
Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 1
Special Issue Conference on Business Informatics 2014

A Linked Data Based Messaging Architecture for the Web of
Needs

Florian Kleedorfer*,a, Christina M. Buscha, Christian Pichlerb, Christian Huemerb

a Studio Smart Agent Technologies, Research Studios Austria FG, Thurngasse 8/2/16, 1090 Vienna, Austria
b Institute for Software Technology and Interactive Systems, Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna,
Austria

Abstract. Electronic marketplaces are built to resemble real marketplaces structurally. Consequently, they
are centralized systems, walled gardens with an intrinsic tendency to lock merchants and clients in. We
argue that this structure is not necessary on the Web and that all online marketplaces could merge into
one global medium for exchange. In this paper, we propose an architecture for such a medium based on
semantic Web standards, encompassing the functionalities of publishing an intention to buy or sell, finding
transaction partners, and conducting transactions. We focus on the basic protocol layer and explain how
messaging and linked data are combined in a novel way to realize a highly dynamic communication system.

Keywords. Electronic Marketplaces • Linked Data • Messaging

Communicated by B. Hofreiter and E. Proper (Guest Editors). Received 2015-06-22. Accepted after 2 revisions on
2016-05-11.

1 Introduction

The World Wide Web was designed as a general
information medium. At its inception in 1990,
the guiding idea was to build an open network of
documents that could be linked to each other. At
the beginning, manually curated directory pages
were used to discover documents; however, as the
Web grew in size, these became impractical to
use and even harder to maintain. The situation
gave rise to the idea of applying the methods of
information retrieval, hitherto mostly applied to
well-controlled collections (Brin and Page 1998),

* Corresponding author.
E-mail. fkleedorfer@researchstudio.at
This work was supported by the Austrian Federal Ministry of
Science and Research and the Austrian Research Promotion
Agency (ffg) in the bridge project ‘Web of Needs Infra-
structure (win)’ and the coin project ‘Usability, Scalability
and Security on the Web of Needs (uss won)’. Moreover,
this work includes preliminary results of scalability tests
conducted by Heiko Friedrich and Soheil Human.
Note: This article extends an earlier conference paper,
cf. Kleedorfer et al. (2014).

to documents on the Web in the form of search
engines such as WWWW (the Worldwide Web
worm, see McBryan 1994). These services had
been the missing ingredient that allowed the Web
to scale beyond human manageability while re-
maining generally usable. Search services made
all the difference as they let users structure the
Web’s content spontaneously according to their
needs.

The World Wide Web evolved into more than
an information medium: creators of video, music,
and of other pieces of art transformed it into a
cultural medium; social networking services made
it a social medium; e-commerce services made
it a medium for business. Its development has
been pervasive; people increasingly use the Web
to satisfy all kinds of needs. Through all these
transformations, it has kept its original bipolar
form, a symbiosis of producers and consumers
of documents connected by search engines. This
form is probably not a coincidence, as it func-
tions like an abstraction of a marketplace, where

http://dx.doi.org/10.18417/emisa.11.3
fkleedorfer@researchstudio.at


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

2 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

physical objects are on display on different kiosks
while clients have to look for things that satisfy
their needs, and eventually buy them.

Marketplaces have been known to man for sev-
eral thousand years. Their historically consistent
overall form, a collection of kiosks with goods be-
ing offered, and many independent clients buying
there, is due to the fundamental asymmetry at the
basis of all trade: the asymmetry between its two
poles, between supply and demand. Although,
conceptually, supply and demand can be said to
be of the same kind, namely intentions of taking
part in a resource transfer, they differ substantially.
Supply appears as the thing being offered, it is thus
concrete, can be searched and found, measured
and compared. Individual demand, in contrast,
denotes the absence of something, thus it does not
appear as a physical thing in a traditional market-
place. The same asymmetry pertains to supply
and demand on the Web: supply is mostly expli-
cit, has its own representation, such as a product
landing page, whereas demand is rarely published
as an individual resource. The work at hand aims
for reducing this asymmetry.

The first step in this direction is to represent
both, supply and demand, explicitly as distinct
objects on the Web, and to provide a standard-
ized way for them to communicate. Given these
prerequisites, the problem of finding a suitable
partner for a resource transfer is equivalent to find-
ing a suitable combination of one supply and one
demand object. The search for such combinations
can be performed manually or automatically by
participants from the demand side as well as from
the supply side. Moreover, independent entities
can assume the role of a matchmaker and inform
the participants involved. In order to allow for
independent matchmaking, a standardized way of
informing supply and demand objects of a possibly
interesting combination is required.

This set of functions (publishing the intention,
performing search or matchmaking, and establish-
ing a communication channel) provides a symmet-
ric base for resource transfer on the Web. This set
is minimal and necessary, as no function could be
removed without losing the overall functionality.

This set is also sufficient for a very simple market-
place in which participants only request and make
donations, and communicating in natural language
is deemed sufficient for the coordination of the
transactions. Any other aspect, such as payment,
or management of returns, that may be required for
more elaborate situations, can be realized based
on the established communication channel, either
in natural language or by additional technical com-
munication protocols that are beyond the scope
of this work. With these additions, defined as
open specifications, resource transfer is directly
integrated in the Web’s infrastructure, which we
would then refer to as the Web of needs (WoN).

The contribution of this paper is the detailed
explanation of the basic protocol layer, given in
Sect. 4. This extension over a previously published
work by the same authors (Kleedorfer et al. 2014)
is the motivation for changing the title from the
name of an argument for the adoption of the
Web of Needs to a high-level specification of its
communication protocols.

This paper is organised as follows: we first
motivate the design of the WoN infrastructure
with a simple business case in Sect. 2. Design
decisions are discussed in Sect. 3 along with an
overview of the architecture they lead to. In Sect. 4,
we focus on the basic protocol layer, after which
we describe the current state of our prototypical
implementation in Sect. 5. Finally, we give an
overview of related work in relevant domains in
Sect. 6.

2 Motivation

The business case used as a running example is
e-commerce and delivery of goods, as illustrated
in Fig. 1.

In such a setting, suppliers intend to sell and
requestors intend to buy commodities. A process
of discovery and selection leads to a transaction
involving requestors, suppliers, and goods or ser-
vices. The abstract view is illustrated in the upper
section of Fig. 1, showing the example business
case of a requestor seeking a book and multiple

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 3
Special Issue Conference on Business Informatics 2014

Figure 1: Overview of the running example. The
numbers indicate ordering. First, a person expresses
the wish for a specific book (1). Another person offers
that book (2). They negotiate and agree on a price for
the book (not depicted here). Next, the seller expresses
the wish for the book to be fetched at location A, the
buyer expresses a corresponding wish to receive the
book at location B (3). Learning these needs, a person
operating a delivery service offers the transport (4),
which is eventually carried out (not shown here).

suppliers offering books that may be of interest to
the requestor.

In the following, we develop an appropriate
representation of this business case for a Web
based system, then we discuss consequences this
representation entails as a basis for major design
decisions. We concentrate on three main steps a
user performs: describing their supply or demand,
identifying trading partners, and conducting a
transaction.

2.1 Modelling Supply and Demand
Description. The view initially described uses
roles of people or organisations as elements of the
representation: the supplier is used to represent the
offer, the requestor is used to represent the demand.
For the sole purpose of organising transactions in
a marketplace, this description is overly complex:
involving the notion of a person evokes many
associations that are irrelevant to the purpose, such
as gender, age, etc. More importantly, it incurs
unnecessary constraints regarding identity: when
considering individual transactions, viewing them
as occurring between people induces a relationship

between the transactions that involve the same
people. Such relationships may be interesting and
exploitable in many ways but they should only be
added when needed. For example, when making
recommendations or building a track record of a
user’s transactions, this information is important.
In the general case, though, it is not. In the
depicted example, age and gender of the requestor
is irrelevant for conducting a transaction, and so
are other things they are currently looking to buy.
By choosing to disregard the person and focusing
on the intention, the irrelevant can be ignored.

For identifying the right abstractions, we con-
sider that prior to entering a transaction, each
participant must have developed a mental rep-
resentation of the transaction and the reason for
entering it: in our example, the idea of wanting
to sell or buy a book. These abstractions are suit-
able for representing transactions in a software
system: they pertain to exactly one plan or goal
and they do not incur unnecessary relationships to
other notions or transactions. In our example, the
requestor has to develop the idea that they intend
to buy a book. This idea may identify a specific
book or encompass certain properties it should
have (e. g. a cookbook for Italian food). Likewise,
the suppliers develop the idea to sell a specific
book.

Reified as objects in the system, such repre-
sentations are used to identify the transaction’s
endpoints, serving as proxies for their respect-
ive creators or owners; we will refer to them as
owner proxies (or proxies for short). These objects
contain a description of the reason for entering
a transaction (i. e. supply or demand) and allow
their owners to connect to other objects of this
kind and communicate. This view is depicted by
the lower portion of Fig. 1, where we see that the
requestor controls a proxy representing their de-
mand for a book and the suppliers control proxies
representing their offers.

When describing a commodity, one chooses a
level of granularity compatible with the context
in which the description is needed. When the
commodity, the requestor, and the supplier are
physically present, and the type and conditions

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

4 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

of the transaction are prescribed by the circum-
stances, descriptions are mostly unnecessary—as
is the case in traditional public marketplaces. In
electronic marketplaces, the same commodities
may be described with the highest level of de-
tail. A generally useful marketplace solution must
be flexible enough to support both cases equally
well, therefore users should be given the options
to describe their intentions in unstructured form
using properties such as title, description, and tags.
Moreover, there should be support for the input of
generally useful properties such as time of availab-
ility, price information, and location information.
For expressing fine-grained properties, it should
be possible to use an appropriate data structure.
The example use case may occur in an informal
setting, as may be encountered when trading used
books. In such a setting, using title and description
may be enough. The owner proxies representing
an industrial publisher’s books may contain very
detailed domain-specific data such as ISBN, year,
and other properties.

Identification of combinations. The repre-
sentation of intentions developed above allows
for matching supply and demand based on their
descriptions. Such matching can either be done
manually, similar to web search, or it can be done
automatically, applying appropriate algorithms
and possibly a large body of formalized back-
ground knowledge. The latter approach raises the
question how exactly such a matching algorithm
should work, given the fact that customers may
describe their demand differently than suppliers de-
scribe their offers. While the specific approaches
for automatic matching are beyond the scope of
this work, the proposed infrastructure is designed
to allow for them to be improved gradually, by
providing information about historic supply/de-
mand combinations and about past suggestions of
such combinations in the form of open data.

Communication between proxies. When a
suitable combination of owner proxies has been
identified, it is in the interest of both parties to
establish a communication channel in order to ne-
gotiate. It may be sufficient to use informal natural
language for such negotiations. In other settings,

the preferred way might be to apply formalized
protocols (for instance, according to the ws-ba
specifications, see Robinson and Newcomer 2009).
Therefore, defining one protocol for all such situ-
ations is unrealistic. The minimal functionality,
has two aspects: first, a handshake between the
participants that, if successful, leads to the cre-
ation of a communication channel. Second, the
participants need to be able to exchange messages,
which must be extensible to support specialized
protocols, but provide for the simple case of in-
formal conversation equally well.

2.2 Consequences
Symmetric Representation. The most important
property of the model described here is that both
participants of a transaction represent their inten-
tion as a distinct object. Thus, they have the option
to be the active (initiating) as well as the pass-
ive (accepting) part during the establishment of
a connection—hence the situation becomes sym-
metrical. Moreover, this allows for a separation
of concerns: that of specifying the intention and
that of finding transaction partners. By choosing
a service for specifying their supply or demand,
users are not limited to that same service for iden-
tification of transaction partners—to the contrary,
any matching service can suggest such partners.
In the illustrating example, the requestor is not
required to initiate the transaction and she is not
limited to the suggestions of the service she used
for publishing her demand. Instead, the wish for
a book is represented by an owner proxy that can
be found by any matching service and can be
contacted by other users.

Compositions. A more subtle consequence of
the objectification of both supply and demand in
the form of owner proxies is that compositions
become possible on both sides. In the general case,
the supply side defines and offers a commodity
in the hope of meeting demand. The commodity
may be a composition of goods and services, but
it is intrinsically an atomic entity: if for some
reason only a part of that bundle of goods and
services were to be sold, that part would become
a commodity in its own right; the same is true

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 5
Special Issue Conference on Business Informatics 2014

for the composition of commodities. However,
there are costs involved in the creation of new
commodities through composition or decomposi-
tion. This effort is only made if there is sufficient
demand. All-inclusive holiday offers are a well-
known example of such complex commodities. As
objectification becomes possible on the demand
side, it is no longer futile to express demand for
combinations of commodities that do not exist
yet because each element can be obtained from
a different supplier. Moreover, such complex de-
mand specifications are valuable in themselves
as they encapsulate knowledge about how a cer-
tain goal can be reached through a combination
of goods and services, and they can be re-used
and re-mixed. Our book-selling example may not
justify such complexity, but consider planning
a wedding. It requires finding and coordinating
catering, musicians, a suitable location, prepara-
tion of invitations, and probably much more, all of
which must be available at certain, inter-dependent
dates and in inter-dependent quantities. Such a
plan could be represented as a composition of
rather simple owner proxies that are tied together
with relationships expressing these constraints.
The first formulation of such a plan might re-
quire expert knowledge and take a lot of time, but
subsequent instantiations may not require quite
as much expertise. The frequent application of
the same plan may lead to incremental improve-
ment and the development of different versions
for different scenarios.

3 Architecture

Having derived the high-level view from the main
business case, we describe the approach for its real-
ization. We begin by explaining design decisions,
then we give an overview of the architecture.

3.1 Design Decisions
In an earlier work, the following non-functional
requirements for the Web of needs were defined:
access, usability, fairness, simplicity, scalability,
timeliness, robustness, security, privacy, and/or
anonymity (Kleedorfer and Busch 2013). Together

with the results from the previous section, these
are taken into account in the design we develop in
the following.

De-centralization. As stated before, privacy
is essential, as is the neutrality of the infrastruc-
ture so as to ensure fairness. Both are much less
of a problem in de-centralized systems than in
centralized ones, as there is no single party with
access to all the data and no opportunity for one
party to control access. Moreover, the cost of
running and growing a de-centralized infrastruc-
ture is naturally shared among those operating
nodes of the network, so no or only little initial
centralization of capital is required to establish
such an infrastructure. Consequently, we envision
the Web of needs as a network of nodes, which
we call WoN nodes.

RDF-based description language. The de-
scription of intentions represented by owner prox-
ies can take a variety of forms. The formalism for
expressing these descriptions in machine-readable
form must be highly flexible, allowing for arbitrary
structured data with clear semantics. RDF (Man-
ola and Miller 2004) allows for expressing ar-
bitrary data structures and provides options for
sharing schema (ontology) and data in an unam-
biguous and standardized way. For these reasons,
RDF is chosen as the basic data model for the WoN
infrastructure. In order to allow for identification
of communication partners by independent ser-
vices, the descriptions are made publicly available
as linked data.

Public connection information. Whenever
users decide to connect with each other, their
owner proxies follow a simple protocol that leads
to a connection being established. When a con-
nection is established between two owner proxies,
each one creates an object representing that con-
nection and publishes it as linked data, which
means that it is publicly shown which proxies are
connected and what the state of their conversation
is.

Always on-line nodes. Retrieval of informa-
tion about owner proxies must be possible at all
times to allow for asynchronous communication
and matchmaking. Therefore, desktop computers

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

6 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

or mobile apps cannot host their owner proxies
themselves. Rather, for each owner proxy, they
may choose from a set of available WoN nodes
and use a standardized protocol to create an owner
proxy there. The WoN nodes are servers dedicated
to the task of hosting owner proxies and are always
on-line. Thus, users can create different owner
proxies on different nodes, achieving a minimum
of privacy by distribution.

Thin clients. In order to allow for controlling
a user proxy intermittently from different applica-
tions (e. g. a mobile application and a Web site),
all information is kept on the WoN node hosting
the proxy. As all relevant information is available
as linked data, owner applications (i. e. clients) do
not need to keep track of all events pertaining to
their proxies; whenever needed, local information
can be refreshed, provided that the application can
authenticate itself as the proxy’s legitimate owner.

Message-oriented communication. Owner
applications cannot be assumed to be on-line all
the time. However, activity pertaining to a user’s
proxies while the user’s owner application is off-
line may occur on both, the server side as on the
client side. On the client side, a user may want to
write a message to a communication partner; on
the server side, a new match might just have been
received from a matching service. Because of
this inherent asynchronicity, the message-oriented
approach is far better suited for this infrastructure
than remote procedure calls. In order to allow for
flexibility in terms of message composition and so
as to have a unified data layer holding the complete
application data, the messages are expressed in
RDF and made available as linked data.

Identity. In order to serve as an endpoint for
reliable transactions, an owner proxy must be able
to prove its identity to others. This is achieved
by integrating cryptographic technology by using
webid (Sambra et al. 2013).

Mutable and immutable data. In our distrib-
uted setting, it is important to make clear which
information about an owner proxy can be expec-
ted to change over time and which part of its
description will remain unchanged. For example,

if an owner proxy represents a taxi cab, informa-
tion about its pricing should be marked as static,
whereas information about its current location and
availability should be transient. Any interested
party needs to be able to verify if the static inform-
ation is indeed unchanged so as to avoid being
tricked. On the other hand, of course, informa-
tion marked as static does change over time, in
which case it is required that interested parties are
informed of this fact and can choose whether to
continue their relationship with the owner proxy
in question or not.

3.2 Architecture Overview
The above design decisions lead to the architecture
we describe in the following, starting with the big
picture. In the bird’s eye view, the Web of needs
consists of three types of elements, as depicted in
Fig. 3. The basic functionality—allowing CRUD
operations on owner proxies, establishing con-
nections between them, and receiving hints from
matching services—is provided by WoN nodes.
Owner applications allow users to create and con-
trol their proxies. Matching services crawl the
proxies’ data found on WoN nodes and send hint
messages to owner proxies.

Linked Data

Security

A
n
o
n
y
m
it
y

CRUD

Messaging

A
M
Q
P

X
M
P
P

W
S
-T
X

H
T
T
P

R
D
F

Id
en
ti
ty

T
ru
st

Communi-

cation
Discovery

Applications

Data Publishing

T
ra
n
sa
ct
io
n
s

Social Interaction Patterns

Basic protocol 

layer

Combination 

of facets 

Optional 

protocol 

layers

Existing 

technologies

Figure 2: Diagram illustrating the layers in the pro-
tocol and technology stack. The basic protocol layer,
second from the bottom in the illustration, is described
in detail in Sect. 4

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 7
Special Issue Conference on Business Informatics 2014

Figure 3: Communication and deployment diagram illustrating how users publish their intentions as owner proxies
(1a, 1b) on different WoN nodes, using their owner applications, and how a third-party matching service reads the
descriptions (2) and helps establishing a communication channel by sending both owner proxies a hint message (3)
through which users communicate (4). In our example use case, they agree to the transfer.

The goal of our work is to define an architecture
for an open, de-centralized worldwide marketplace.
In order to reach this goal, existing technologies
are arranged so as to provide a basis for end-
user oriented applications. Fig. 2 illustrates the
most prominent base technologies in the bottom
layer. The basic protocol layer provides secure
CRUD operations, communication between owner
proxies and discovery of suitable communication
partners. The optional layers provide strong an-
onymity, standardized links to identities, inclusion
of trust mechanisms, and different flavors of trans-
actionality. On top of this stack, arbitrary facets
can be implemented to map important social in-
teraction patterns, which in turn can be combined
in end-user facing applications.

4 Basic Protocol Layer

The overall architecture is based on the messaging
paradigm (Hohpe and Woolf 2004). Messages
are expressed according to the RDF data model.

Each message is sent to a WoN node where it is
stored and handed to a processor depending on
addressing information. The message processor
is responsible for state changes of the addressed
entity and may forward the message to another
WoN node or one or more owner applications.
The fundamental structures to represent owner
proxies and their interconnections are depicted
in Fig. 4. The main classes are OwnerProxy and
Connection. The latter represent the M:N relation-
ships between owner proxies in such a way that for
each relationship, each of the two owner proxies
maintains a dedicated connection object to repres-
ent its side of the relationship. It is important to
note that this view only shows the ’local’ view for
one owner proxy; the fact that it may be connected
to another owner proxy is solely represented by
its relationship with the Connection class. This
design allows for two owner proxies to reside in
different systems without limiting their ability to
interact.

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

8 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

Figure 4: Class diagram illustrating the basic entities
and their relationships

Each owner proxy as well as each connection
object has its own message processing facility.
When sending a message, the URI of the destina-
tion (either owner proxy or connection) is specified
as the recipient of the message. In other words, it
is possible to direct a message at an owner proxy
or at a connection. Addressable objects have a
message container (not shown in the diagram) for
messages that were sent or received by the object,
all of which are made available as linked data.
In addition to that, the WoN node has a general
message processing facility that can be addressed,
for example, to create new owner proxies (see
below).

In order to ensure the authenticity of messages,
each owner proxy contains or references a pub-
lic key used for asymmetric cryptography, and
all messages are signed with the corresponding
private key. This approach is chosen so as to
enable third parties to verify the authenticity of all
data visible to them in the system and to require
as little trust as possible in any of the entities
involved in a message exchange. Consequently,
clients must be able to manage their private keys.
Moreover, they must be capable of producing
valid RDF datasets and of creating and verifying
signatures.

4.1 WoN node descriptor
Clients obtain information about the WoN node
by retrieving its descriptor, which is available as
linked data. The descriptor contains the WoN
node’s public key and URI prefixes that are to
be used when generating new message URI or

new owner proxy URI. Moveover, it specifies how
WoN messages can be sent to and received from
the node. Any duplex transport is conceivable
for this purpose (such as jms or Websockets),
and the supported protocol description contains
the transport-specific connection details such as
broker URI, message queue names etc. In addition
to that, the descriptor lists the facets supported by
the WoN node.

4.2 General message processing
The messages exchanged in the system are repres-
ented as RDF datasets (Zimmermann 2014). In
order to enable unified data retrieval, the messages
are published as linked data. The RDF dataset is
used as it allows for the specification collections
of RDF triples called named graphs. These col-
lections can be given unique identifiers, which
makes it possible to state facts about them and add
these facts to another named graph in the dataset.
This construction is used, for example, to separate
addressing information from the message content.
Moreover, it allows for collecting triples in one
graph, creating a cryptographic signature of the
content, and representing the signature in another
graph.

When a client intends to send a message to an
entity residing on a known WoN node, it performs
the following steps:

1. Generate a new RDF dataset.
2. Generate an URI as the ’main’ resource to be

used by the WoN node, and set this URI as the
base URI of the dataset. The URI pattern to be
used for the main resource is specified in the
WoN node descriptor.

3. Generate and populate one or more RDF graphs
representing the content of the message (content
graphs).

4. Generate a cryptographic signature for each
content graph.

5. Add one signature graph for each signature
to the dataset, describing the signature accord-
ing to the specification of the Signing Frame-
work (Kasten et al. 2014). This includes a
reference to the public key used for signing.

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 9
Special Issue Conference on Business Informatics 2014

6. Generate an envelope graph containing

a) the type of the message.
b) a reference to the recipient URI.
c) a reference to the description of the WoN

node that hosts the recipient. This could be
omitted as it can be looked up by dereferen-
cing the recipient URI. However, the WoN
node URI is required at numerous steps dur-
ing the routing process, so adding it to the
envelope simplifies routing.

d) references to all content graphs along with
the signature values.

7. Generate a signature of the envelope graph.
8. Add a signature graph describing that signature

to the dataset.
9. Serialize the dataset and send it to the WoN

node via one of the transports specified in the
WoN node’s descriptor (see Sect. 4.1). Current
options for serialization are all formats that al-
low named graphs, which are json-ld (Sporny
et al. 2014), trig (Bizer and Cyganiak 2014),
or n-quads (Carothers 2014).

One may argue that Step 2 is problematic as the
client may happen to choose an URI that is already
used by the WoN node. In this case, the message
is rejected, leaving the client only the option to
generate another URI, update the message data-
set, re-calculate the signatures, and send it again.
This behaviour is clearly more complicated than
letting the server generate the message URI upon
receiving the message. The reason for choosing
this more complicated approach is that it leaves
no way of replaying the same message or using
it in a different context as the signatures tie the
content to the URI by which it is accessible via
HTTP.

Upon receiving a message, the WoN node ex-
ecutes the following steps:

1. De-serialize the dataset.
2. Check the message URI:

a) Identify the message URI created by the
client.

b) Check if it is still available and atomically
mark it as taken.

c) Return an error if the URI is already taken.

3. Verify the signatures:

a) Identify the signature graphs.
b) Load the public key referred to in the signa-

ture graph.
c) Verify the signature of each signed graph

using the public key referenced in it.
d) Abort with an error if any of these steps fail.

4. Identify the envelope graph.
5. Identify the recipient of the message
6. Dispatch the message to the message processor

responsible for the recipient’s messages.
7. If the message resulted in the creation of a new

object (e. g. a new owner proxy), the following
additional steps are taken:

a) If the new object is an owner proxy the RDF
graphs describing it are extracted from the
message along with their signature graphs.

b) A message container and other resources
(depending on the type of the object) are
generated and this ’technical’ information is
stored in a separate system information graph
in the dataset of the new object, along with a
graph containing its signature.

8. Add the complete message that was received
to the message container of the recipient; if the
message resulted in the creation of a new object
the message is stored in its message container.

9. Generate a response message:

a) Perform the required steps to create a mes-
sage with the sender of the original message
as the recipient and vice versa.

b) Add a reference to the URI of the message
that was just processed.

c) Add the signature value of that message’s
envelope.

d) Set the type to ERROR if an error occurred,
SUCCESS otherwise.

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

10 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

e) Store the new message in the message con-
tainer of the recipient.

f) Send the message to the original sender.

4.3 Creating and managing owner proxies
The general message processor of the WoN node
understands four message types: CREATE, UP-
DATE, REPLACE, and DELETE. These messages
are used to create, modify, or delete owner proxies.
The CREATE message is used to create a new
owner proxy; it is described in more detail below.
The contents of one or more named graphs inside
the RDF dataset describing the owner proxy can
be overwritten using an UPDATE message. Such
a modification is only allowed if the graphs in
question were originally intended to be updated
and are marked as transient at creation time. If
the contents of static graphs in the owner proxy’s
dataset are to be changed, the whole modified data-
set is sent in a REPLACE message. A REPLACE
message is processed like a CREATE message
with the addition that the replaced owner proxy is
deactivated and a reference to the new version is
added to its description. Likewise, a reference to
the old version is added to the description of the
new owner proxy. The DELETE message causes
the deletion of all data of all versions of the owner
proxy from the WoN node. The URI of these ob-
jects are marked as deleted by the WoN node, and
any subsequent request to these URI is responded
to with HTTP status code 410 (GONE); messages
addressed at one of these entities will cause an
error to be returned. The message exchange for
proxy creation is illustrated in Fig. 5.

When a client intends to create an owner proxy
on a known WoN node, it performs the steps listed
in Sect. 4.2 required for sending a message. At
Step 3 the following steps are taken:

1. Create one or more content graphs in the RDF
dataset and add triples describing the owner
proxy.

2. Create a graph in the RDF dataset and add
triples that mark the content graphs as transient
or static, thereby defining which ones may later
be overwritten by sending an UPDATE message.

Figure 5: Sequence diagram illustrating the commu-
nication when an owner proxy is created by a user.

In Step 6, the message type is set to CREATE and
the URI of the new owner proxy is set as recipient.
For replacing an owner proxy, the process is the
same as for CREATE except for the message type
(REPLACE). Updating is done in the same way,
the only difference being that only graphs marked
as transient are added to the message content, and
UPDATE is used as the message type. For deleting
an owner proxy and all its versions, a message of
type DELETE is sent with the owner proxy’s URI
as the recipient.

4.4 Establishing connections and
communicating

For the owners of two proxy objects to commu-
nicate, it is required that one of them sends a
CONNECT message on behalf of their proxy to
the remote one, which may answer with either
an OPEN message, thereby establishing the con-
nection, or a CLOSE message, which denies the
connection (or closes it if it is established). Send-
ing the CONNECT message causes a new con-
nection object to be created by the WoN node
and added to the owner proxy’s connection con-
tainer; receiving a CONNECT message has the
same effect on the receiving WoN node. Both
messages include to the owner proxy’s URI and
the signatures of its static graphs, so that it is made
impossible to change data marked as static after
establishing a connection. When a message sent
in response to another (e. g. an OPEN message

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 11
Special Issue Conference on Business Informatics 2014

sent in response to a CONNECT), the sender who
is replying must add a reference to the message
they received and include their signature value
in the envelope. This ensures that the authenti-
city of the conversation can be verified. As soon
as the connection is established, the communic-
ation partners can exchange messages, using the
type CONNECTION_MESSAGE. The envelope
graph of such messages contains the signatures of
the last message(s) in the conversation that have
not yet been ’cited’ this way. The payload of
such messages is RDF-encoded data contained in
signed content graphs that are added to the mes-
sage dataset as in the case of CREATE messages
(see above). The message exchange taking place
for establishing a connection is illustrated in Fig. 6.

4.5 Discovery
The functionality described so far allows for dis-
tributed operation of WoN nodes, creation of
owner proxies, and exchange of messages between
owners. At this layer of the architecture, no as-
sertions are made with respect to the semantics
of owner proxies and connections. While it is
conceivable that users create owner proxies just
for the sake of communicating with known coun-
terparts, the intended use is that owner proxies
contain semantically rich descriptions of their
owner’s intentions and that independent parties
use these descriptions to suggest communication
partners. In such a case, a message of type HINT
is composed and sent to one or both owner proxies
involved. A HINT message has a signed content
graph containing the URI of the counterpart, a
score indicating the quality of the match, and op-
tionally more triples ’explaining’ the match. Upon
receiving a HINT, the WoN node creates a new
connection object containing references to both
owner proxies involved and adds it to the receiving
owner proxy’s connection container. This step is
omitted if a connection object for those proxies
already exists. The message itself is added to
the connection’s message container. The message
exchange taking place for discovery is illustrated
in Fig. 7.

4.6 Facets
When creating an owner proxy, the user decides
which behaviours they want it to support. This is
done by adding facets to the proxy’s description.
A facet is a communication protocol on top of
the protocol described earlier, used for making
connections and exchanging messages. The facet
defines the semantics of this message exchange
and is tied to dedicated processing logic on the
WoN node. Consequently, only facets that are
supported by the WoN node can be chosen by
users. The guiding idea here is to define a rather
simple interface (the facet), the contract of which
can be formulated as linked data. Implementations
of that contract should be easy to create and add as
modules for existing WoN node implementations
and owner applications. In the following, we
describe some possible facets:

Owner Facet. This is the most basic fa-
cet, offering just the standard functionality and
adding no semantics. All types of messages re-
ceived from the connected owner proxy are for-
warded to the owner application and there is no
requirement as to the content of messages of type
CONNECTION_MESSAGE.

Group Facet. An owner proxy with this facet
acts as the message dispatcher of a group. A
message received on a connection of that facet
is forwarded to all other connected owner prox-
ies except the original sender. This allows for
implementing a group chat, for example.

Link Facet. The link facet allows for establish-
ing a link between the two owner proxies directly
in their RDF content. The owner proxy sending
the CONNECT message adds two content graphs
to the message: one contains the RDF data that
should be added to the remote proxy’s content
graphs, the other is the one that it will add to
its own content graphs as soon as the remote
proxy accepts the connection. Upon the closing
of the connection, the respective content graphs
are removed from the owner proxies’ linked data
representations. This behaviour enables the cre-
ation of arbitrarily complex structures of owner
proxies that are expressed with typed links and,

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

12 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

Figure 6: Sequence diagram illustrating the communication taking place when the owner initiates a connection with
another owner and the counterpart accepts the connection.

Figure 7: Sequence diagram illustrating the communication taking place when a matching service sends a HINT
message to two owner proxies. The connection objects created on the WoN nodes in response to the HINT messages
are not shown here.

optionally, additional metadata. As explained in
Sect. 2.2, such relationships are necessary for de-
fining compositions of supply or demand. Fig. 8
shows how such links can tie owner proxies to-

gether to achieve the functionality required for the
running example.

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 13
Special Issue Conference on Business Informatics 2014

4.7 Novelty and Benefits of the Approach
The reason for not choosing the mature stack of
XML based service oriented architecture techno-
logies (Papazoglou 2008) as the basis of the WoN
infrastructure is the need for verifiability of the
state of communication by third parties and the
goal of universal data integration through linked
data. During the development of the protocols, it
was realized that third parties would sometimes
need to be able to verify who said what in a given
conversation, for example, to resolve a dispute or
to allow verification of the state of a distributed
transaction by all participants. This means that for
such cases, messages cannot be realized merely
as volatile containers for actual payload but have
to be stored and made available upon request by
authorized parties. RDF and linked data had been
chosen as the data model for representing con-
tent, and messages having been recognized as part
of the user-generated content (and not part of a
communication subsystem), were chosen to be rep-
resented in RDF as well. In order to achieve that,
existing approaches for creating cryptographic
signatures of RDF and embedding them in linked
data were integrated, leading to an infrastructure
that exposes its complete data model as crypto-
graphically secured linked data. As there is no
other way to publish data in this infrastructure than
to send a message, this essentially constitutes a
cryptographically assured audit trail for any piece
of data in WoN without requiring centralized iden-
tity management. Moreover, linked data provides
unified data access, so there is no need for dedi-
cated API for querying different parts of the data
model. Moreover, the complete state of a WoN
node, including the state of all user transactions,
can be retrieved at any time by crawling the WoN
node’s data, which has potential uses for backups
and auditing.

5 Prototypical Implementation

The presented architecture was iteratively de-
veloped using an open source design prototype
to ensure its technical feasibility. The prototype
consists of the following components:

WoN node. This service’s main functionalities
are i) providing the functionality to create owner
proxies in reaction to messages sent by owner ap-
plications, ii) creating connection objects between
owner proxies in reaction to HINT or CONNECT
messages received from owner applications or
matching services, and iii) serving the linked data
pertaining to owner proxies, connections and mes-
sages via HTTPS. The service is implemented in
java based on the springframework. Mes-
saging is realized through the jms 1.1 (Deakin
2003) implementation activemq; the core data
structures (owner proxies, connections, messages)
are stored in a relational database. Freely defin-
able RDF graphs that are received as parts of
messages are stored as BLOBs in the database.
Linked data is constructed on the fly in response
to requests.

Owner application. The owner-facing user
interface is realized as an angularjs Web ap-
plication that communicates with its server side
through a REST API and a Websocket. The server
side of the owner application connects to the WoN
nodes required for communication through the
WoN nodes’ activemq endpoints. The owner
application provides the functionality to create
and manipulate owner proxies, to view hints and
establish chat connections with other users via
their proxies. Moreover, users can create accounts
on the owner application under which all their
proxies will be accessible to them. The crypto-
graphic keys for the proxies are generated and
stored in the owner application.

Matching service. Two approaches are im-
plemented for learning about owner proxies: a
‘pull’ approach through crawling and a ‘push’ ap-
proach through publish/subscribe. Whenever a
matching service encounters a new WoN node,
it crawls the linked data available from it, and it
subscribes to a messaging topic to be informed
when a new owner proxy is created. When a
new proxy is encountered through one of these
methods, its data is stored in an RDF database and
an internal event is generated that is consumed by
implementations of matching algorithms, which
in turn locate the best-matching owner proxies and

http://dx.doi.org/10.18417/emisa.11.3
https://github.com/researchstudio-sat/webofneeds
http://activemq.apache.org/
https://angularjs.org/


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

14 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

Figure 8: Diagram illustrating how pick-up and delivery of the book is organised via WoN. Buyer and seller have
created proxies for pick-up and delivery, respectively. They have established a connection between these proxies
using the link facet (see Sect. 4.6), and hence their descriptions point to each other, allowing third parties to discover
both ends of the relationship while both buyer and seller stay in control of their respective end. A delivery service
has created proxies offering pick-up and delivery, also linking to each other. A matching service has sent hints to
the parties involved, who all accepted to be connected. Now the delivery service has a communication channel to
seller and buyer and is able to negotiate pick-up and delivery dates individually. Note that in this depiction, owner
applications have been left out for simplicity.

pass this information to a multiplexing component
that generates HINT messages and sends them to
the WoN node hosting the proxy. This service is
realized based on the akka actor framework and
uses a sparql-1.1 (Aranda et al. 2013) compliant
RDF database for storing crawled data. Matching
is implemented based on the siren information
retrieval engine based on the solr search server.

Bot framework. For conducting tests and as
a means for connecting existing applications to
the Web of Needs, a framework for program-
ming autonomous WoN agents, called bots was
developed. A bot can create and controls owner
proxies on WoN nodes. It has an event loop that
is regularly executed and in addition to that, it
receives events whenever a message is received

for one of the owner proxies controlled by it. A
bot provides a unified integration point for legacy
applications where incoming events can be trans-
formed to internal service calls. Bots have been
used to simulate user behaviour in integration tests
and load tests.

These components are available as docker
containers to allow for efficient deployment. For
conducting tests, three 3.6 GHz Core2 Duo ma-
chines with 4 GB RAM running docker 1.7.0
on ubuntu linux 14.04 LTS were used. Two
machines ran two WoN nodes, one owner applica-
tion and a postgresql database each, the third
ran all required components of the matching sys-
tem. Functional tests involving proxy creation on
different WoN nodes, matching, establishment of

http://dx.doi.org/10.18417/emisa.11.3
http://docker.com/
http://www.postgresql.org/


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 15
Special Issue Conference on Business Informatics 2014

connections, and a simulated conversation were
successful. Initial stability tests involving the
generation of proxies with descriptions randomly
chosen from a private email corpus and generating
hints for each proxy showed that the system exhib-
its initial response times of 0.15 seconds, growing
to about 0.5 seconds when proxies are generated
at a rate of one proxy every two seconds over a
duration of 12 hours, which we deem sufficient
as a baseline for conducting user tests. A more
detailed performance evaluation is being prepared.

6 Related Work

Having motivated and explained our approach,
we now give an overview of related and relevant
systems or concepts and compare them to the Web
of needs.

E-Marketplaces. To the best of our know-
ledge, there is no prior work on global, open, web
based market infrastructures to learn from or build
upon. The well-established and closely related
concept of e-marketplaces, though, has been sci-
entifically examined. The approach pursued in the
Web of needs, we argue, differs from traditional e-
marketplaces insofar as it does not create separate
vertical marketplaces for different niches; rather, it
creates one unified marketplace on the Web. This
helps to lower transaction cost below the current
levels in the long run and provides a marketplace
for niches that aren’t profitable enough for a dedic-
ated Web site to emerge. We do not have estimates
for the size of these ’long-tail markets’ where sup-
ply and demand must be assumed to exist but lack
mediation; if the long tail phenomenon translates
from other domains to this one, however, it should
be considerable.

Traditionally, e-marketplaces have been used
in business-to-business (B2B) or business-to-con-
sumer (B2C) context. In addition to B2C and
B2B marketplaces, examples of successful con-
sumer-to-consumer (C2C) e-marketplaces have
emerged in recent years. These include clas-
sified ads portals and auctioning websites like
craigslist or ebay as well as specialized plat-
forms such as airbnb or couchsurfing. In

C2C e-marketplaces, individuals are responsible
for both offerings and purchases. All of these
types of marketplaces are realizable on the basis
of the Web of needs infrastructure, which allows
transactions that span domains that are currently
organised in vertical marketplaces (such as holi-
day apartment rentals, taxi services, or restaurant
bookings), thereby clearly offering additional use-
ful functionality that cannot be provided by any
such platform alone, namely the unified access
to all the verticals, and hence the possibility to
combine transactions, for example, to buy opera
tickets, reserve a table in a restaurant, and order a
taxi without the burden of switching marketplace.

Very closely related to the Web of needs is the
effort of publishing semantically rich offer and
demand descriptions on existing e-marketplaces
using vocabularies like goodrelations (Hepp
2008) or schema.org. The main difference is
that these vocabularies are tools for describing
entities, but they do not define service interfaces;
entities suitable for interaction can be found auto-
matically, but there is no standardized way to
establish a connection with them.

Intention Economy. The term intention eco-
nomy denotes an environment in which customers
use software systems to manage their relationships
with vendors (Searls 2012), so-called vendor rela-
tionship management (VRM) tools. Among other
functionalities, such a tool supports expressing
demand in the form of a personal request for pro-
posal (pRFP); the act of publishing such a pRFP
is referred to as intentcasting. The notion of the
pRFP is quite similar to our concept of a owner
proxy representing a demand, and the technical
artifact most similar to the owner proxy is the pico
(persistent computing object) in the kynetix
rules engine (Windley 2011). A difference
is the VRM community’s focus on commercial
activities, in contrast to which the Web of needs
is intended for more general use. It remains to
be seen how the Web of needs infrastructure fits
in with the tools that are being developed in the
VRM community.

Discussion Groups. Countless marketplaces
are organised on the Internet in discussion groups.

http://dx.doi.org/10.18417/emisa.11.3
http://www.craigslist.org/
https://www.airbnb.com
https://www.couch\discretionary {-}{}{}surfing.com/
https://www.schema.org/


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

16 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

The technical bases range from Web forum soft-
ware over mailing lists to groups in social net-
working Web sites. The main advantages of these
groups are simplicity, openness, and the like-
mindedness of participants. They are normally
self-regulated with respect to a stated or implicit
code of conduct and allow postings consisting of
text and images (as opposed to structured data).
They work best below a certain frequency of mes-
sages, because users have to read all messages
so as to decide whether they want to trade. If
postings are added with too high a frequency, it
becomes hard to follow the updates, which re-
duces the usefulness of the group for individual
users, although in principle the higher number
of available options for trading should increase
usefulness. At some point, such groups tend to
split up in multiple smaller ones. Consequently,
such approaches lead to a large number of groups,
causing users the problem of identification of the
right group for a given case. Moreover, there
often are a number of redundant groups for the
same type of commodity, location etc., in differ-
ent channels such as facebook, mailing lists, or
dedicated Web sites, making the decision for one
of them even more difficult. The Web of needs
infrastructure alleviates all of these problems and
may prove more useful to users in the long run.

Social Networks. The basic functionalities
social networking platforms offer are creating and
maintaining relationships between user identit-
ies and using them for communication purposes.
With respect to user-to-account cardinality as de-
scribed by Dalton (2013), such platforms mostly
try to achieve a one-to-one cardinality, i. e. one
user has one account. Of the big players, only
twitter allows one-to-many and many-to-one
cardinalities. Users with profiles on more than
one social networking site implicitly have a one-
to-many relationship with these profiles, where
the platforms set the context for these accounts,
resulting in differences in the profile characterist-
ics. For example, linkedin focuses on business
relationships whereas facebook is more about
family and friendship; users shape their profiles

accordingly. In contrast, based on the facet gener-
alization introduced in Sect. 3.1, social networking
functionalities can be built on the Web of needs
allowing any user-to-profile cardinality. In such
applications, an owner proxy can represent a user;
if credentials are shared, or access is delegated
otherwise, it can represent many users, allowing
one-to-one and many-to-one cardinalities. Users
can create separate social networks as needed, for
different contexts such as family, friends, political
contexts etc. In each such network, the same
person has a different identity. These identities
can be aggregated by the user as desired.

In the context of social networking, a highly
relevant related work is the project on distributed
semantic social networking (DSSN) that takes a
more lightweight approach for data access and
communication than was chosen for the Web of
needs (Tramp et al. 2014). While for our architec-
ture, social networking is one of many possible
applications, DSSN is specifically designed for
it but can be combined with other semantic Web
based systems to offer richer functionality.

7 Conclusion

In this paper, we have focused on motivating
why the Web of needs as a generic cooperation
framework can serve as a basis of a worldwide
on-line marketplace. We explain design decisions,
and give a detailed explanation of the basic layer
of our architecture.

Our main stance is that a worldwide market-
place must be as de-centralized and open as the
worldwide Web. In general, transactions should
be recorded publicly. The central element of such
a marketplace is the owner proxy, an entity an-
onymously controlled by a user. It contains a
description of the task it has been created for, in
our running example is the purchase or sale of a
book, and encapsulates the least amount of data
and functionality that is required to perform the
desired task. Owner proxies are made aware of
each other by independent matching services that
compare their descriptions and inform them about
possible transaction counterparts.

http://dx.doi.org/10.18417/emisa.11.3


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3
A Linked Data Based Messaging Architecture for the Web of Needs 17
Special Issue Conference on Business Informatics 2014

An important goal of the work at hand is to
provide a communication architecture for any con-
tent domain and any application scenario in such
a way that these domains and scenarios can blend
into each other. It should not be necessary to
deploy and configure a server (i. e. WoN node)
specifically for one content domain or application
scenario. The architecture presented here exhib-
its these features. Users are free to specify any
information for the content of the owner proxies
they create. Moreover, they can combine the be-
haviours of any facet their WoN nodes support
to build complex communication structures. Pro-
grammers should be enabled to create new facet
contracts and implementations that can be plugged
into any WoN node, thereby making the new be-
haviour available to all users within a short time
after its inception. Thus, new ways of interaction
between users can emerge without the need for a
centralized platform.

We used a traditional commercial business case
for illustrating the proposed framework. The
design of the framework was influenced by em-
pirical analysis of sharing communities which is
beyond the scope of this paper. This fact, however,
explains the current emphasis of natural language
messaging and an understanding of transactions
that is close to that of informal conversations. Fur-
ther work is required for enabling the framework
for traditional business transactions. We intend to
evaluate the framework in the domain of sharing
communities before adapting it to a commercial
domain.

References

Aranda C. B., Corby O., Das S., Feigenbaum
L., Gearon P., Glimm B., Harris S., Hawke S.,
Herman I., Humfrey N., Michaelis N., Ogbuji C.,
Perry M., Passant A., Polleres A., Prud’hommeaux
E., Seaborne A., Williams G. T. (2013) SPARQL
1.1 Overview. http://www.w3.org/TR/sparql11-
overview/. Last Access: 2016.06.06

Bizer C., Cyganiak R. (2014) RDF 1.1 TriG. http:
//www.w3.org/TR/trig/. Last Access: 2016.06.06

Brin S., Page L. (1998) The anatomy of a large-
scale hypertextual Web search engine. In: Com-
puter networks and ISDN systems 30(1), pp. 107–
117

Carothers G. (2014) RDF 1.1 N-Quads. http://www.
w3.org/TR/n-quads/. Last Access: 2016.06.06

Dalton B. (2013) Pseudonymity in social machines.
In: Companion Publication of the IW3C2 WWW
2013 Conference. Rio de Janeiro, Brazil, pp. 897–
900

Deakin N. (2003) JSR-000914 JavaTM Message
Service (JMS) API. https:// jcp.org/aboutJava/
communityprocess/final/jsr914/index.html. Last
Access: 2016.06.06

Hepp M. (2008) GoodRelations: An Ontology
for Describing Products and Services Offers on
the Web. In: Proceedings of the 16th Interna-
tional Conference on Knowledge Engineering and
Knowledge Management (EKAW2008). LNCS
Vol. 5268. Acitrezza, Italy, pp. 332–347

Hohpe G., Woolf B. (2004) Enterprise integration
patterns: Designing, building, and deploying mes-
saging solutions. Addison-Wesley, Boston, MA

Kasten A., Scherp A., Schauß P. (2014) A Frame-
work for Iterative Signing of Graph Data on the
Web. In: The Semantic Web: Trends and Chal-
lenges - 11th International Conference, ESWC
2014, Anissaras, Crete, Greece, May 25-29, 2014.
Proceedings. LNCS Vol. 8465, pp. 146–160

Kleedorfer F., Busch C. M. (2013) Beyond Data:
Building a Web of Needs. In: Proceedings of
the WWW2013 Workshop on Linked Data on
the Web (LDOW 2013). Rio de Janeiro, Brazil
http://ceur-ws.org/Vol-996/

Kleedorfer F., Busch C. M., Pichler C., Huemer
C. (2014) The Case for the Web of Needs. In:
Business Informatics (CBI), 2014 IEEE 16th Con-
ference on Vol. 1. IEEE. Geneva, Switzerland,
pp. 94–101

Manola F., Miller E. (2004) RDF Primer. http:
/ / www. w3 . org / TR / rdf - primer/. Last Access:
2016/06/06

http://dx.doi.org/10.18417/emisa.11.3
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/trig/
http://www.w3.org/TR/trig/
http://www.w3.org/TR/n-quads/
http://www.w3.org/TR/n-quads/
https://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
http://ceur-ws.org/Vol-996/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/


Enterprise Modelling and Information Systems Architectures
Vol. 11, No. 3 (2016). DOI:10.18417/emisa.11.3

18 Florian Kleedorfer, Christina M. Busch, Christian Pichler, Christian Huemer
Special Issue Conference on Business Informatics 2014

McBryan O. A. (1994) GENVL and WWWW:
Tools for taming the web. In: Proceedings of the
First International World Wide Web Conference
Vol. 341. CERN. Geneva, Switzerland

Papazoglou M. (2008) Web services: principles
and technology Pearson (ed.). Addison-Wesley,
Harlow, England

Robinson I., Newcomer E. (2009) OASIS Web
Services Business Activity Version 1.2. http://
docs.oasis-open.org/ws-tx/wsba/2006/06. Last
Access: 2016.06.06

Sambra A., Story H., Berners-Lee T. (2013)
WebID 1.0 - Web Identity and Discovery. https://
dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-
respec.html. Last Access: 2016.06.06

Searls D. (2012) The intention economy: when
customers take charge. Harvard Business Review
Press, Boston, MA

Sporny M., Longley D., Kellog G., Lanthaler M.,
Lindström N. (2014) JSON-LD 1.0. http://www.
w3.org/TR/json-ld/. Last Access: 2016.06.06

Tramp S., Frischmuth P., Ermilov T., Shekarpour
S., Auer S. (2014) An architecture of a distributed
semantic social network. In: Semantic Web 5(1),
pp. 77–95

Windley P. J. (2011) The Live Web – Building
Event-Based Connections in the Cloud. Course
Technology, Boston, MA

Zimmermann A. (2014) RDF 1.1: On Semantics
of RDF Datasets. http://www.w3.org/TR/rdf11-
datasets/. Last Access: 2016.06.06

This work is licensed under
a Creative Commons
‘Attribution-ShareAlike 4.0
International’ license.

http://dx.doi.org/10.18417/emisa.11.3
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/rdf11-datasets/
http://www.w3.org/TR/rdf11-datasets/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

