h
ch2/κ,

hence

|〈∇fh(ŵh)−∇fh(w̃), w − ŵh〉|+ |〈∇fh(w)−∇fh(w̃), ŵh − w̃〉|

≤ c3
(
‖ŵh − w̃‖1 ‖w − ŵh‖1 + h2/κ‖w − ŵh‖1 + ‖w − w̃‖1 ‖ŵh − w̃‖1 + h2/κ‖w − w̃‖1

)
≤ c3

(
‖ŵh − w‖1 + ‖w − w̃‖1

)(
‖ŵh − w̃‖1 + h2/κ

)
.

Thus we obtain that

〈∇fh(w)−∇fh(ŵh), w − ŵh〉 (59)

≥ −c3
(
‖ŵh − w‖1 + ‖w − w̃‖1

)(
‖ŵh − w̃‖1 + h2/κ

)
− c2h2‖Φh(w)− û‖1.

According to (50) and Theorem 3.1 we have

‖Φh(w)− û‖1 ≤ ‖Φh(w)− Φh(ŵh)‖1 + ‖Φh(ŵh)− û‖1 ≤ c̄‖w − ŵh‖1 + ch2/κ.

Moreover,

‖ŵh − w̃‖1 = h
N−1∑
i=0

|ûhi − ũi|+ h
N−1∑
i=0

|v̂hi − ṽi|

≤ h

[
N−1∑
i=0

1

h

∫ ti+1

ti

|Φh(ŵh)(t)− û(t)| dt+

N−1∑
i=0

1

h2

∫ ti+1

ti

(t− ti)|Φh(ŵh)(t)− û(t)| dt

]

≤ c4

N−1∑
i=0

meas{t ∈ [ti, ti+1] : Φh(ŵh)(t) 6= û(t)} ≤ c4d#(Φh(ŵh), û) ≤ c5h2/κ.
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In addition,

‖w − w̃‖1 ≤ ‖w − ŵh‖1 + ‖ŵh − w̃‖1 ≤ ‖ŵh − w‖1 + c5h
2/κ.

Combining the last three (chains of) inequalities with (59) we obtain that

〈∇fh(w)−∇fh(ŵh), w − ŵh〉 ≥ −c6h2/κ
(
‖ŵh − w‖1 + h2/κ

)
.

Now we fix an arbitrary ε > 0 and take δ so large that

2c6
√
T
h2/κ

ε
≤ δ and 2c6

h2/κ√
ε
≤ δ.

Then the inequality

〈∇fh(w)−∇fh(ŵh), w − ŵh〉 ≥ −ε‖ŵh − w‖22

holds for any w ∈ K such that ‖ŵh − w‖2 ≥ δ. This completes the proof (see Definition 2.4).

Q.E.D.

Let us interpret the convergence result in Theorem 2.1 in view of the above lemmas, focusing on

the generic case κ = 1. From Lemma 3.1 we know that one can take γ =
√
ε/
√

32 and according

to Lemma 3.4 and Lemma 3.5 the numbers L and ρ in Theorem 2.1 can be taken independent of

N . Thus ν =
√
hρ/16

√
2− ε, and in order to ensure that ν > 0 we have to choose

ε < ε0 :=

√
hρ

16
√

2
.

Choosing, for example, ε = ε0/2 and taking into account that
√
h > h for all sufficiently small h we

take δ = 2c2h
2/ε0 =: c∗h3/2. Thus the GPM converges linearly at least until the current iteration

wk enters into an O(h3/2)-neighborhood of a solution ŵh.

From (17) in Theorem 2.1 one can estimate from above the theoretical linear convergence rate

as µ ≤ 1 − β
√
h, which approaches 1 for small h. Fortunately, the second order approximation

provided by our discretization scheme allows for using not too small h, and as shown in the next

subsection by an example, the values of µ may be quite reasonable.

The analysis of the CGM is similar.

3.4 Implementation of the gradient methods

Now, we shall describe the implementation of the GPM and the CGM to the specific problem defined

in (53) and (52). In the previous subsection we have shown that all assumptions required in the

abstract results about the GPM in Section 2.1 are fulfilled. The same applies to the CGM, with

the exception that the (ε, δ)-approximate convexity of f (in the optimal control context f := fh)

is required not only at a solution point ŵh, but on the whole set K. This property can easily be

ensured modifying Assumption (A2) by replacing F − (û, v̂) with F − F .

The two key points in the implementation of the gradient methods are: (i) calculation of the

gradient ∇fh(w); calculation of projections on K (for the GPM) or solving a linear optimization
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problem on K (for the CGM). We do not discuss here the issue of the choice of the step sizes λk,

for which numerous possibilities are known from the literature.

1. Calculation of ∇fh(w). Since fh represents the objective function of a discrete-time optimal

control problem as a function of the control variables (the state being implicitly regarded as a

function of the control), we employ the well known in control theory way for calculating its gradient:

∇fh(w) is the derivative of the Hamiltonian with respect to the control, evaluated at the current

control-trajectory pair, together with the corresponding solution of the adjoint equation. The

explicit formula is given in (55), reproducing [23, Section 3.2].

2. Calculation of the projection on K.

The set K is a product of m×N copies of the strongly convex set Z, thus the projection of a

vector w ∈ H onto K is represented by projections onto Z of the 2-dimensional components of w.

Thus we have to only calculate projections, PZ(u, v) on Z, where (u, v)> ∈ R2.

The following representation of the normal cone to the set Z is obtained in [19, Section 4]:

NZ(α, β) =



∅ if (α, β) /∈ Z,{
α (λ, µ− λ)> : µ ≥ 0, λ ≥ 0

}
if α ∈ {−1, 1} ,{

µ (ζ + α,−2ζ)> : µ ≥ 0
}

if α ∈ (−1, 1) ∧ β ∈ {ϕ1(α), ϕ2(α)} ,

{0} if α ∈ (−1, 1) ∧ β ∈ (ϕ1(α), ϕ2(α)) ,

(60)

where ζ = sgn(α− 2β).

Now, take arbitrarily a vector ξ = (u, v)> ∈ R2 and observe that PZ(ξ) is the unique solution

of the inclusion

PZ(ξ) ∈ ξ −NZ(PZ(ξ)). (61)

Therefore, using the formula (60), one can explicitly calculate PZ(ξ) as

PZ(u, v) =



(u, v) if (u, v) ∈ Z,

(1, 12) if u ≥ 1 and u+ v ≥ 3
2 ,

(−1,−1
2) if u ≤ −1 and u+ v ≤ −3

2 ,

(α1, ϕ1(α1)) if u > −1 and u+ v < 3
2 and v < ϕ1(u),

(α2, ϕ2(α2)) if u < 1 and u+ v < −3
2 and v > ϕ2(u),

(62)

where the functions ϕ1 and ϕ2 are defined after (45), α1 is a solution in [−1, 1] of the third order

equation

α3 + 3α2 + (9− 4v)α− 8u− 4v − 1 = 0, (63)

and α2 is a solution in [−1, 1] of the third order equation

α3 − 3α2 + (9 + 4v)α− 8u− 4v + 1 = 0. (64)
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Indeed, the first three cases in the representation (62) are clear. In the fourth case

u > −1 and u+ v <
3

2
and v < ϕ1(u),

thus PZ(u, v) has the form (α,ϕ1(α)) (see Figure 1). From (60), we have

NZ((α,ϕ1(α))) = µ(1 + α,−2)>.

Combining this with (61), one has(
u− α

v − ϕ1(α)

)
= µ

(
1 + α

−2,

)
implying

u− α
v − ϕ1(α)

=
1 + α

2
,

which leads to (63). The last case is treated similarly.

3. Solving the auxiliary sub-problem in the CGM.

Now, we consider the subproblem miny∈K
〈
∇fh(w), y

〉
which appears in the implementation of

the CGM (see (25)).

Observe that, the necessary (and sufficient) optimality condition for this problem reads as

0 ∈ ∇fh(w) +NK(y).

Each component of this inclusion has the form (ξ1, ξ2) ∈ NZ((α, β)), which, thanks to (60), can be

explicitly represented (see [19]) by the following simple formula:

(α, β) =



(−1,−1/2) if ξ1 ≤ 0 and ξ1 + ξ2 ≤ 0,

(1, 1/2) if ξ1 > 0 and ξ1 + ξ2 ≥ 0,

(−1− 2ξ1/ξ2, ϕ1(α)) if ξ1 > 0 and ξ1 + ξ2 < 0,

(1 + 2ξ1/ξ2, ϕ2(α)) if ξ1 ≤ 0 and ξ1 + ξ2 > 0.

(65)

Therefore, the subproblem (25) can be solved explicitly without solving any third order algebraic

equation as in the GPM.

3.5 Numerical examples

In this section, we present some numerical experiments for the example of an affine linear-quadratic

optimal control problem given in [23].

Example 3.1

minimize −by(1) +
∫ 1
0

1
2 (x(t))2 dt

subject to ẋ(t) = y(t), x1(0) = a

ẏ(t) = u(t), y(0) = 1.

u(t) ∈ [−1, 1].

(66)
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For appropriate values of a and b, there is a unique optimal solution û with a switch from −1 to 1

at time τ , which is a solution of the equation

−5τ4 + 24τ3 − (12a+ 36)τ2 + (24a+ 20)τ + 24b− 12a− 3 = 0.

As in [23], we choose a = 1, b = 0.1, then τ = 0.492487520 is a simple zero of the switching function.

Here the number κ = 1 in Assumption (A3) and the exact optimal control is

û(t) =

−1 if t ∈ [0, τ ]

1 if t ∈ (τ, 1].

For each N , the iterates {wk} generated by GPM or CGM converge linearly to the unique (in

this example) solution ŵh with rates µN and θN , respectively. The starting control is chosen as

u0(t) = 1, t ∈ [0, T ], for both algorithms. In the following tables, we report these rates for some

values of N . The stopping condition is ‖wk+1 − wk‖ ≤ 10−6 for the GPM and ‖xk − wk‖ ≤ 10−6

for the CGM.

Table 1: Convergence rates for the GPM

N 10 20 30 40 50 60 70 80 90 100

µN 0.2744 0.4687 0.5742 0.6477 0.6874 0.7166 0.7327 0.8038 0.8736 0.8778

Table 1 indicates that the (numerically obtained) rate of linear convergence, µN , of the GPM

depends on the mesh size N : it is monotone increasing and likely approaching 1 when N increases.

This is to be expected, since according to Theorem 2.1, µN is inversely dependent on the index of

strong convexity, γ, of the set K, which tends to zero when N → ∞ (see Lemma 3.1). Actually,

the convergence of µN to 1 is also consistent with the fact, that the GPM applied (theoretically) to

the continuous-time problem (1)–(3) converges sub-linearly, as recently established in [21, Theorem

3.2]. We stress that due to the second order accuracy of discretization, the mesh size N does need

to be taken large, therefore the rate of linear convergence may be reasonably good (see Table 1 for

N = 10− 30).

Table 2 presents the rate of linear convergence of the CGM applied to the same example. Although,

as mentioned at the end of Subsection 3.4, the amount of computations at each step of the CGM

is slightly lower than that for the GPM, the rate of linear convergence is worse.

Table 2: Convergence rates for the CGM

N 10 20 30 40 50 60 70 80 90 100

θN 0.8946 0.8999 0.9016 0.9023 0.9028 0.9030 0.9032 0.9034 0.9035 0.9036
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4 Concluding remarks

In this paper we obtain a number of new results about the convergence of gradient methods for

general optimization problems on strongly convex feasible sets. The main motivation is the ap-

plication of a recently developed discretization scheme [19, 23] for linear-quadratic affine optimal

control problems, which results in discrete-time problems of the same type, however, with strongly

convex point-wise control constraints having rather simple representations by means of quadratic

inequalities. This opens several directions of further research.

First, to develop more efficient (than gradient projection) methods using the specific linear-

quadratic structure of the objective function and of the constraints.

Second, to investigate the applicability of gradient projection methods to discretized nonlinear

optimal control problems with the control appearing linearly. As indicated in [16], our discretization

approach is also applicable to such problems, and results in mathematical programming problems

with strongly convex feasible sets. The general convergence results obtained in the present paper

are also applicable, in principle. The main open problem here, is that the error analysis of the

discretization is not developed for nonlinear problems, which also creates problems to justify the

applicability and the convergence of gradient methods (cf. the analysis in Subsection 3.3).
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[5] M. V. Balashov and M. O. Golubev, About the Lipschitz property of the metric projection in

the Hilbert space, J. Math. Anal. Appl., 394 (2012) 545–551.

[6] A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse

Problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[7] V. F., Demyanov and A. M. Rubinov, Approximate methods in optimization problems, Elsevier

Publishing Company, 1970.

29



[8] J. C. Dunn, Rates of Convergence for Conditional Gradient Algorithms Near Singular and

Nonsingular Extremals,, SIAM J. Control Optim. 17 (1979), pp. 187-211.

[9] U. Felgenhauer, On stability of bang-bang type controls, SIAM J. Control Optim., 41 (2003),

pp.1843–1867.

[10] U. Felgenhauer, Discretization of semilinear bang-singular-bang control problems, Computa-

tional Optimization and Applications, 64 (2016), pp. 295–326.

[11] U. Felgenhauer, A Newton-type method and optimality test for problems with bang-singular-

bang optimal control. Pure and Applied Functional Analysis, 1 (2016), pp. 197–215.

[12] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics

Quarterly, 3 (1956), pp.149–154.

[13] D. Garber and E. Hazan, Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets,

ICML’15, 37 (2015), pp. 541–549.

[14] M. O. Golubev, Gradient projection method for convex function and strongly convex set, IFAC-

PapersOnLine, 48 (2015), pp. 202–205.

[15] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their

Applications, Academic Press, New York (1980).

[16] F. Lempio and V.M. Veliov. Discrete approximations of differential inclusion. Bayreuther

Mathematische Schriften, 54 (1998), pp. 149–232.

[17] D.G. Luenberger and Y. Ye, Linear and nonlinear programming, Third Edition, Springer, 2008.

[18] Y. Nesterov, Introductory Lectures on Convex Optimization, Springer Science and Business

Media, 2013.

[19] A. Pietrus, T. Scarinci, and V.M. Veliov. High order discrete approximations to Mayer’s prob-

lems for linear systems. To appear in SIAM J. Control Optim., 2017. Available as Research

Report 2016-04, ORCOS, TU Wien, 2016, at

https://orcos.tuwien.ac.at/fileadmin/t/orcos/Research Reports/2016-04.pdf.

[20] J. Preininger, T. Scarinci and V.M. Veliov, Metric regularity properties in bang-bang type

linear-quadratic optimal control problems, submitted. Available as Research Report, 2017-07,

ORCOS, TU Wien, 2017, at

https://orcos.tuwien.ac.at/fileadmin/t/orcos/Research Reports/2017-07.pdf.

[21] J. Preininger and P. Vuong, On the convergence of the gradient projection method for optimal

control problems with bang-bang solutions, submitted. Available as Research Report 2017-10,

ORCOS, TU Wien, 2017, at

https://orcos.tuwien.ac.at/fileadmin/t/orcos/Research Reports/2017-10.pdf.

30



[22] M. Quincampoix and V. Veliov, Metric Regularity and Stability of Optimal Control Problems

for Linear Systems, SIAM J. Control Optim, 51 (2013), pp. 4118–4137.

[23] T. Scarinci and V.M. Veliov, Higher-order numerical schemes for linear quadratic prob-

lems with bang-bang Controls, Computational Optimization and Applications, (2017), DOI

10.1007/s10589-017-9948-z.

[24] M. Seydenschwanz, Convergence results for the discrete regularization of linear-quadratic con-

trol problems with bang-bang solutions, Comput. Optim. Appl., 61 (2015) pp. 731–760.

[25] V.M. Veliov. On the time-discretization of control systems., SIAM J. Control Optim., 35 (1997),

pp. 1470–1486.

[26] V.M. Veliov, Error analysis of discrete Approximation to bang-bang optimal control problems:

the linear case, Control Cyberne., 34 (2005), pp. 967–982.

[27] J-P Vial, Strong convexity of sets and functions, Journal of Mathematical Economics, 9 (1982),

187–205.

31


