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Abstract—Optical Music Recognition (OMR) is a branch of
artificial intelligence that aims at automatically recognizing
and understanding the content of music scores in images.
Several approaches and systems have been proposed that try to
solve this problem by using expert knowledge and specialized
algorithms that tend to fail at generalization to a broader
set of scores, imperfect image scans or data of different
formatting. In this paper we propose a new approach to solve
OMR by investigating how humans read music scores and by
imitating that behavior with machine learning. To demonstrate
the power of this approach, we conduct two experiments
that teach a machine to distinguish entire music sheets from
arbitrary content through frame-by-frame classification and
distinguishing between 32 classes of handwritten music symbols
which can be a basis for object detection. Both tasks can
be performed at high rates of confidence (>98%) which is
comparable to the performance of humans on the same task.

I. INTRODUCTION

Music plays a central role in our cultural heritage with
written music scores being an essential way of communi-
cating the composer’s intention to musicians that perform a
piece of music. The music notation encodes the information
into a graphical form that follows certain syntactic and
semantic rules to encode pitch, rhythm, tempo, and articu-
lation. Optical Music Recognition (OMR) tries to recognize
and understand the notation and the contents of an image
for a machine to be able to comprehend the music. Given a
system that is able to translate an image into a machine-
readable format, the applications are manifold, including
preservation and digitization of hand-written manuscripts,
supporting music education or accompanying musicians that
practice their performance.

Although considerable research has been conducted and
many systems have been developed [1] that reportedly
perform well on the specific set of music scores for which
they have been designed for, the robustness and extensibility
of these systems is limited due to the underlying architecture
and used algorithms that discard information and propagate
errors from one step to the next, e.g. an error in the
binarization which is often the first step of an OMR system
might cause the symbol detection to detect notes where there
are none. Many algorithms have been proposed to improve
individual steps of this linear process, but to the best of
our knowledge, there exists no system that is capable of
automatically recognizing a large set of real-world data with
satisfactory precision, good usability, and reasonably low

editing costs [2] of errors that were introduced during the
process. Many people could benefit from digitizing a large
body of music scores that is accessible and searchable [3].
As a result, there are ongoing projects to do so including
SIMSSA1 and OpenScore2. To support such projects, we
propose a new approach: rather than designing features and
defining rules by hand, the system should learn to extract
features and appropriate rules by itself (given a certain
amount of supervision). Ideally, such a system is capable
of transcribing music scores as accurately as humans.

II. RELATED WORK

OMR has been a subject of interest at least since 1966
[4], and received substantial attention by Bainbridge and Bell
[5] who established a general framework for OMR that has
been adopted by many researchers [1]. Since then, many re-
searchers suggested entire OMR systems [6], [7] or proposed
specialized algorithms for solving or improving sub-tasks
such as binarization [8] or staff-line detection and removal
[9], [10]. However, most of them use ad-hoc solutions
based on expert knowledge that follow widely used practices
that work best on datasets fulfilling certain prerequisites,
e.g. detecting staff-lines with horizontal projections requires
the scores to have straight staff-lines. Unfortunately, these
systems tend to experience difficulties when confronted with
images that deviate from the expected input format for which
they were designed (e.g. if the staff-lines are curved due to
the bonding of a textbook). Adding another preprocessing
step or improving an algorithm can help to overcome one
or the other limitation, but might not help a system to gain
robustness beyond a certain level.

In the last few years, machine learning - and especially
Deep Learning with Convolutional Neural Networks (CNNs)
- received a lot of attention with results that surpass human-
level performance on computer vision tasks such as image
classification [11]. Wen et al. proposed a machine learning
approach for symbol segmentation and symbol classifica-
tion [12] in combination with a pre-defined ruleset. Calvo-
Zaragoza et al. [13] classify music scores at pixel-level
with CNNs into foreground, background, and staff-lines.
Gallego et al. [14] use auto-encoders to remove staff lines
and finally Pinheiro Pereira et al. [15] classify handwritten

1http://simssa.ca/, last visited on Oct. 4, 2017
2http://openscore.cc, last visited on Oct. 4, 2017



music symbols from the HOMUS database [16] into 32
different categories with a precision of over 96%. Together,
they provide strong evidence, that machine learning can
successfully be applied to develop new types of OMR
systems that are robust and extensible to a wide range of
scores.

III. HOW HUMANS READ SCORES

We believe that an OMR system should be able to read
and comprehend music scores with all their facets as well as
humans. To the best of our knowledge, there exists no system
that would come close to human performance [1]. As far as
it is understood today, humans process visual scenes in a
hierarchical way at three levels [17, p. 557]:

1) Low-level, where contrast, orientation, color, and move-
ment are processed, primarily in the retina and ganglion
cells [17, p. 600]

2) Intermediate-level, where the layout of the scene is
processed by parsing the visual image into contours
and surfaces of objects, segregating them from the
background, involving the primary visual cortex [17,
p. 619].

3) High-level, where actual object identification is per-
formed, by matching surfaces and contours to known
shapes from our memory (or more precisely to their
neuronal representation) which happens primarily in the
Inferior Temporal Cortex [17, p. 622]

By processing visual information in this hierarchical way,
humans become very good at arriving at scene descriptions,
grasping the gist of a scene. But reading music scores
includes not only the visual perception of objects, but
also relating objects to each other and to the context, a
process where, unfortunately, today little is known about
how humans perform this task, apart from certain brain
regions that have been identified to be involved in this
process [18], [17, p. 1353]. Note that for relating elements
to each other and interpreting them correctly, it appears that
humans use all information available. For music scores, this
includes the staff-lines as the reference system, knowledge
about the type of music, the notational system and also
prior knowledge such as the probabilities of continuations
within idioms [18] to resolve ambiguities if the available
information is incomplete or doubtful. The expectancy can
even replace a stimulus, making up for misprints as shown
in the Goldovsky experiment [18] indicating that reading
involves both top-down (or conceptually-driven) and bottom-
up (or data-driven) processes.

Learning from the way humans read scores, binarizing
the image as a first step or removing staff-lines seems
to be counterproductive as it discards potentially relevant
information. In summary, we conclude that OMR systems
could benefit from operating directly on the input image
(which is possible with Deep Learning), providing feedback

loops from later steps to refine earlier steps and consider
information that might not have been used so far.

IV. HOW MACHINES READ SCORES

David Marr proposed a computational framework of vi-
sion that has three levels and to us appears very useful when
discussing vision problems [19]:

• Computational theory, which specifies how a vision task
can be solved in principle

• Algorithmic level, that gives precise details on how the
theory can be implemented. In other words: What is the
input and output and how to obtain the output given the
input?

• Hardware for realizing the algorithm in a physical
system (which is not necessarily computer hardware,
but in our case it is)

Given this framework, we think that the computational
theory of how humans or machines can read scores is correct
and sound: detecting systems, staves and staff-lines and
using them as structural guidance is a solid foundation;
segmenting elements into smaller parts and constructing
a relational mapping leads to a symbolic representation;
finally, this symbolic representation can be interpreted in
its context, according to syntactic and semantic rules that
correspond to a particular notational language.

The algorithmic level, however, seems to be much harder
to solve, possibly because the inherent complexity of the
problem is often underestimated. Many proposed approaches
can be seen as concept-driven because they use prior knowl-
edge of the specific object, in this case, music sheets.
We believe that a data-driven, Deep Learning approach
is a viable alternative that should be investigated further.
Therefore, we propose the following five questions as a
model for bottom-up music processing that are specifically
formulated to facilitate the development of such an Optical
Music Recognition algorithm.

Can a machine mimic human behavior in ...
Q-I distinguishing between music scores and arbitrary con-

tent?
Q-II understanding the structure of music scores (staves,

systems) and distinguish basic music symbols from
each other and from the background?

Q-III detecting and locating music symbols (notes, rests,
ornaments, accidentals, bar-lines, articulations, ...) in
the scores?

Q-IV understanding the relation of objects to each other in
music scores (the relation between a note and the staff-
lines, an accidental to the left of a note which relates
to that note, etc.)?

Q-V fully understanding the syntax and semantics of music
scores (inferring the actual note from relative position,
shape and preceding symbols such as key signatures or
accidentals)?



These five questions define our research program for the
data-driven investigation of the OMR problem using deep
networks. In our opinion, each question can be solved using
an appropriate model and sufficient data. Note that the ques-
tions are of increasing complexity with Q-V representing a
complete system that is capable of reading scores and fully
understanding their content like humans. Q-I and Q-II can
be implemented by using CNNs that operate directly on
the raw input data. A promising approach for Q-III is to
extend a classifier into an object detector by using region
proposal networks [20]. As for questions Q-IV and Q-V,
Recurrent Neural Networks (RNN) seem to be a good fit
[21], as they can learn relationships in sequential data and
already achieved remarkable results in Optical Character
Recognition [22], a task that is comparable to OMR but
in many regards simpler [5].

V. EXPERIMENTATION

To evaluate whether a data-driven approach is suitable
for improving the state-of-the-art in OMR, two experiments
were conducted that try to answer Q-I and partially Q-II. The
first, to recognize music scores in an image and classify that
image into one of the two categories: ’scores’ or ’other’. The
second, to classify isolated handwritten music symbols into
32 different classes, reproducing [15] in greater depth and
improving their results significantly. For both experiments, a
Convolutional Neural Network was trained using the popular
Deep Learning frameworks Keras3 and Tensorflow4. The
resulting models can then be used for inference on almost
any machine including mobile devices (see Figure 1) to
classify images from the live camera-feed and display a
frame-by-frame classification.

A. Datasets

The dataset used for training, validation, and testing in the
first experiment contains over 5500 images of which 2000
images contain scores and 3500 images contain something
else (see Table I). The largest portion was obtained by using
two publicly available datasets: the MUSCIMA database,
which contains 1000 handwritten music scores [23] and the
training database of the Pascal VOC Challenge 2006 which
contains over 2600 images [24] that were considered part
of the ground-truth for the category ’other’. Additionally,
we created a new dataset containing 2000 imperfect but
realistic images, by taking 1000 images depicting music
scores and 1000 images of text documents and other objects
with a smartphone camera. Preliminary testing showed that
text documents were likely to be confused with scores,
especially if they contain tables. Hence, a large portion of
the additional images contains such documents in order to
enable the network to learn the distinction. The complexity
of the scores ranges from simple childrens’ tunes to modern

3http://keras.io/, last visited on Oct. 4, 2017
4http://www.tensorflow.org/, last visited on Oct. 4, 2017

Figure 1: Screenshots of the Android application, classifying
a sheet of music scores (left top) and a table with data (right
top) with a certainty of 99%. When presented with images
that contain scores and text (left bottom) or unusual forms
(right bottom), certainty drops to approximately 70% but the
system still classifies the image correctly.

orchestral scores, taken in various lighting conditions and
from different angles.

The dataset for the second experiment is the Handwrit-
ten Online Musical Symbols (HOMUS) dataset [16] that
contains 15200 samples of hand-written musical symbols,
written by 100 different musicians5.

B. Architecture and Training

For both experiments, various network architectures were
evaluated, including a VGG-like architecture [25] and resid-
ual networks [26].

The first experiment attempts to answer Q-I and uses
color-images that are non-uniformly resized to 128x128
pixels for the first trial and 256x256 pixels for the second.
For the second experiment that is targeted towards Q-II,
black and white images are generated from the textual
representation of strokes by connecting the points of each
stroke. Since individual symbols vary drastically in size,
while CNNs expect a fixed-size image as input, the following
two approaches were evaluated:

5Note that the original dataset contained a few mistakes and artifacts
that were reported to the authors and corrected before the training see
https://github.com/apacha/Homus for details, last visited on Oct. 4, 2017



Handwritten scores

Images of scores

Images of documents

Other images

Table I: Sample images of the various categories, as they were shown to the classifier during training (non-uniformly resized).
The upper two rows form the class ’scores’ and the lower two rows the category ’other’.

1) Drawing the symbols in the center of a large enough
canvas that fits most of them (e.g. 192x96 pixels, with
only 23 out of 15200 symbols exceeding this size)

2) Drawing each symbol in a canvas that exactly fits its
size and rescaling all symbols non-uniformly to a fixed
size, e.g. 96x96 pixels

These particular sizes were empirically selected because
they yielded the best results while allowing multiple down-
scaling operations by a factor of two without interpolation.

Batch-normalization, early-stopping, weight-decay and
dynamic learning-rate-reduction are used as regularization
strategies to improve training speed and overall performance.
Random-rotation by 10° and random-zoom of 20% are used
as data-augmentation strategies to simulate the images being
taken from slightly different points-of-view which leads to
results that are robust to minor variations.

C. Evaluation

To evaluate each experiment, the respective dataset was
split into three parts of which 80% are used as training
data, 10% are used for validation during the training and
for hyperparameter optimization and the final 10% are used

for evaluating the performance of the trained model on
previously unseen data.

To obtain a baseline, a subset of the images was also
shown to a number of people that were asked to perform
the same classification task in a desktop application on a
computer screen. The application did not allow for zooming
and the users classified the images using the keyboard but
were allowed to go back and revise their decisions without
any time constraints.

1) First Experiment: Typical training took 30 epochs
before early stopping the training to prevent overfitting. The
trained model classified 98.5% of the images in the test set
correctly on the 128x128 pixels condition and 100% on the
256x256 condition, meaning that this task appears almost
trivial to the machine.

The more than 500 images from the test set were also
shown to three different users, who were asked to manu-
ally classify them either as ’something that displays music
scores’ or ’something else’. The images were down-scaled to
the same 128x128 pixels that correspond to approximately
3.5cm on a desktop screen. In total, they classified over
1500 images with an average precision of 96.49%. The main



Figure 2: Superimposed staff-lines over isolated symbols
to create meaningful context. Five parallel lines are drawn
with an equal spacing of 14 pixels between each line [16].
From left to right: Quarter-Note, F-Clef, Eighth-Rest, Sharp,
Whole-Half-Rest, Sixty-Four-Note

source of error was due to the very small images. Partially
repeating the process with images of size 256x256 pixels,
which corresponds to approximately 7cm on a desktop
screen, showed that humans can perform this task without
exceptional errors.

2) Second Experiment: The second experiment contains
a wide range of conditions whose effects were investigated:
image-size, stroke-thickness, superimposing staff-lines (see
Figure 2) and of course the hyperparameters for the training
of a deep neural network, including the network architecture,
the used optimizer, and minibatch-size. A total of over 150
different hyperparameter-combinations were tested and doc-
umented. The following hyperparameters have empirically
shown to work very well for this task:

• Monitoring the accuracy on the validation set after each
epoch and reducing the learning-rate by a factor of 0.5
if it does not improve for 8 epochs. Similarly, the entire
training was stopped if no improvement was observed
for 20 epochs.

• Adam, Adadelta and Stochastic gradient descent (SGD)
were evaluated as optimizers with Adadelta performing
slightly better than Adam and much better than SGD.

• Evaluated minibatch-sizes included 16, 32 and 64 but
the impact is rather small and in our opinion can be
neglected.

The obtained results reach up to 98.02% accuracy on a
test-set of 1520 images which is a significant improvement,
compared to previously reported results of 97.26% [27] and
96.01% [15]. For images with undistorted symbols drawn on
a fixed canvas (Section V-B, approach 1) a Res-Net archi-
tecture with 25 convolutional layers and about five million
parameters performed best. Similar results were obtained
with a VGG architecture for non-uniformly resized symbols
(Section V-B, approach 2) that consists of 13 convolutional
layers and about 8 million parameters.

The results of the best run, broken down by symbol class,
are given in Table II and show that the network struggled
most with notes and rests that are only discriminable by the
number of flags, such as Thirty-Two- and Sixty-Four-Notes.

Five users were asked to perform the same task on a
random sample of the dataset. In total, they classified 1520
images with an average precision of 95% and experiencing
most difficulties in Quarter-Rests and Sixteenth-Rests that

Table II: The recall and precision per class for the best
trained residual network in comparison to human perfor-
mance on the same task.

Residual Network Human test subjects
Class name Recall Precision Recall Precision
12-8-Time 1.00 1.00 1.00 0.97
2-2-Time 1.00 1.00 0.95 1.00
2-4-Time 0.97 0.95 1.00 0.98
3-4-Time 0.95 1.00 1.00 0.97
3-8-Time 1.00 1.00 1.00 1.00
4-4-Time 1.00 0.98 0.97 1.00
6-8-Time 1.00 1.00 1.00 1.00
9-8-Time 1.00 1.00 1.00 1.00
Barline 1.00 0.98 0.97 0.92
C-Clef 1.00 1.00 1.00 0.91
Common-Time 1.00 1.00 0.97 1.00
Cut-Time 0.95 1.00 0.98 0.98
Dot 0.97 1.00 1.00 1.00
Double-Sharp 1.00 1.00 0.97 1.00
Eighth-Note 0.99 0.95 0.92 0.98
Eighth-Rest 1.00 1.00 0.98 0.86
F-Clef 1.00 1.00 0.97 0.92
Flat 0.97 1.00 0.95 0.95
G-Clef 1.00 0.95 0.98 0.98
Half-Note 1.00 1.00 0.97 0.94
Natural 0.95 1.00 0.74 1.00
Quarter-Note 1.00 1.00 0.93 0.95
Quarter-Rest 0.95 0.95 0.89 0.82
Sharp 1.00 1.00 1.00 0.97
Sixteenth-Note 0.94 0.95 0.90 0.92
Sixteenth-Rest 0.97 0.97 0.76 0.81
Sixty-Four-Note 0.96 0.95 0.94 0.94
Sixty-Four-Rest 0.97 0.97 0.83 0.97
Thirty-Two-Note 0.91 0.95 0.99 0.91
Thirty-Two-Rest 0.97 0.95 0.91 0.89
Whole-Half-Rest 1.00 0.98 1.00 1.00
Whole-Note 1.00 0.98 1.00 0.98

both have manifestations that deviate from their printed
counterparts dramatically or are simply ambiguous (see
Figure 3).

Another very interesting detail was observed: When su-
perimposing staff-lines as depicted in Figure 2, test-accuracy
remains at high rates of up to 97.03%, indicating that
the network can learn to ignore them almost entirely, thus
providing evidence that staff-line removal might be omitted
in future systems, as discussed in Section III.

VI. CONCLUSION

Given the results presented in Section V-C we conclude
that Q-I can be answered with yes, showing that humans and
machines can achieve similar results on the given dataset.
Detecting music scores and distinguishing them from ar-
bitrary content is a relatively easy problem compared to
the entire challenge of Optical Music Recognition but what
experiment 1 shows, is that machines can learn something
as abstract as the concept of ’what music scores look like’
by just providing enough data and using a Deep Learning
approach. As for Q-II, we showed that a CNN can be trained
to distinguish handwritten music symbols from each other at
high rates of confidence, even with staff-lines being present.



(a)

(b)

Figure 3: Examples of symbols from the test set that were
misclassified by the machine (a) and by humans (b). Their
intended classes from left top to right bottom: Sixteenth-
Rest, 2-4-Time, Sixteenth-Note, Cut-Time, Quarter-Rest,
Sixteenth-Note, Quarter-Note, Sixty-Four-Note, Sixty-Four-
Rest, Quarter-Rest, Natural, and Sixty-Four-Note.

When combining these results with the work from [28] and
[13] we conclude that Q-II can also be answered with yes.

VII. FUTURE WORK

To promote collaboration and reproducibility, all datasets,
the entire source-code and the raw data from both experi-
ments have been released on Github at https://github.com/
apacha/MusicScoreClassifier and https://github.com/apacha/
MusicSymbolClassifier under a liberal MIT-license. We are
confident, that by following the described path, an OMR
system can be created that is capable of not only classifying
entire images but also recognizing the structure of the
document, reliably detecting objects in the image and even
understanding the relation of elements to each other with-
out formulating explicit rules by only training appropriate
models on a comprehensive dataset.
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