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An extragradient-type method for solving nonmonotone

quasi-equilibrium problems

N. T. T. Van,∗ J. J. Strodiot,† V. H. Nguyen‡and P. T. Vuong§ 

Abstract

In this paper a quasi-equilibrium problem with a nonmonotone bifunction
is considered in a finite dimensional space. The primary difficulty with this
problem is related to the fact that one must simultaneously solve a nonmonotone
equilibrium problem and calculate a fixed point of a multivalued mapping.
An extragradient-type method is presented and analyzed for its solution. The
convergence of the method is proved under the assumption that the solution set
of an associated dual equilibrium problem is nonempty. Finally, some numerical
experiments are reported.

Keywords: Extragradient-type method; Quasi-equilibrium problem; Non-
monotone operator; Convergence

1 Introduction

The aim of the paper is to present and analyze an extragradient-type method for
solving the nonmonotone quasi-equilibrium problem, that is an equilibrium problem
in the sense of Blum and Oettli [1] or Ky Fan’s inequality [2], with a constraint set
depending on the current point and without any monotonicity assumptions for the
bifunction.

The equilibrium problem has been extensively studied in recent years; see, for
example, [3, 4, 5, 6, 7, 8, 9, 10] and the references therein. Equilibrium problems
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include, as particular cases, scalar and vector optimization problems, saddle-point
problems, variational inequalities, Nash equilibria, complementarity problems, fixed
point problems, etc. It is well known that quasi-variational inequalities, where the
constraint sets are moving sets, do not fall within the scope of equilibrium problems
but under quasi-equilibrium problems. Perhaps the most important instance of such
problems is the generalized Nash equilibrium problem [11, 12, 13] which models a
large number of applications in engineering, economics, management science and
other areas (see, e.g., [14, 15, 16]). Quasi-equilibrium problems address extensions
of the well-known classical equilibrium concept, making it possible to model and
study more general settings.

Many numerical methods have been proposed for solving equilibrium problems
such as the projection method [17, 18, 19], the proximal point methods [20, 21],
the extragradient methods with or without line searches [22, 23, 24, 25, 26, 27, 28],
the methods using the Bregman distance [29, 30] and the gap function methods
[31, 32, 33]. Each solution method is adapted to a class of equilibrium problems.
The reader is referred to [34] and the references quoted therein for an excellent
survey on the existing methods. In most of these methods it is assumed that the
equilibrium bifunction is pseudomonotone with the consequence that the solution set
of the equilibrium problem coincides with the solution set of the Minty equilibrium
problem [35, 36]. This property is also satisfied for quasi-equilibrium problems when
the equilibrium bifunction is pseudomonotone [37, 38].

Recently, in [39], an extragradient-type method has been proposed for solving
the equilibrium problem when the equilibrium bifunction is not assumed to be pseu-
domonotone (see also [40]). In that case, contrary to the pseudomonotone case, at
each iteration, all the hyperplanes separating the solution set from the previous iter-
ates must be kept in memory to build the next iterate. Let us mention here that the
authors of [41] have recently proposed a similar method for solving the equilibrium
problem in the nonmonotone case.

Our aim in this paper is to solve a quasi-equilibrium problem having a con-
straint set K(x) which depends on x and is contained in a fixed subset X of the
finite dimensional space IRn. This will be done without requiring any monotonicity
assumption on the equilibrium bifunction. In this purpose, we associate with the
quasi-equilibrium problem, the Minty quasi-equilibrium problem, and in order to
guarantee nonempty solution sets for these two problems, we impose that there ex-
ists a fixed point of the multivalued mapping K that is also a solution of the classical
Minty equilibrium problem. This condition can be considered as the dual version
of a condition introduced in [38, 42] for solving pseudomonotone quasi-equilibrium
problems.

Under this assumption, the strategy used for proving the convergence of the re-
sulting algorithm to a solution of the quasi-equilibrium problem consists in consider-
ing successively the following two steps. First we prove that the sequence generated
by the algorithm converges to a fixed point of the multivalued mapping K and af-
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ter, we show that this sequence also converges to a solution of the quasi-equilibrium
problem.

After presenting the nonmonotone quasi-equilibrium problem and recalling some
useful results in Sect. 2, we study the convergence of the algorithm in Sect. 3.
Finally, some numerical results are reported in Sect. 4 to show the validity of the
proposed method.

2 Preliminaries and useful lemmas

Let X be a nonempty closed convex subset of the finite dimensional space IRn with
the scalar product 〈·, ·〉 and the induced norm ‖·‖, let K(·) be a multivalued mapping
from X into itself such that for every x ∈ X, K(x) is a nonempty closed convex
subset of X and let f : X × X → IR be a bifunction such that for every x ∈ X,
f(x, x) = 0 and f(x, ·) is a convex function on X. The quasi-equilibrium problem
associated with f and K is denoted QE (f,K) and consists in finding x∗ ∈ K(x∗),
i.e., a fixed point x∗ of K(·), such that

f(x∗, y) ≥ 0 for all y ∈ K(x∗).

Here we denote by Fix(K) the set of fixed points of the multivalued mapping K(·).

The associated Minty quasi-equilibrium problem, denoted by MQE(f,K), can be
expressed as finding x∗ ∈ K(x∗) such that

f(y, x∗) ≤ 0 for all y ∈ K(x∗).

We denote by S∗E and S∗M the solution sets of problems QE (f,K) and MQE (f,K),
respectively. When the function f(·, y) is in addition upper semicontinuous on X for
every y ∈ X, the function f has the upper sign property ([43], Definition 2.1) and
since the multivalued mapping K(·) has convex values, we obtain that S∗M ⊆ S∗E
([43], Proposition 3.1).

When the constraint set K(x) is equal to X for every x ∈ X, problem QE (f,K)
becomes an equilibrium problem and problem MQE(f,K) its associated Minty equi-
librium problem. They can be written under the form

E (f,X) Find x∗ ∈ X such that f(x∗, y) ≥ 0 for all y ∈ X

and
ME (f,X) Find x∗ ∈ X such that f(y, x∗) ≤ 0 for all y ∈ X.

We denote by SE and SM the solution sets of these problems, respectively.

In this paper we assume that there exists a fixed point of the multivalued map-
ping K that is a solution of the classical Minty equilibrium problem, i.e., that the
set

S∗ = {x ∈ K(x) | f(y, x) ≤ 0 for all y ∈ X}
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is nonempty. Since S∗ ⊆ S∗M ⊆ S∗E , this assumption guarantees that the solution
sets S∗M and S∗E are nonempty.

When the function f is also pseudomonotone on X, i.e., when

∀x, y ∈ X f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0,

we obtain that S∗E ⊆ S∗M and thus that S∗M = S∗E . In this situation, the set S∗ has
been replaced in [38, 42] by the set

S∗ = {x ∈ ∩z∈XK(z) | f(x, y) ≥ 0 for all y ∈ ∪z∈XK(z)}.

Here we do not assume that f is pseudomonotone on X. Hence we only have the
relationships

∅ 6= S∗ ⊆ S∗M ⊆ S∗E .

When f(x, y) = 〈F (x), y − x〉 for every x, y ∈ X where F is a mapping from X
to X, problem QE (f,K) becomes a quasi-variational inequality problem that can
be expressed as

Find x∗ ∈ K(x∗) such that 〈F (x∗), y − x∗〉 ≥ 0 for all y ∈ K(x∗).

This problem has been studied in [42] when F is supposed to be pseudomonotone.

From now on, we denote by CCB(X) the family of nonempty convex closed
bounded subsets of X and we recall that a multivalued mapping T : X → CCB(X)
is said to be ?-nonexpansive ([44], p.4) if

‖PT (x)x− PT (y)y‖ ≤ ‖x− y‖ for all x, y ∈ X, (1)

where PT (x)x denotes the orthogonal projection of x onto the nonempty convex
closed bounded subset T (x).

Finally, let us also recall the Demiclosedness Principle (see for example [45],
Theorem 3.4 and Corollary 3.5): Let T : X → CCB(X) be a ?-nonexpansive
mapping. Then Fix(T ) is convex and closed and I − T is demiclosed at 0, i.e., for
every sequence {xk} ⊂ X such that xk → x and d(xk, T (xk)) → 0 as k → ∞, we
have x ∈ T (x).

In this paper the following assumptions are supposed to be satisfied on the data
of the problem.

Assumption (A)

(A1) f is defined on ∆×∆ where ∆ is an open convex subset of IRn containing X;
f(x, x) = 0 for all x ∈ X and f(x, ·) is convex on X for all x ∈ X.
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(A2) f is jointly continuous on ∆×∆ in the sense that if x, y ∈ ∆, and {xk} and
{yk} are two sequences in ∆ converging to x and y, respectively, then
f(xk, yk)→ f(x, y).

(A3) For all x ∈ X, K(x) is a nonempty closed convex bounded subset of X.

(A4) The multivalued mapping K(·) is ?-nonexpansive on X and lower semi-
continuous at each x̄ ∈ X, i.e., if {xk} ⊂ X and xk → x̄, then for any
ȳ ∈ K(x̄), there exists a sequence {yk} with yk ∈ K(xk) for all k, such that
yk → ȳ (k →∞).

(A5) The set S∗ is nonempty.

Let us observe that under Assumptions (A1) and (A2), it follows from [43] that
the upper sign property holds and that S∗M ⊆ S∗E . Furthermore these sets are
nonempty by Assumption (A5).

The next lemmas are useful to prove the convergence of our algorithm.

Lemma 2.1 ([46], Theorem 24.5) (see also [47]) Let f : ∆×∆→ IR be a function
satisfying conditions (A1) and (A2). Let x̄, z̄ ∈ ∆ and {xk}, {zk} be two sequences
in ∆ converging to x̄, z̄, respectively. Then, for any ε > 0, there exist η > 0 and
kε ∈ IN such that

∂2f(zk, xk) ⊆ ∂2f(z̄, x̄) +
ε

η
B,

for every k ≥ kε, where B denotes the closed unit ball in IRn and ∂2f(z, x) the
subdifferential of the convex function f(z, ·) at x.

Lemma 2.2 ([48], Theorem 5.5) Let {xk} be a sequence in IRn and let C be a
nonempty subset of IRn. Suppose that every limit point of {xk} belongs to C and
that the sequence {xk} is Fejér monotone with respect to C in the sense that the
following inequality

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all x∗ ∈ C

holds for all k. Then the whole sequence {xk} converges to a point in C.

3 A Convergent Algorithm

From now on we assume that Assumption (A) is satisfied, and we consider the
following algorithm for solving the quasi-equilibrium problem QE (f,K):

Algorithm 1
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Step 0 Let x0 ∈ X, c ∈ ]0, 1[ and α ∈ ]0, 1[. Let also {µk} ⊆ [a, b] where 0 < a ≤
b < 1.

Set k = 0.

Step 1 Compute yk = arg miny∈K(xk){f(xk, y) + 1
2 ‖y − x

k‖2}.
If yk = xk, then Stop. Otherwise go to Step 2.

Step 2 Find m the smallest nonnegative integer such that{
〈gk,m, xk − yk〉 ≥ c ‖xk − yk‖2

where zk,m = (1− αm)xk + αmyk and gk,m ∈ ∂2f(zk,m, zk,m)

and set αk = αm, zk = zk,m, and gk = gk,m. Consider the half-space

Hk = {x ∈ IRn | 〈gk, x− zk〉 ≤ 0}.

Step 3 Find uk = PCk
(xk) where Ck denotes the convex closed set

Ck = X ∩ [∩ki=0Hi ].

Calculate xk+1 = µkx
k + (1− µk)vk where vk = PK(uk)u

k.
Set k := k + 1 and go back to Step 1.

Remark 1 When f(x, y) = 〈F (x), y − x〉 for every x ∈ X, problem QE (f,K)
becomes a quasi-variational inequality problem. In this case, yk is the projection of
xk − F (xk) onto K(xk), and gk = F (zk).

First we prove that Algorithm 1 is well-defined.

Proposition 3.1 Each subset Ck ∩ Fix(K) is convex, closed, and contains the
nonempty set S∗.

Proof. The set Ck ∩Fix(K), being convex and closed, contains the nonempty
set S∗. Indeed, let x∗ ∈ S∗. Then x∗ ∈ K(x∗) and f(y, x∗) ≤ 0 for every y ∈ X. So,
for all 0 ≤ i ≤ k, x∗ ∈ Hi ∩Fix(K) because by definition of gi ∈ ∂2f(zi, zi), we can
write

〈gi, x∗ − zi〉 ≤ f(zi, x∗) ≤ 0.

Hence x∗ ∈ Ck ∩ Fix(K) and S∗ ⊆ Ck ∩ Fix(K).

In particular, the set C∞ = ∩∞k=0Ck is such that C∞ ∩ Fix(K) ⊇ S∗. So, it follows
from (A5) that

C∞ ∩ Fix(K) is nonempty, convex and closed.

Furthermore, the projection uk of xk onto Ck and the projection vk of uk onto K(uk)
are well-defined at Step 3 of Algorithm 1.

Next, we prove that xk is a solution of problem QE (f,K) when yk = xk for
some k.
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Proposition 3.2 For all k and for every y ∈ K(xk), we have the following inequal-
ity

‖xk − yk‖2 + f(xk, yk) ≤ f(xk, y) + 〈xk − yk, xk − y〉. (2)

In particular, when xk = yk for some k, the vector xk is a solution of problem
QE (f,K).

Proof. Let k ≥ 0 and y ∈ K(xk) be fixed. The vector yk being a solution
of a convex minimization problem, the optimality conditions associated with this
problem imply that yk ∈ K(xk) and that there exists sk ∈ ∂2f(xk, yk) such that

0 ∈ sk + yk − xk +NK(xk)(y
k)

where NK(xk)(y
k) denotes the normal cone to K(xk) at yk. Hence, by definition of

this cone, we obtain that 〈xk − yk − sk, y − yk〉 ≤ 0, and thus that

〈sk, y − yk〉 ≥ 〈xk − yk, y − xk〉+ ‖xk − yk‖2. (3)

On the other hand, since sk ∈ ∂2f(xk, yk), we can write

f(xk, y) ≥ f(xk, yk) + 〈sk, y − yk〉. (4)

Combining (3) and (4), we obtain inequality (2) for all y ∈ K(xk). Consequently,
when yk = xk for some k, we obtain that xk ∈ K(xk) and from (2) that f(xk, y) ≥ 0
for every y ∈ K(xk). So the vector xk is a solution of problem QE (f,K).

From now on, we assume that yk 6= xk for all k. In this situation it was proven
in [47, Section 5] that it is possible to find by bisection αk ∈ ]0, 1[ in a finite number
of steps in such a way that the point zk = (1−αk)xk +αky

k satisfies the inequality

〈gk, xk − yk〉 ≥ c ‖xk − yk‖2

where gk ∈ ∂2f(zk, zk). Since yk 6= xk, we have that gk 6= 0.

First we prove that the sequence {xk} generated by Algorithm 1 converges to
some x∗ ∈ C∞ ∩ Fix(K). To derive this convergence result, we begin by proving
that the sequence {xk} is Fejér monotone with respect to C∞∩Fix(K) in the sense
that it satisfies for all k the inequalities

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all x∗ ∈ C∞ ∩ Fix(K).

Proposition 3.3 Let x∗ ∈ C∞∩Fix(K). Then, for all k, the following inequalities
hold:

(i) ‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖uk − xk‖2 ≤ ‖xk − x∗‖2

(ii) ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.
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Furthermore, limk→∞ ‖xk−x∗‖ exists and the sequences {xk} and {uk} are bounded.

Proof. Let k be fixed.

(i) Since uk is the projection of xk onto Ck and x∗ ∈ C∞ ⊂ Ck, it follows that

〈xk − uk, x∗ − uk〉 ≤ 0

and thus that

‖xk − x∗‖2 = ‖xk − uk‖2 + ‖uk − x∗‖2 + 2〈xk − uk, uk − x∗〉

≥ ‖xk − uk‖2 + ‖uk − x∗‖2.

So, we obtain for all k that

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖uk − xk‖2 ≤ ‖xk − x∗‖2. (5)

(ii) By definition of xk+1, we can write

xk+1 − x∗ = µkx
k + (1− µk)vk − x∗ = µk(x

k − x∗) + (1− µk)(vk − x∗) (6)

where vk = PK(uk)u
k. Therefore, since x∗ ∈ Fix(K) and K(·) is ?-nonexpansive on

X, we obtain that

‖xk+1 − x∗‖ ≤ µk‖xk − x∗‖+ (1− µk)‖vk − x∗‖
≤ µk‖xk − x∗‖+ (1− µk)‖uk − x∗‖
≤ ‖xk − x∗‖ (by (5)).

Therefore limk→∞ ‖xk−x∗‖ exists and the sequence {xk} is bounded. Furthermore,
by (5), the sequence {uk} is also bounded.

Proposition 3.4 Let wk = PK(xk)x
k for all k. Then the sequences {‖uk − xk‖}

and {‖wk − xk‖} tend to 0 as k →∞.

Proof. The set C∞ ∩ Fix(K) being nonempty, let x∗ ∈ C∞ ∩ Fix(K) and let
k be fixed. Using successively (6), the ?-nonexpansiveness of K(·) and (5), we can
write

‖xk+1 − x∗‖2 = µk‖xk − x∗‖2 + (1− µk)‖vk − x∗‖2 − µk(1− µk)‖xk − vk‖2

≤ µk‖xk − x∗‖2 + (1− µk)‖uk − x∗‖2 − µk(1− µk)‖xk − vk‖2 (7)

≤ µk‖xk − x∗‖2 + (1− µk)‖xk − x∗‖2 − µk(1− µk)‖xk − vk‖2

≤ ‖xk − x∗‖2 − µk(1− µk)‖xk − vk‖2.

Since µk(1− µk) ≥ a(1− b) > 0, we obtain from the last inequality that

0 ≤ a(1− b)‖xk − vk‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2.
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Hence by Proposition 3.3 (ii), we can deduce that ‖xk − vk‖ → 0 as k → ∞. Fur-
thermore, using (7) and Proposition 3.3 (i), we can also observe that for all k

‖xk+1 − x∗‖2 ≤ µk‖xk − x∗‖2 + (1− µk)‖uk − x∗‖2
≤ µk‖xk − x∗‖2 + (1− µk)

[
‖xk − x∗‖2 − ‖uk − xk‖2

]
= ‖xk − x∗‖2 − (1− µk)‖xk − uk‖2.

and thus, since 1− b ≤ 1− µk, that

0 ≤ (1− b)‖xk − uk‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2.

Therefore, we can deduce, from Proposition 3.3 (ii), that ‖xk − uk‖ → 0 as k →∞.
Consequently, since the multivalued mapping K(·) is ?-nonexpansive, vk = PK(uk)u

k

and wk = PK(xk)x
k for all k, we have that ‖wk − vk‖ ≤ ‖xk − uk‖ for all k and we

obtain that ‖wk − vk‖ → 0 as k → ∞. Moreover, since ‖wk − xk‖ ≤ ‖wk − vk‖ +
‖vk − xk‖, we can easily see that ‖wk − xk‖ → 0 as k →∞.

Proposition 3.5 Every limit point x̄ of the sequence generated by Algorithm 1 be-
longs to C∞ ∩ Fix(K).

Proof. Let {xkj} be a subsequence of {xk} converging to x̄.

(i) First we prove that x̄ ∈ Fix(K). From Proposition 3.4 we have that ‖xkj −
wkj‖ → 0 as j → ∞ where, for each j, wkj is the projection of xkj onto K(xkj ).
Then, we have d(xkj ,K(xkj ))→ 0 as j →∞ and, K(·) being ?-nonexpansive on X,
we have that the operator I −K(·) is demi-closed and thus that x̄ ∈ K(x̄). Hence
x̄ is a fixed point of K(·).

(ii) Now we prove that x̄ ∈ C∞. Since C∞ = ∩∞k=0Ck, it is sufficient to prove that
x̄ ∈ Ck for all integer k to obtain that x̄ ∈ C∞. Let N be a fixed integer. Since
kj → ∞, there exists an integer j0 such that kj ≥ N for all j ≥ j0. The sequence
{Ck} being nonincreasing, we have that

xkj ∈ Ckj ⊂ CN for all j ≥ j0. (8)

Consequently, the set CN being closed, contains x̄, the limit of the sequence {xkj}.
Since N is arbitrary, we obtain that

x̄ ∈ ∩∞k=0Ck = C∞.

Finally, using Lemma 2.2, we obtain the following convergence result.

Theorem 3.6 Assume that Assumption (A) holds. Then the whole sequence {xk}
generated by Algorithm 1 converges to some x∗ belonging to C∞ ∩ Fix(K).
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Proof. By Propositions 3.5 we have that every limit point of the sequence {xk}
belongs to C∞ ∩ Fix(K) and by Proposition 3.3 we have that the sequence {xk}
is Fejér monotone with respect to C∞ ∩ Fix(K). Hence it follows from Lemma 2.2
that the whole sequence {xk} converges to some x∗ ∈ C∞ ∩ Fix(K).

It remains to prove that any limit point of the sequence {xk} generated by
Algorithm 1 is a solution of problem QE (f,K) to obtain that the sequence {xk}
converges to a solution of problem QE (f,K). In this purpose, let x̄ be a limit point
of the sequence {xk} and let {xkj} be a subsequence of {xk} converging to x̄. First
we prove that the associated subsequences {ykj} and {zkj} are bounded.

Proposition 3.7 Assume that xkj → x̄. Then the two associated subsequences
{ykj} and {zkj} are bounded.

Proof. Let j be fixed and let wkj = P
K(xkj )

(xkj ). From Proposition 3.2, we

have that

‖xkj − ykj‖2 ≤ −f(xkj , ykj ) + f(xkj , wkj ) + 〈xkj − ykj , xkj − wkj 〉. (9)

Let skj ∈ ∂2f(xkj , xkj ). It follows from the definition of the subgradient skj that
f(xkj , ykj ) ≥ 〈skj , ykj − xkj 〉 and thus that

−f(xkj , ykj ) ≤ ‖skj‖ ‖ykj − xkj‖. (10)

Let also s̄kj ∈ ∂2f(xkj , wkj ). Then 0 ≥ f(xkj , wkj ) + 〈s̄kj , xkj − wkj 〉 and thus

f(xkj , wkj ) ≤ ‖s̄kj‖ ‖xkj − wkj‖. (11)

Since 〈xkj − ykj , xkj − wkj 〉 ≤ ‖xkj − ykj‖ ‖xkj − wkj‖, we obtain, combining (9),
(10), (11) and after division by ‖xkj − ykj‖ 6= 0, that

‖xkj − ykj‖ ≤ ‖skj‖+ ‖s̄kj‖ ‖x
kj − wkj‖
‖xkj − ykj‖

+ ‖xkj − wkj‖.

Hence, as wkj = P
K(xkj )

xkj , we have that ‖x
kj−wkj ‖
‖xkj−ykj ‖

≤ 1 and

‖xkj − ykj‖ ≤ ‖skj‖+ ‖s̄kj‖+ ‖xkj − wkj‖. (12)

Since, by Proposition 3.4, ‖xkj −wkj‖ → 0 as j →∞ and, since the sequence {xkj}
converges to x̄ when j → ∞, we can deduce that wkj → x̄. Consequently, using
Lemma 2.1, there exists j0 such that for all j ≥ j0

skj ∈ ∂2f(xkj , xkj ) ⊆ ∂2f(x̄, x̄) +B

and
s̄kj ∈ ∂2f(xkj , wkj ) ⊆ ∂2f(x̄, x̄) + η−1B,
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where η > 0 and B denotes the closed unit ball in IRn. Since ‖xkj − wkj‖ → 0 as
j → ∞, and the sets B and ∂2f(x̄, x̄) are bounded, the sequences {skj}, {s̄kj} and
{‖xkj − wkj‖} are bounded. Hence the sequence {ykj} is bounded thanks to (12).
Finally the sequence {zkj} is also bounded because, for all j, zkj belongs to the
segment joining xkj to ykj .

Proposition 3.8 Let x̄ be a limit point of the bounded sequence {xk}. Assume that
xkj → x̄ and that a subsequence of {‖xkj−ykj‖} converges to 0. Then x̄ is a solution
of problem QE (f,K).

Proof. Let x̄ be a limit point of the bounded sequence {xk}. By Theorem 3.6,
it is immediate that x̄ is a fixed point of K(·). Consequently, it remains to prove
that if {xkj} converges to x̄, then f(x̄, y) ≥ 0 for every y ∈ K(x̄). In this purpose,
let y ∈ K(x̄). Since xkj → x̄, y ∈ K(x̄) and K is lower semi-continuous on X, there
exists a sequence {ȳkj} such that

ȳkj ∈ K(xkj ) for all j and ȳkj → y as j →∞.

Using Proposition 3.2, we have for all j that

f(xkj , ȳkj ) ≥ f(xkj , ykj ) + ‖xkj − ykj‖2 + 〈xkj − ykj , ȳkj − xkj 〉. (13)

Taking the limit in (13) as j → ∞, and observing that f(·, ·) is jointly continuous,
‖xkj − ykj‖ → 0 and ȳkj − xkj → y − x̄, we deduce that f(x̄, y) ≥ 0.

Now our aim is to prove that ‖xkj − ykj‖ → 0 as j → ∞. This result is obtained
thanks to the line search used in Step 1 of Algorithm 1.

Proposition 3.9 The following inequality holds

αkc‖xk − yk‖2 ≤ ‖gk‖ ‖uk − xk‖ for all k, (14)

where gk ∈ ∂2f(zk, zk). Furthermore,

αkc

‖gk‖
‖xk − yk‖2 → 0 as k →∞.

Proof. Let k be fixed. Since uk ∈ Hk, it follows that 〈gk, uk − zk〉 ≤ 0. Hence,
using the line search (Step 1), we obtain successively

αkc‖xk − yk‖2 ≤ 〈gk, xk − zk〉

= 〈gk, xk − uk〉+ 〈gk, uk − zk〉

≤ 〈gk, xk − uk〉

≤ ‖gk‖ ‖uk − xk‖. (15)
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Since, by Proposition 3.4, ‖uk − xk‖ → 0 and xk 6= yk for all k, we have that each
gk 6= 0 and that

αkc

‖gk‖
‖xk − yk‖2 → 0 as k →∞.

Proposition 3.10 Let xkj → x̄ as j → ∞. Then there exists a subsequence of
{‖xkj − ykj‖} which converges to 0 as j → ∞. Furthermore, x̄ is a solution of
problem QE (f,K).

Proof. Two cases are examined:

Case 1. infj αkj > 0. From Proposition 3.9, we can immediately deduce that

‖xk − yk‖2

‖gk‖
→ 0.

On the other hand, since the sequence {zkj} is bounded, there exists a subsequence
of {zkj}, again denoted {zkj}, which converges to some z̄. Then it follows from
Lemma 2.1 that there exists j0 such that for all j ≥ j0

∂2f(zkj , zkj ) ⊆ ∂2f(z̄, z̄) +B,

where B denotes the closed unit ball in IRn. Since B and ∂2f(z̄, z̄) are bounded,
the sequence {gkj} is also bounded. As a consequence, we have that

‖xkj − ykj‖2 =
‖xkj − ykj‖2

‖gkj‖
‖gkj‖ → 0 as j →∞.

Hence ‖xkj − ykj‖ → 0 as j →∞.

Case 2. infj αkj = 0. Then αkj → 0 (in fact a subsequence) and αkj < 1 for j large
enough with the consequence that the line search condition in Step 2 of Algorithm 1
is not satisfied for

αkj

α . Let us denote the corresponding step by

z̄kj =
(

1−
αkj
α

)
xkj +

αkj
α
ykj .

Since xkj → x̄ and the sequence {ykj} is bounded, it is immediate that z̄kj → x̄.
We have

〈ḡkj , xkj − ykj 〉 < c ‖xkj − ykj‖2, (16)

where ḡkj ∈ ∂2f(z̄kj , z̄kj ). Since the sequences {ḡkj} and {ykj} are bounded, we
obtain (in fact for a subsequence) that ḡkj → ḡ and ykj → ȳ for some ḡ and ȳ,
respectively.
On the other hand, by definition of ḡkj , we have

f(z̄kj , ykj ) ≥ 〈ḡkj , ykj − z̄kj 〉 =
(

1−
αkj
α

)
〈ḡkj , ykj − xkj 〉. (17)
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It follows from Proposition 3.2 that

‖xkj − ykj‖2 ≤ −f(xkj , ykj ) + εkj , (18)

where εkj = f(xkj , wkj )+〈xkj−ykj , xkj−wkj 〉 and wkj = P
K(xkj )

xkj . Since xkj → x

and ‖xkj − wkj‖ → 0 (by Proposition 3.4), we have that wkj → x. Consequently,

the sequence {ykj} being bounded and the bifunction f being jointly continuous, we
have immediately that εkj → 0 as j →∞.

Using successively (17), (16) and (18), we obtain that

f(z̄kj , ykj ) > −c
(

1−
αkj
α

)
‖ykj − xkj‖2

≥ c
(

1−
αkj
α

)
(f(xkj , ykj )− εkj ). (19)

Since f is jointly continuous on X and since c ∈]0, 1[, inequalities (19) imply, at the
limit, that f(x̄, ȳ) ≥ c f(x̄, ȳ), and thus that f(x̄, ȳ) ≥ 0. Therefore from (18) we
can deduce that ‖xkj − ykj‖ → 0 as j → ∞. Finally, it remains to use Proposition
3.8 to get that x̄ is a solution of problem QE (f,K).

Finally, thanks to Theorem 3.6, Proposition 3.10, and Proposition 3.8, we obtain
the following convergence result.

Theorem 3.11 Assume that Assumption (A) holds. Then the whole sequence {xk}
generated by Algorithm 1 converges to a solution of problem QE (f,K). Furthermore,
x∗ ∈ C∞.

Remark 2 When the sets K(x) are all equal to the fixed closed convex subset X of
H, the quasi-equilibrium problem QE (f,X) coincides with the equilibrium problem
E (f,X). In that case when f(·, ·) is pseudomonotone, we do not need to use Propo-
sition 3.5 (ii) to get the convergence of the sequence {xk} to a solution of problem
E (f,X). Indeed, from Propositions 3.8 and 3.10, we have that any limit point of
the sequence {xk} belongs to SE. Furthermore, since SM = SE ⊆ C∞, it follows
from Proposition 3.3, that for all k

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all x∗ ∈ SE .

Hence, using Lemma 2.2, we obtain that the sequence {xk} converges to a point of
SE. Furthermore, since we do not use Proposition 3.5 (ii), we can take Ck = X∩Hk

instead of Ck = X ∩ [∩ki=0Hi ] in Step 2 of Algorithm 1.

4 Numerical Results

In this section, we consider a numerical example for illustrating the behavior of the
method.
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Let X = [−1, 1] × [−1, 1] and consider the equilibrium bifunction f : X ×X → IR
defined for each x, y ∈ X by

f(x, y) = |x1 + x2| [(y2
1 − x2

1) + (y2
2 − x2

2)]

where x = (x1, x2) and y = (y1, y2). The solution sets for problems E(f,X) and
ME(f,X) are given by

SE = {(t,−t) | t ∈ [−1, 1]} and SM = {(0, 0)},

respectively. Since SM 6= SE , the equilibrium bifunction f is not pseudomonotone.
In the example considered here, the multivalued mapping K : X → CCB(X) is
defined for each x = (x1, x2) ∈ X by

K(x1, x2) = B

(
0,
‖x‖
2

)
,

where B(0, R) denotes the closed ball of radius R centred at 0. So K(x1, x2) is
a nonempty closed bounded convex subset of X for each (x1, x2) ∈ X. Let x∗ =
(x∗1, x

∗
2) ∈ X. Then x∗ ∈ K(x∗) if and only if x∗ = (0, 0). Furthermore, the so-

defined mapping K(·) is ?-nonexpansive since

PK(x)x =
x

2
∀x ∈ X.

Moreover, K is lower semicontinuous at x̄ ∈ X. Indeed, let xk → x̄ and let ȳ ∈ K(x̄).

Then ‖ȳ‖ ≤ ‖x̄‖2 . When x̄ = 0, we have that ȳ = 0 and that the sequence {yk} defined
for all k by yk = 0, is such that yk ∈ K(xk) for all k and converges to ȳ. When
x̄ 6= 0 and ȳ ∈ K(x̄), we can choose

yk =
‖xk‖ ȳ
‖x̄‖

∀k

to obtain that for all k,

‖yk‖ =
‖xk‖ ‖ȳ‖
‖x̄‖

≤ ‖x
k‖

2
, i.e., yk ∈ K(xk).

Since xk → x̄, we have that yk → ȳ.

Now it is easy to see that
S∗E = S∗M = {(0, 0)} .

Furthermore, the set S∗ is also nonempty and equal to {(0, 0)}.

For this example, the subproblems miny∈K(xk){f(xk, y) + 1
2 ‖y − x

k‖2} can be ex-
pressed as

14



(QP )k min
y∈K(xk)

{
1

2

(
1 + 2 |xk1 + xk2|

) (
y2

1 + y2
2

)
− xk1 y1 − xk2 y2

}
where y = (y1, y2) and x = (x1, x2). These subproblems are convex quadratic
programming problems which can be explicitly solved. Indeed, first we observe that
the solution of the corresponding unconstrained problem is given by

yk =
xk

1 + 2 |xk1 + xk2|
.

Consequently, when the constraint y ∈ K(xk), i.e., ‖y‖ ≤ ‖x
k‖
2 , is incorporated into

the unconstrained problem, we obtain that the solution of problem (QP )k is equal
to

yk =


xk

2 if |xk1 + xk2| < 1
2

xk

1+2 |xk1+xk2 |
if |xk1 + xk2| ≥ 1

2 .

Several starting points have been considered for solving problem QE (f,K) and the
following stopping criterion has been retained at iteration k:

‖yk − xk‖ ≤ 10−6.

The obtained numerical results are displayed in the following table where the starting
point, the obtained solution, the number of iterations and the cpu time have been
reported.

Starting point Solution Iterations Cputime (secs)

(−1,−1) and (1, 1) (0, 0) 12 0.984 and 0.078
(−1, 1) and (1,−1) (0, 0) 23 0.218 and 0.109

(−0.1,−0.1) and (0.1, 0.1) (0, 0) 10 0.047 and 0.094
(−0.1, 0.1) and (0.1,−0.1) (0, 0) 19 0.171 and 0.078

Finally, let us mention that when the starting point belongs to S∗E , the solution
point coincides with this point.

5 Conclusions

In this paper we have introduced a new algorithm for solving the nonmonotone quasi-
equilibrium problem in the framework of a finite dimensional Euclidean space. The
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convergence of the proposed algorithm has been studied and a numerical example
has been provided to illustrate the validity of the method.

The literature on solution methods for nonmonotone quasi-equilibrium problems
is not too extensive. Developing implementable and efficient methods for solving
this difficult class of problems is still a challenging task. To the best of our knowl-
edge, this is among the first papers to deal at the same time with quasi-equilibrium
problems and with nonmonotone bifunctions.

One of the difficulties with these methods is that projections have to be done
onto intersections of half-spaces and that the number of these half-spaces increases
at each iteration. This was already the case for solving equilibrium problems with
nonmonotone bifunctions. So to avoid a huge number of constraints in the quadratic
subproblems, a strategy would be to aggregate the constraints with the possibility
of limiting their number to two. Such a technique, but for solving a similar problem,
has been proposed in Sect. 7.4.4 of [49]. The use of such a method adapted to our
situation could be the subject of a future research.

Finally, it is also worth mentioning that another natural approach is to show
that the quasi-equilibrium problem is equivalent to a global optimization problem
by using gap (merit) functions. This alternative equivalent formulation is used
to propose some descent type methods to solve the monotone quasi-equilibrium
problem in a very recent paper [31].
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