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Abstract The equations of acoustics are based on the general equations of fluid
dynamics: conservation of mass, momentum, energy and closed by the appropriate
constitutive equation defining the thermodynamic state. The use of a perturbation
ansatz, which decomposes the physical quantities density, pressure and velocity into
mean, incompressible fluctuating and compressible fluctuating ones, allows to derive
linearized acoustic conservation equations and its state equation. Thereby, we derive
acoustic wave equations both for homogeneous and inhomogeneous media, and the
equations model both vibrational- and flow-induced sound generation and its prop-
agation.

1 Overview

Acoustics has developed into an interdisciplinary field encompassing the disciplines
of physics, engineering, speech, audiology, music, architecture, psychology, neuro-
science, and others (see, e.g., Rossing 2007). Therewith, the arising multi-field prob-
lems range from classical airborne sound over underwater acoustics (e.g., ocean
acoustics) to ultrasound used in medical application. Here, we concentrate on the
basic equations of acoustics describing acoustic phenomena. Thereby, we start with
the mass, momentum and energy conservation equations of fluid dynamics as well
as the constitutive equations. Furthermore, we introduce the Helmholtz decompo-
sition to split the overall fluid velocity in a pure solenoidal (incompressible part)
and irrotational (compressible) part. Since, wave propagation needs a compressible
medium, we associate this part to acoustics. Furthermore, we apply a perturbation
method to derive the acoustic wave equation, and discuss the main physical quanti-
ties of acoustics, plane and spherical wave solutions. Finally, we focus towards the
two main mechanism of sound generation: aeroacoustics (flow induced sound) and
vibroacoustics (sound generation due to mechanical vibrations).
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2 Basic Equations of Fluid Dynamics

We consider the motion of fluids in the continuum approximation, so that a body
B is composed of particles R as displayed in Fig. 1. Thereby, a particle R already
represents a macroscopic element. On the one hand a particle has to be small enough
to describe the deformation accurately and on the other hand large enough to satisfy
the assumptions of continuum theory. This means that the physical quantities density
ρ, pressure p, velocity v, and so on are functions of space and time, and are written
as density ρ(xi , t), pressure p(xi , t), velocity v(xi , t), etc. So, the total change of a
scalar quantity like the density ρ is

dρ =
(

∂ρ

∂t

)
dt +

(
∂ρ

∂x1

)
dx1 +

(
∂ρ

∂x2

)
dx2 +

(
∂ρ

∂x3

)
dx3 . (1)

Therefore, the total derivative (also called substantial derivative) computes by

dρ

dt
= ∂ρ

∂t
+ ∂ρ

∂x1

(
dx1
dt

)
+ ∂ρ

∂x2

(
dx2
dt

)
+ ∂ρ

∂x3

(
dx3
dt

)

= ∂ρ

∂t
+

3∑
i=1

∂ρ

∂xi

(
dxi
dt

)
= ∂ρ

∂t
+ ∂ρ

∂xi

(
dxi
dt

)
︸ ︷︷ ︸

vi

. (2)

Note that in the last line of (2) we have used the summation rule of Einstein.1

Furthermore, in literature the substantial derivative of a physical quantity is mainly
denoted by the capital letter D and for an Eulerian frame of reference writes as

D

Dt
= ∂

∂t
+ v · ∇ . (3)

Fluid particle

Fluid body B

R

Fig. 1 A body B composed of particles R

1In the following, we will use both vector and index notation; for the main operations see Appendix.
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2.1 Spatial Reference Systems

A spatial reference system defines how the motion of a continuum is described i.e.,
from which perspective an observer views the matter. In a Lagrangian frame of
reference, the observer monitors the trajectory in space of each material point and
measures its physical quantities. This can be understood by considering a measuring
probe which moves together with the material, like a boat on a river. The advantage is
that free ormoving boundaries can be captured easily as they require no special effort.
Therefore, the approach is suitable in the case of structural mechanics. However,
its limitation is obtained dealing with large deformation, as in the case of fluid
dynamics. In this case, a better choice is the Eulerian frame of reference, in which
the observer monitors a single point in space when measuring physical quantities
– the measuring probe stays at a fixed position in space. However, contrary to the
Lagrangian approach, difficulties arise with deformations on the domain boundary,
e.g., free boundaries and moving interfaces.

To derive integral formulations of balance equations, the rate of change of integrals
of scalar and vector functions has to be described, which is known as the Reynolds’
transport theorem. The volume integral can change for two reasons: (1) scalar or
vector functions change (2) the volume changes. The following discussion is directed
to scalar valued functions. In an Eulerian context, time derivation must also take the
time dependent domain �(t) into account by adding a surface flux term, which can
be formulated as a volume term using the integral theorem of Gauß. This results in

D

Dt

∫
�(t)

f dx =
∫

�(t)

∂

∂t
f dx +

∫
�(t)

f v · n ds

=
∫

�(t)

(
∂

∂t
f + ∇ · ( f v)

)
dx .

(4)

2.2 Conservation Equations

The basic equations for the flow field are the conservation of mass, momentum and
energy. Together with the constitutive equations and equations of state, a full set of
partial differential equations (PDEs) is derived.
Conservation of mass The mass m of a body is the volume integral of its density ρ,

m =
∫

�(t)

ρ(x, t) dx . (5)

Mass conservation states that the mass of a body is conserved over time, assuming
there is no source or drain. Therefore, applying Reynolds’ transport theorem (4),
results in
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Dm

Dt
=

∫
�

∂ρ

∂t
dx +

∫
�

ρv · n ds

=
∫
�

(
∂ρ

∂t
+ ∇ · (ρv)

)
dx = 0.

(6)

The integral in (6) can be dismissed, as it holds for arbitrary� and in the special case
of an incompressible fluid (ρ = const. ∀(x, t) ∈ � × R), which may be assumed
for low Mach numbers (see Sect. 2.4), the time and space derivative of the density
vanishes. This leads to the following form of mass conservation equations

∂ρ

∂t
+ ∇ · (ρv) = 0 (compressible fluid),

∇ · v = 0 (incompressible fluid).
(7)

Conservation of momentum The equation of momentum is implied by Newtons
second law and states that momentum Im is the product of mass m and velocity v

Im = mv . (8)

Derivation in time gives the rate of change of momentum, which is equal to the force
F and reveals the relation to Newtons second law in an Eulerian reference system

F = D Im
Dt

= D

Dt
(mv) = ∂

∂t
(mv) + ∇ · (mv ⊗ v), (9)

where v ⊗ v is a tensor defined by the dyadic product ⊗ (see Appendix). The last
equality in (9) is derived from Reynolds transport theorem (4) and mass conserva-
tion (7).

The forces F acting on fluids can be split up into forces acting on the surface
of the body F� , forces due to momentum of the molecules D Im/Dt and external
forces Fex (e.g. gravity, electromagnetic forces)

F = F� + D

Dt
Im + Fex . (10)

Thereby, the surface force computes by

3∑
i=1

F� j = −
3∑

i=1

∂ p

∂x j
�n j = −�∇ p. (11)

and the total change of momentum Im by

D

Dt
Im = �∇ · [τ ] (12)
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Fig. 2 Forces acting on a
fluid element

with the viscous stress tensor [τ ] (see Fig. 2).
Now, we exploit the fact that m = ρ� and insert the pressure force (11), the

viscous force (12) and any external forces per unit volume f acting on the fluid into
(9). Thereby, we arrive at the momentum equation

∂ρv

∂t
+ ∇ · (ρ v ⊗ v) = −∇ p + ∇ · [τ ] + f (13)

∂ρv

∂t
+ ∇ · (ρ v ⊗ v + p [I] − [τ ]) = f (14)

∂ρvi

∂t
+ ∂

∂x j

(
ρv jvi + pδi j − τi j

) = fi , (15)

with [I] the identity tensor. Furthermore, we introduce the momentum flux tensor
[π] defined by

πi j = ρviv j + pδi j − τi j , (16)

and the fluid stress tensor [σ f ] by

[σ f ] = −p [I] + [τ ] . (17)

To arrive at an alternative formulation for the momentum equation, also called the
non-conservative form, we exploit the following identities

∇ · (ρv ⊗ v) = ρ v · ∇v + v ∇ · (ρv) (18)
∂ρv

∂t
= ρ

∂v

∂t
+ v

∂ρ

∂t
(19)

and rewrite (13) by

ρ
∂v

∂t
+ v

∂ρ

∂t
+ v∇ · (ρv) + ρv · ∇v = −∇ p + ∇ · [τ ] + f . (20)

Now, we use the mass conservation and arrive at
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ρ
∂v

∂t
+ ρ v · ∇v = −∇ p + ∇ · [τ ] + f (21)

ρ
∂vi

∂t
+ ρv j

∂vi

∂x j
= − ∂ p

∂xi
+ ∂τi j

∂x j
+ fi .

Conservation of energy The total balance of energy considers the inner, the kinetic
and potential energies of a fluid. Since we do not consider gravity, the total change
of energy over time for a fluid element with mass m is given by

D

Dt

(
m

(
1

2
v2 + e

))
= m

D

Dt

(
1

2
v2 + e

)
+

(
1

2
v2 + e

)
Dm

Dt
(22)

with e the inner energy and v2 = v · v. Due to mass conservation, the second term
is zero and we obtain

D

Dt

(
m

(
1

2
v2 + e

))
= ρ�

D

Dt

(
1

2
v2 + e

)
. (23)

This change of energy can be caused by Durst (2006)

• heat production per unit of volume: qh �

• heat conduction energy due to heat flux qT: (−∂qTi/∂xi ) �

• energy due to surface pressure force: (−∂/∂xi (pvi ))�

• energy due to surface shear force:
(−∂/∂xi (τi jv j )

)
�

• mechanical energy due to the force density f i given by: ( fivi ) �

Thereby, we arrive at the conservation of energy given by

ρ
D

Dt

(
1

2
v2 + e

)
= −∂qTi

∂xi
− ∂ pvi

∂xi
− ∂τi jv j

∂xi
+ fivi + qh (24)

or in vector notation by

ρ
D

Dt

(
1

2
v2 + e

)
= −∇ · qT − ∇ · (pv) − ∇ · ([τ ] · v) + f · v + qh . (25)

By further exploring thermodynamic relations (see Sect. 2.3) and the mechanical
energy (obtained by inner product of momentum conservation with v), we may write
(25) by the specific entropy s as follows Howe (1998)

ρT
Ds

Dt
= τi j

∂vi

∂x j
− ∂qTi

∂xi
+ qh . (26)

When heat transfer is neglected, the flow ist adiabatic. It is isentropic, when it is
adiabatic and reversible, which means that the viscous dissipation can be neglected,
which leads to (no heat production)
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ρT
Ds

Dt
= 0 . (27)

Finally, when the fluid is homogeneous and the entropy uniform ( ds = 0), we call
the flow homentropic.

2.3 Constitutive Equations

The conservation of mass, momentum and energy involve much more unknowns
than equations. To close the system, additional information is provided by empirical
information in form of constitutive equations. A good approximation is obtained by
assuming the fluid to be in thermodynamic equilibrium. This implies for a homoge-
neous fluid that two intrinsic state variables fully determine the state of the fluid.

When we apply specific heat production qh to a fluid element, then the specific
inner energy e increases and at the same time the volume changes by p dρ−1. This
thermodynamic relation is expressed by

de = dqh − p dρ−1 , (28)

where the second term describes the work done on the fluid element by the pressure.
If the change occurs sufficiently slowly, the fluid element is always in thermodynamic
equilibrium, and we can express the heat input by the specific entropy s

dqh = T ds . (29)

Therefore, wemay rewrite (28) and arrive at the fundamental law of thermodynamics

de = T ds − p dρ−1

= T ds + p

ρ2
dρ . (30)

Towards acoustics, it is convenient to choose the mass density ρ and the specific
entropy s as intrinsic state variables. Hence, the specific inner energy e is completely
defined by a relation denoted as the thermal equation of state

e = e(ρ, s) . (31)

Therefore, variations of e are given by

de =
(

∂e

∂ρ

)
s

dρ +
(

∂e

∂s

)
ρ

ds . (32)
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A comparison with the fundamental law of thermodynamics (30) provides the ther-
modynamic equations for the temperature T and pressure p

T =
(

∂e

∂s

)
ρ

; p = ρ2
(

∂e

∂ρ

)
s

. (33)

Since p is a function of ρ and s, we may write

dp =
(

∂ p

∂ρ

)
s

dρ +
(

∂ p

∂s

)
ρ

ds . (34)

As sound is defined as isentropic (ds = 0) pressure-density perturbations, the isen-
tropic speed of sound is defined by

c =
√(

∂ p

∂ρ

)
s

. (35)

Since in many applications the fluid considered is air at ambient pressure and tem-
perature, we may use the ideal gas law

p = ρRT (36)

with the specific gas constant R, which computes for an ideal gas as

R = cp − c� . (37)

In (37) cp, c� denote the specific heat at constant pressure and constant volume,
respectively. Furthermore, the inner energy e depends for an ideal gas just on the
temperature T via

de = c� dT . (38)

Substituting this relations in (30), assuming an isentropic state (ds = 0) and using
(36) results in

c� dT = p

ρ2
dρ → dT

T
= R

c�

dρ

ρ
. (39)

Using (36), the total change dp normalized to p computes as

dp

p
= dρ

ρ
+ dT

T
. (40)

This relation and applying (39), (37) leads to

dp

p
= dρ

ρ
+ R

c�

dρ

ρ
= cp

c�

dρ

ρ
= κ

dρ

ρ
(41)
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with κ the specific heat ratio (also known as adiabatic exponent). A comparison of
(41) with (35) yields

c = √
κp/ρ = √

κRT . (42)

We see that the speed of sound c of an ideal gas depends only on the temperature.
For air κ has a value of 1.402 so that we obtain a speed of sound c at T = 15 ◦C of
341m/s. For most practical applications, we can set the speed of sound to 340m/s
within a temperature range of 5–25 ◦C. Combining (41) and (42), we obtain the
general pressure-density relation for an isotropic state

dp

dt
= c2

dρ

dt
. (43)

Furthermore, since we use an Eulerian frame of reference, we may rewrite (43) by

Dp

Dt
= c2

Dρ

Dt
. (44)

For liquids, such as water, the pressure-density relation is written by the adiabatic
bulk modulus Ks (or its reciprocal 1/Ks, known as the adiabatic compressibility)
and (43) reads as

Dp

Dt
= Ks

ρ

Dρ

Dt
. (45)

2.4 Characterization of Flows by Dimensionless Numbers

Two flows around geometric similar models are physically similar if all character-
istic numbers coincide (Schlichting and Gersten 2006). Especially for measurement
setups, these similarity considerations are important as it allows measuring of down
sized geometries. Furthermore, the characteristic numbers are used to classify a flow
situation. The Reynolds number is defined by

Re = vl

ν
(46)

with the characteristic flow velocity v, flow length l and kinematic viscosity ν. It
provides the ratio between stationary inertia forces and viscous forces. Thereby,
it allows to subdivide flows into laminar and turbulent ones. The Mach number
allows for an approximative subdivision of a flow in compressible (Ma > 0.3) and
incompressible (Ma ≤ 0.3), and is defined by

Ma = v

c
(47)
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with c the speed of sound. In unsteady problems, periodic oscillating flow structures
may occur, e.g. the Kármán vortex street in the wake of a cylinder. The dimensionless
frequency of such an oscillation is denoted as the Strouhal number, and is defined by

St = f
l

v
(48)

with f the shedding frequency.

2.5 Towards Acoustics

According to theHelmholtz decomposition, the velocity vector v (as any vector field)
can be split into an irrotational part and a solenoidal part

v = ∇φ + ∇ × � , (49)

where φ is a scalar potential and � a vector potential. Thereby, we call a flow being
purely described by a scalar potential via

v = ∇φ

a potential flow. Using (49), mass conservation (see (7)) may be written as

∂ρ

∂t
+ ∇ · (ρv) = ∂ρ

∂t
+ v · ∇ρ + ρ∇ · v

= Dρ

Dt
+ ρ∇ · ∇φ + ρ∇ · ∇ × �︸ ︷︷ ︸

=0

1

ρ

Dρ

Dt
= −∇ · ∇φ . (50)

This result obviously leads us to the interpretation that the flow related to the acoustic
field is an irrotational flow and that the acoustic field is the unsteady component of
the gradient of the velocity potential φ. On the other hand, taking the curl of (49)
results in the vorticity of the flow

ω = ∇ × v = ∇ × ∇ × � + ∇ × ∇φ︸ ︷︷ ︸
=0

= ∇ × ∇ × � . (51)

We see that this quantity is fully defined by the vector potential and characterizes the
solenoidal part of the flow field.
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3 Basic Equations of Acoustics

3.1 Acoustic Wave Equation

We assume an isentropic case, where the total variation of the entropy is zero and
the pressure is only a function of the density (see (44)). Furthermore, we restrict
ourself to a perfect (non-viscous) fluid (setting the viscous fluid tensor [τ ] to zero)
and neglect external force density f . Thereby, we arrive, according to Sect. 2, to the
following set of equations

∂ρ

∂t
+ ∇ · (ρv) = 0 (52)

ρ
∂v

∂t
+ ρ v · ∇v + ∇ p = 0 (53)

Dp

Dt
= c2

Dρ

Dt
. (54)

In a first step, we consider the static case with mean pressure p0, mean density ρ0
and velocity v0 being zero. Therefore, (52) is fulfilled identically, while (53) results
in

∇ p0 = 0 . (55)

Furthermore, (54) is automatically satisfied by some function c0 (independent of t)
defined by means of some virtual non-static variations of the solution. In a next step,
we consider a non-static solution of very small order according to a perturbation of
the mean quantities

p = p0 + pa ; ρ = ρ0 + ρa ; v = va (56)

with the following relations

pa 
 p0 ; ρa 
 ρ0 . (57)

We name pa the acoustic pressure, ρa the acoustic density and va the acoustic particle
velocity. Using the perturbation ansatz (56) and substituting it into (52)–(54), results
in

∂(ρ0 + ρa)

∂t
+ ∇ ·

(
(ρ0 + ρa)va

)
= 0 (58)

(ρ0 + ρa)
∂va

∂t
+

(
(ρ0 + ρa)va

)
· ∇va + ∇(

p0 + pa) = 0 (59)(
∂

∂t
+ va · ∇

)
(p0 + pa) − c20

(
∂

∂t
+ va · ∇

)
(ρ0 + ρa) = 0 . (60)
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In a next step, we are allowed to cancel second order terms (e.g., such as ρava),
consider that p0 does not vary over space (see (55)) and arrive at

∂ρa

∂t
+ ∇(ρ0va) = qma (61)

ρ0
∂va

∂t
+ ∇ pa = qmo (62)

∂ pa
∂t

= c20

(
∂ρa

∂t
+ va · ∇ρ0

)
. (63)

Here, we have included possible modeled source terms in (61) (linearized conser-
vation of mass) and (62) (linearized conservation of momentum). Please note that
just in the case of constant mean density, i.e. ∇ρ0 = 0, we are allowed to express the
acoustic pressure-density relation by

pa = c20ρa , (64)

Now, we use (61), substitute it into (63) and obtain the final two equations for linear
acoustics

1

ρ0c20

∂ pa
∂t

+ ∇ · va = 1

ρ0
qma (65)

∂va

∂t
+ 1

ρ0
∇ pa = 1

ρ0
qmo . (66)

Applying ∂/∂t to (65),∇· to (66) and subtracting the resulting equations provides the
linear wave equation for an inhomogeneous medium (density depending on space)

1

ρ0c20

∂2 pa
∂t2

− ∇ · 1

ρ0
∇ pa = 1

ρ0

∂qma

∂t
− ∇ · qmo

ρ0
. (67)

Furthermore, since the term ρ0c20 is constant in space and time, we may rewrite (67)
by

∂2 pa
∂t2

− ∇ · c20∇ pa = c20
∂qma

∂t
− ∇ · (

c20qmo

)
. (68)

This form of wave equation is mainly used when considering the influence of tem-
perature gradient (speed of sound c0 depends on temperature, see (42)) on wave
propagation. For liquids, (67) may be written as

1

Ks

∂2 pa
∂t2

− ∇ · 1

ρ0
∇ pa = 1

ρ0

∂qma

∂t
− ∇ · qmo

ρ0
. (69)

By applying the chain rule
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∇ · 1

ρ0
∇ pa = 1

ρ0
∇ · ∇ pa − 1

ρ20
∇ρ0 · ∇ pa ,

we arrive at

1

Ks

∂2 pa
∂t2

− 1

ρ0
∇ · ∇ pa + 1

ρ20
∇ρ0 · ∇ pa = 1

ρ0

∂qma

∂t
− ∇ · qmo

ρ0
. (70)

This form of the wave equation explicitly shows the influence of a space dependent
density ρ0.

A wave equation for the particle velocity va may be derived by rewriting (65),
(66) as

∂ pa
∂t

+ ρ0c
2
0∇ · va = c20 qma (71)

ρ0
∂va

∂t
+ ∇ pa = qmo . (72)

Now, we apply ∇ to (71), ∂/∂t to (72) and by subtract the resulting equations we
arrive at

ρ0
∂2va

∂t2
− ∇ρ0c

2
0∇ · va = ∂qmo

∂t
− ∇c20qma . (73)

It is a vectorial wave equation coupling the three components of the particle velocity.
Since the particle velocity va is irrotational, we may express it by the scalar acoustic
potential ψa via

va = −∇ψa . (74)

Substituting this relation into (73), assuming zero source terms and constant density
condition (∇ρ0 = 0) results in

∇
(

∂2ψa

∂t2
− c20∇ · ∇ψa

)
= 0 . (75)

This equation is clearly satisfied, when ψa fulfills

1

c20

∂2ψa

∂t2
− ∇ · ∇ψa = 0 . (76)

Finally, we provide the most used wave equation in terms of the acoustic pressure
pa, which however does not model an inhomogeneous fluid. It is obtained from (67)
assuming a space constant speed of sound c0 and mean density ρ0

1

c20

∂2 pa
∂t2

− ∇ · ∇ pa = ∂qma

∂t
− ∇ · qmo . (77)
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By performing a Fourier transform, we arrive at Helmholtz equation

∇ · ∇ p̂a + k2 p̂a = − jωq̂ma + ∇ · q̂mo (78)

with the Fourier-transformed acoustic pressure p̂a and source terms q̂ma, q̂mo as well
as angular frequency ω, wave number k and imaginary unit j (see (86)).

3.2 Simple Solutions

In order to get some physical insight in the propagation of acoustic sound, we will
consider two special cases: plane and spherical waves. Let’s start with the simpler
case, the propagation of a plane wave as displayed in Fig. 3. Thus, we can express
the acoustic pressure by pa = pa(x, t) and the particle velocity by va = va(x, t)ex .
Using these relations togetherwith the linear pressure-density law (assuming constant
mean density, see (64)), we arrive at the following 1D linear wave equation

∂2 pa
∂x2

− 1

c20

∂2 pa
∂t2

= 0 , (79)

which can be rewritten in factorized version as
(

∂

∂x
− 1

c0

∂

∂t

) (
∂

∂x
+ 1

c0

∂

∂t

)
pa = 0 . (80)

This version of the linearized, 1D wave equation motivates us to introduce the
following two functions (solution according to d’Alembert)

ξ = t − x/c0 ; η = t + x/c0

with properties

∂

∂t
= ∂

∂ξ
+ ∂

∂η
; ∂

∂x
= 1

c0

(
∂

∂η
− ∂

∂ξ

)
.

Therewith, we obtain for the factorized operator

Fig. 3 Propagation of a
plane wave

pa = pa(x, t)
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∂

∂x
− 1

c0

∂

∂t
= − 2

c0

∂

∂ξ

∂

∂x
+ 1

c0

∂

∂t
= 2

c0

∂

∂η

and the linear, 1D wave equation transfers to

− 4

c20

∂

∂ξ

∂

∂η
pa = 0 .

The general solution computes as a superposition of arbitrary functions of ξ and η

pa = f (ξ) + f (η) = f (t − x/c0) + g(t + x/c0) . (81)

This solution describeswavesmovingwith the speed of sound c0 in+x and−x direc-
tion, respectively. In a next step, we use the linearized conservation of momentum
according to (62), and rewrite it for the 1D case (assuming zero source term)

ρ0
∂va

∂t
+ ∂ pa

∂x
= 0 . (82)

Now, we just consider a forward propagating wave, i.e. g(t) = 0, substitute (81) into
(82) and obtain

va = − 1

ρ0

∫
∂ pa
∂x

dt = 1

ρ0c0

∫
∂ f (t − x/c0)

∂t
dt

= 1

ρ0c0
f (t − x/c0) = pa

ρ0c0
. (83)

Therewith, the value of the acoustic pressure over acoustic particle velocity for a
plane wave is constant. To allow for a general orientation of the coordinate system,
a free field plane wave may be expressed by

pa = f (n · x − c0t) ; va = n
ρ0c0

f (n · x − c0t) , (84)

where the direction of propagation is given by the unit vector n. A time harmonic
plane wave of angular frequency ω = 2π f is usually written as

pa , va ∼ e j (ωt−k·x) (85)

with the wave number (also called wave vector) k, which computes by

k = kn = ω

c0
n . (86)
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The second case of investigation will be a spherical wave, where we assume a
point source located at the origin. In the first step, we rewrite the linearized wave
equation in spherical coordinates and consider that the pressure pa will just depend
on the radius r . Therewith, the Laplace-operator reads as

∇ · ∇ pa(r, t) = ∂2 pa
∂r2

+ 2

r

∂ pa
∂r

= 1

r

∂2rpa
∂r2

and we obtain
1

r

∂2rpa
∂r2

− 1

c20

∂2 pa
∂t2︸ ︷︷ ︸

1
r

∂2rpa
∂t2

= 0 . (87)

A multiplication of (87) with r results in the same wave equation as obtained for the
plane case (see (79)), just instead of pa we have rpa. Therefore, the solution of (87)
reads as

pa(r, t) = 1

r
( f (t − r/c0) + g(t + r/c0)) , (88)

which means that the pressure amplitude will decrease according to the distance r
from the source.

3.3 Acoustic Quantities and Order of Magnitudes

Let us consider a loudspeaker generating sound at a fixed frequency f and a number
of microphones recording the sound as displayed in Fig. 4. In a first step, we measure
the sound with one microphone fixed at x0, and we will obtain a periodic signal in
time with the same frequency f and period time T = 1/ f . In a second step, we use
all microphones and record the pressure at a fixed time t0. Drawing the obtained
values along the individual positions of the microphone, e.g. along the coordinate x ,
we again obtain a periodic signal, which is now periodic in space. This periodicity
is characterized by the wavelength λ and is uniquely defined by the frequency f and
the speed of sound c0 via the relation

λ = c0
f

. (89)

Assuming a frequency of 1 kHz, the wavelength in air takes on the value of 0.343m
(c0 = 343m/s).

Strictly speaking, each acoustic wave has to be considered as transient, having a
beginning and an end. However, for some long duration sound, we speak of continu-
ous wave (cw) propagation and we define for the acoustic pressure pa a mean square
pressure (pa)2av as well as a root mean squared (rms) pressure pa,rms
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x

y

z

x
t

T
λ

pa(x0, t)
pa(x, t0)

Fig. 4 Sound generated by a loudspeaker and measured by microphones

pa,rms =

√√√√√ 1

T

t0+T∫
t0

(p − p0)
2 dt =

√√√√√ 1

T

t0+T∫
t0

p2a dt . (90)

In (90) T denotes the period time of the signal or if we cannot strictly speak of a
periodic signal, an interminable long time interval. Now, it has to be mentioned that
the threshold of hearing of an average human is at about 20μPa and the threshold of
pain at about 20 Pa, which differs 106 orders of magnitude. Thus, logarithmic scales
are mainly used for acoustic quantities. The most common one is the decibel (dB),
which expresses the quantity as a ratio relative to a reference value. Thereby, the
sound pressure level Lpa (SPL) is defined by

Lpa = 20 log10
pa, rms

pa,ref
pa, ref = 20μPa . (91)

The reference pressure pa,ref corresponds to the sound at 1 kHz that an average person
can just hear.

In addition, the acoustic intensity Ia is defined by the product of the acoustic
pressure and particle velocity

Ia = pava . (92)

The intensity level L Ia is then defined by

L Ia = 10 log10
I ava
Ia,ref

Ia,ref = 10−12 W/m2 , (93)

with Ia,ref the reference sound intensity corresponding to pa,ref. Again, we use an
averaged value for defining the intensity level, which computes by
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I ava = ∣∣I ava ∣∣ =
∣∣∣∣∣∣
1

T

t0+T∫
t0

va pa dt .

∣∣∣∣∣∣ (94)

Finally, we compute the acoustic power by integrating the acoustic intensity (unit
W/m2) over a closed surface

Pa =
∮
�

Ia · ds =
∮
�

Ia · n ds . (95)

Then, the sound-power level LPa computes as

LPa = 10 log10
Pav
a

Pa,ref
Pa,ref = 10−12 W , (96)

with Pa,ref the reference sound power corresponding to pa,ref. In Tables1 and 2 some
typical sound pressure and sound power levels are listed.

A useful quantity in acoustics is impedance, which is a measure of the amount by
which the motion induced by a pressure applied to a surface is impeded. However,
a quantity that varies with time and depends on initial values is not of interest. Thus
the impedance is defined via the Fourier transform by

Ẑa(x,ω) = p̂a(x,ω)

v̂a(x,ω) · n(x)
(97)

at a point x on the surface � with unit normal vector n. It is in general a complex
number and its real part is called resistance, its imaginary part reactance and its
inverse the admittance denoted by Ŷa(x,ω). For a plane wave (see Sect. 3.2) the
acoustic impedance Ẑa is constant

Ẑa(x,ω) = ρ0c0 . (98)

Table 1 Typical sound pressure levels SPL

Threshold of
hearing

Voice at 5m Car at 20m Pneumatic
hammer at 2m

Jet at 3m

0dB 60dB 80dB 100dB 140dB

Table 2 Typical sound power levels and in parentheses the absolute acoustic power Pa
Voice Fan Loudspeaker Jet airliner

30dB (25µW) 110dB (0.05W) 128dB (60W) 170dB (50kW)
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Often the acoustic impedance Ẑa is normalized to this value and then named specific
impedance (is a dimensionless value).

For a quiescent fluid the acoustic power across a surface � computes for time
harmonic fields by

Pav
a =

∫
�

⎛
⎝ 1

T

T∫
0

Re
(
p̂ae

jωt
)
Re

(
v̂a · ne jωt

)
dt

⎞
⎠ ds

= 1

4

∫
�

(
p̂av̂

∗
a + p̂∗

a v̂a
) · n ds

= 1

2

∫
�

Re
(
p̂∗
a v̂a

) · n ds (99)

with ∗ denoting the conjugate complex. Now, we use the impedance Ẑ of the surface
and arrive at

Pav
a = 1

2

∫
�

Re
(
Ẑa

)
|v̂a · n|2 ds . (100)

Hence, the real part of the impedance (equal to the resistance) is related to the energy

flow. If Re
(
Ẑa

)
> 0 the surface is passive and absorbs energy, and if Re

(
Ẑa

)
< 0

the surface is active and produces energy.
In a next step, we analyze what happens, when an acoustic wave propagates from

one fluid medium to another one. For simplicity, we restrict to a plane wave, which
is described by (see (81))

pa(t) = f/t − x/c0) + g(t + x/c0) (101)

In the frequency domain, we may write

p̂a = f̂ e− jωx/c0 + ĝe jωx/c0 = p+e jωt− jkx + p−e jωt+ jkx . (102)

Thereby, p+ is the amplitude of the wave incident at x = 0 from x < 0 and p−
the amplitude of the reflected wave at x = 0 by an impedance Ẑa. Using the linear
conservation of momentum, we obtain the particle velocity

v̂a(x) = 1

ρ0c0

(
p+e− jkx − p−e jkx

)
. (103)

Defining the reflection coefficient R by

R = p−

p+ , (104)
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we arrive with Ẑa = p̂(0)/v̂(0) at

R = Ẑa − ρ0c0

Ẑa + ρ0c0
. (105)

In two dimensions, we consider a plane wave with direction (cos θ, sin θ), where
θ is the angle with the y-axis and the wave approaches from y < 0 and hits an
impedance Ẑa at y = 0. The overall pressure may be expressed by

p̂a(x, y) = e− jkx sin θ
(
p+e−ky cos θ + p−e jky cos θ

)
. (106)

Furthermore, the y-component of the particle velocity computes to

v̂a(x, y) = cos θ

ρ0c0
e− jkx sin θ

(
p+e−ky cos θ − p−e jky cos θ

)
. (107)

Thereby, the impedance is

Ẑa = p̂(x, 0)

v̂(x, 0)
= ρ0c0

cos θ

p+ + p−

p+ − p− = ρ0c0
cos θ

1 + R

1 − R
(108)

so that the reflection coefficient computes as

R = Ẑa cos θ − ρ0c0

Ẑa cos θ + ρ0c0
. (109)

4 Boundary Conditions

For realistic simulations, a good approximation of the actual physical boundary
conditions is essential. In the two simple cases - acoustically hard and soft boundary
- the solution is easy:

• Acoustically hard boundary: Here, the reflection coefficient R gets 1 (total reflec-
tion), which means that the surface impedance has to approach infinity. According
to (97), the term n · va has to be zero. Using the linearized momentum equation
(62) with zero source term, we arrive at the Neumann boundary condition

n · ∇ pa = ∂ pa
∂n

= 0 . (110)

• Acoustically soft boundary: In this case, the acoustic impedance gets zero, which
simply results in a homogeneous Dirichlet boundary condition
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pa = 0 . (111)

Since real surfaces (boundaries) are never totally hard or totally soft, it seems to be
a good idea to use a Robin boundary condition as a model

∂ pa
∂n

+ α pa = 0 . (112)

In the time harmonic case, we can explore (62) with zero source term and apply a
dot product with the normal vector n

jρ0ωn · v̂a + ∂ p̂a
∂n

= 0 (113)

By using (97) we obtain
∂ p̂a
∂n

+ jρ0ω
p̂a

Ẑa

= 0 (114)

and identify the parameter α as

α = jρ0ω

Ẑa

= jρ0ω Ŷa . (115)

As known from measurements, Ẑa is a function of frequency and therefore a inverse
Fourier transform to arrive at a time domain formulation results in a convolution
integral. Furthermore, Ẑa depends on the incident angle of the acoustic wave, which
makes acoustic computations of rooms quite complicated. Therefore, often the com-
putational domain is not limited by an impedance boundary condition, but the sur-
rounded elastic body is taken into account (see Sect. 6).

One of the great challenges for wave propagation is the efficient and stable com-
putation of waves in unbounded domains. The crucial point for these computations is
that the numerical scheme avoids any reflections at the boundaries, even in case the
diameter of the computational domain is just a fraction of a wavelength. Since the
eighties of the last century, several numerical techniques have been developed to deal
with this topic: infinite elements, Dirichlet-to-Neumann operators based on truncated
Fourier expansions, absorbing boundary conditions, etc. The advantages and draw-
backs of these different approaches have been widely discussed in literature, see e.g.
(Ihlenburg 1998; Givoli 2008). Especially higher order absorbing boundary condi-
tions (ABCs) have gained increasing interest, since these methods do not involve
high order derivatives (Hagstrom and Warburton 2009; Bécache et al. 2010).

An alternative approach to approximate free radiation is to surround the compu-
tational domain by an additional damping layer and guarantee within the formula-
tion, that no reflections occur at its interface with the computational domain. This
so-called perfectly matched layer (PML) technique was first introduced by Berenger
(1994) using a splitting of the physical variables and considering a system of first
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order partial differential equations (PDEs) for electromagnetics. In the framework of
time-harmonic wave propagation, the PML can be interpreted as a complex-valued
coordinate stretching (Teixeira and Chew 2000).

5 Aeroacoustics

The sound generated by a flow in an unbounded fluid is usually called aerodynamic
sound. Most unsteady flows in technical applications are of high Reynolds number,
and the acoustic radiation is a very small by-product of the motion. Thereby, the
turbulence is usually produced by fluid motion over a solid body and/or by flow
instabilities.

Since the beginning of aeroacoustics several numerical methodologies have been
proposed. Each of these trying to overcome the challenges that the specific problems
pose for an effective and accurate computation of the radiated sound. The main
difficulties include (Hardin and Hussaini 1992a, b):

• Energy disparity and acoustic inefficiency: There is a large disparity between the
overall energy of the flow and the part which is converted to acoustic energy (see
Fig. 5). In general, the total radiated power of a turbulent jet scales with O(v8/c5),
and for a dipole source arising from pressure fluctuations on surfaces inside the
flow scales with O(v6/c3), where v denotes the characteristic flow velocity and c
the speed of sound.

• Length scale disparity: A large disparity also occurs between the size of an eddy in
the turbulent flow and the wavelength of the generated acoustic sound (see Fig. 5).
Low Mach number eddies have a characteristic length scale l and velocity v. This
eddy will then radiate acoustic waves of the same characteristic frequency, but
with a much larger length scale, expressed by the acoustic wavelength λ

λ ∝ c
l

v
= l

M
.

• Simulationof unboundeddomains:As amain issue for the simulationof unbounded
domains using volume discretization methods remains the boundary treatment
which needs to be applied to avoid the reflection of the outgoing waves on the
truncating boundary of the computational domain (see Sect. 4).

Currently, available aeroacoustic methodologies overcome only some of these
broad range of numerical and physical issues, which restricts their applicability, mak-
ing them, in many cases, problem dependent methodologies. In a Direct Numerical
Simulation (DNS), all relevant scales of turbulence are resolved and no turbulence
modeling is employed. The application of DNS is becoming more feasible with the
permanent advancement in computational resources. However, due to the large dis-
parities of length and time scales between fluid and acoustic fields, DNS remains
restricted to low Reynolds number flows. Therefore, although some promising work
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Frequency

Infrasound Audible sound Ultrasound Hypersound

Turbulence

Pressure scale

Audible sound Flow

Length scale (air)

Acoustic
far field

f(Hz) 100 103 106 109 1012

p(Pa) 10-5 10-3 10-1 101 103 105

Turbulence
Audible sound

L(m) 10-4 10-2 100 102 104 106

Fig. 5 Flow and acoustic scales
Fig. 6 Turbulent nozzle flow sound

turbulent nozzle flow

has been done in this direction (Freund et al. 2000), the simulation of practical prob-
lems involving highReynolds numbers requires very high resolutions and capabilities
of supercomputers (Dumbser andMunz 2005; Frank andMunz 2016). Hence, hybrid
methodologies have been established as the most practical methods for aeroacoustic
computations, due to the separate treatment of the fluid and the acoustic computa-
tions. In these schemes, the computational domain is split into a nonlinear source
region and a wave propagation region, and different numerical schemes are used
for the flow and acoustic computations. Herewith, first a turbulence model is used
to compute the unsteady flow in the source region. Secondly, from the fluid field,
acoustic sources are evaluated which are then used as input for the computation of
the acoustic propagation. In these coupled simulations it is generally assumed that
no significant physical effects occur from the acoustic to the fluid field.

5.1 Lighthill’s Acoustic Analogy

Lighthill was initially interested in solving the problem, illustrated in Fig. 6, of the
sound produced by a turbulent nozzle and arrived at the inhomogeneous wave equa-
tion (Lighthill 1952; 1954). For the derivation, we start at Reynolds form of the
momentum equation, as given by (15) neglecting any force density f
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∂ρv

∂t
+ ∇ · [π] = 0 , (116)

with the momentum flux tensor πi j = ρviv j + (p − p0)δi j − τi j , where the constant
pressure p0 is inserted for convenience. In an ideal, linear acoustic medium, the
momentum flux tensor contains only the pressure

πi j → π0
i j = (p − p0)δi j = c20(ρ − ρ0)δi j (117)

and Reynolds momentum equation reduces to

∂ρvi

∂t
+ ∂

∂xi

(
c20(ρ − ρ0)

) = 0 . (118)

Rewriting the conservation of mass in the form

∂

∂t
(ρ − ρ0) + ∂ρvi

∂xi
= 0 (119)

allows us to eliminate the momentum density ρvi in (118). Therefore, we perform a
time derivative on (119), a spatial derivative on (118) and subtract the two resulting
equations. These operations leads to the equation of linear acoustics satisfied by the
perturbation density

(
1

c20

∂2

∂t2
− ∇ · ∇

) (
c20(ρ − ρ0)

) = 0 . (120)

Because flow is neglected, the unique solution of this equation satisfying the radiation
condition is ρ − ρ0 = 0.

Now, it can be asserted that the sound generated by the turbulence in the real fluid
is exactly equivalent to that produced in the ideal, stationary acoustic medium forced
by the stress distribution

Li j = πi j − π0
i j = ρviv j + (

(p − p0) − c20(ρ − ρ0)
)
δi j − τi j , (121)

where [L] is called the Lighthill stress tensor.
Indeed, we can rewrite (116) as the momentum equation for an ideal, stationary

acousticmedium ofmean density ρ0 and speed of sound c0 subjected to the externally
applied stress Li j

∂ρvi

∂t
+ ∂π0

i j

∂x j
= − ∂

∂x j

(
πi j − π0

i j

)
, (122)

or equivalent
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∂ρvi

∂t
+ ∂

∂x j

(
c20(ρ − ρ0)

) = −∂Li j

∂x j
. (123)

By eliminating the momentum density ρvi using (119) we arrive at Lighthill’s equa-
tion (

1

c20

∂2

∂t2
− ∇ · ∇

) (
c20(ρ − ρ0)

) = ∂2Li j

∂xi∂x j
. (124)

It has to be noted that (ρ − ρ0) = ρ′ is a fluctuating density not being equal to the
acoustic density ρa, but a superposition of flow and acoustic parts within flow regions.

Neglecting viscous dissipation and assuming an isentropic case, we may approx-
imate the Lighthill tensor by

Li j ≈ ρ0viv j for Ma2 
 1 . (125)

Please note that with this assumptions, the divergence of (15) provides the following
equivalence (assuming an incompressible flow ∇ · v = 0 and f = 0)

∇ · ∇ pic = −ρ0
∂2viv j

∂xi∂x j
(126)

with the incompressible flow pressure pic. Therefore, we may rewrite Lighthill’s
inhomogeneous wave equation (124) for the fluctuating pressure p′ as

1

c20

∂2 p′

∂t2
− ∇ · ∇ p′ = ∇ · ∇ pic . (127)

This equation is a quite good model for the computation of sound generated by low
Mach and high Reynolds number flows.

5.2 Perturbation Equations

The acoustic/viscous splitting technique for the prediction of flow induced sound
was first introduced in Hardin and Pope (1994), and afterwards many groups pre-
sented alternative and improved formulations for linear and non linear wave prop-
agation (Shen and Sørensen 1999; Ewert and Schröder 2003; Seo and Moon 2005;
Munz et al. 2007). These formulations are all based on the idea, that the flow field
quantities are split into compressible and incompressible parts.

For our derivation, we introduce a generic splitting of physical quantities to the
conservation equations. For this purpose, we choose a combination of the two split-
ting approaches introduced above and define the following
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p = p̄ + pic + pc = p̄ + pic + pa (128)

v = v̄ + vic + vc = v̄ + vic + va (129)

ρ = ρ0 + ρ1 + ρa . (130)

Thereby the field variables are split into mean and fluctuating parts just like in the
linearized Euler equations (LEE). In addition the fluctuating field variables are split
into acoustic and non-acoustic components. Finally, the density correction ρ1 is build
in as introduced above. This choice is motivated by the following assumptions

• The acoustic field is a fluctuating field.
• The acoustic field is irrotational, i.e. ∇ × va = 0.
• The acoustic field requires compressible media and an incompressible pressure
fluctuation is not equivalent to an acoustic pressure fluctuation.

By doing so, we arrive for an incompressible flow at the following perturbation
equations2

∂ pa
∂t

+ v · ∇ pa + ρ0c
2
0∇ · va = −∂ pic

∂t
− v · ∇ pic (131)

ρ0
∂va

∂t
+ ρ0∇

(
v · va

) + ∇ pa = 0 (132)

with spatial constant mean density ρ0 and speed of sound c0. This system of par-
tial differential equations is equivalent to the previously published ones (Ewert and
Schröder 2003). The source term is the substantial derivative of the incompressible
flow pressure pic. Using the acoustic scalar potential ψa and assuming a spacial
constant mean density and speed of sound, we may rewrite (132) by

∇
(

ρ0
∂ψa

∂t
+ ρ0 v · ∇ψa − pa

)
= 0 , (133)

and arrive at

pa = ρ0
∂ψa

∂t
+ ρ0 v · ∇ψa . (134)

Now, we substitute (134) into (131) and arrive at

1

c20

D2ψa

Dt2
− �ψa = − 1

ρ0c20

Dpic
Dt

; D

Dt
= ∂

∂t
+ v · ∇ . (135)

This convective wave equation fully describes acoustic sources generated by incom-
pressible flow structures and itswave propagation throughflowingmedia. In addition,
instead of the original unknowns pa and va we have just the scalar unknown ψa. In

2For a detailed derivation of perturbation equations both for compressible as well as incompressible
flows, we refer to Hüppe (2013).
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accordance to the acoustic perturbation equations (APE), we name this resulting
partial differential equation for the acoustic scalar potential as Perturbed Convective
Wave Equation (PCWE).

Finally, it is of great interest that by neglecting the mean flow v̄ in (131) and
(132), we arrive at the linearized conservation equations of acoustics with ∂ pic/∂t
as a source term

1

ρ0c20

∂ pa
∂t

+ ∇ · va = −1

ρ0c20

∂ pic
∂t

(136)

∂va

∂t
+ 1

ρ0
∇ pa = 0 . (137)

As in the standard acoustic case, we apply ∂/∂t to (136) and∇· to (137) and subtract
the two resulting equations to arrive at

1

c20

∂2 pa
∂t2

− ∇ · ∇ pa = −1

c20

∂2 pic
∂t2

. (138)

We call this partial differential equation the aeroacoustic wave equation (AWE).
Please note, that this equation can also be obtained by starting at Lighthill’s inhomo-
geneous wave equation for incompressible flow, where we can substitute the second
spatial derivative of Lighthill’s tensor by the Laplacian of the incompressible flow
pressure (see (126)) and arrive at (127). Using the decomposition of the fluctuating
pressure p′

p′ = pic + pa .

results again into (138).

5.3 Comparison of Different Aeroacoustic Analogies

As a demonstrative example to compare the different acoustic analogies, we choose a
cylinder in a cross flow, as displayed in Fig. 7. Thereby, the computational grid is just
up to the height of the cylinder and together with the boundary conditions (bottom
and top as well as span-wise direction symmetry boundary condition), we obtain a
pseudo two-dimensional flow field. The diameter of the cylinder D is 1m resulting
with the inflow velocity of 1m/s and chosen viscosity in a Reynolds number of 250
andMach number of 0.2. From the flow simulations, we obtain a shedding frequency
of 0.2Hz (Strouhal number of 0.2). The acoustic mesh is chosen different from the
flowmesh, and resolves the wavelength of two times the shedding frequency with 10
finite elements of second order. At the outer boundary of the acoustic domain we add
a perfectly matched layer to efficiently absorb the outgoing waves. For the acoustic
field computation we use the following formulations:
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Fig. 7 Computational setup for flow computation

• Lighthill’s acoustic analogywithLighthill’s tensor [L] according to (125) as source
term

• Lighthill’s acoustic analogywith the Laplacian of the incompressible flowpressure
pic as source term (see (126))

• the aeroacoustic wave equation (AWE) according to (138)
• PerturbedConvectiveWaveEquation (PCWE) according to (135); for comparison,
we set the mean flow velocity v̄ to zero.

Figure8 displays the acoustic field for the different formulations. One can clearly see
that the acoustic field of PCWE (for comparison with the other formulations we have
neglected the convective terms) meets very well the expected dipole structure and
is free from dynamic flow disturbances. Furthermore, the acoustic field of AWE is
quite similar and exhibits almost no dynamic flow disturbances. Both computations
with Lighthill’s analogy show flow disturbances, whereby the formulation with the
Laplacian of the incompressible flow pressure as source term shows qualitative better
result as the classical formulation based on the incompressible flow velocities.

6 Vibroacoustics

Inmany technical applications, vibrating structures are immersed in an acoustic fluid.
Therefore, acoustic waves are generated, which are acting as a surface pressure load
on the vibrating structure. In general, we distinguish between the following two
situations concerning mechanical-acoustic couplings:

• StrongCoupling: In this case, themechanical and acoustic field equations including
their couplings have to be solved simultaneously (two way coupling). A typical
example is a piezoelectric ultrasound array immersed in water (see Fig. 9).
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Lighthill: ∇ · ∇ · [L] Lighthill: ∇ · ∇pic

AWE: 1/c20 ∂2pic/∂t2 PCWE: ∂pic/∂t

Fig. 8 Computed acoustic field with the different formulations

• Weak Coupling: If the pressure forces of the fluid on the solid are negligible,
a sequential computation can be performed (one way coupling). For example,
the acoustic sound field of an electric transformer as displayed in Fig. 10 can be
obtained in this way. Thus, in a first simulation the mechanical surface vibrations
are calculated, which are then used as the input for an acoustic field computation.

6.1 Interface Conditions

At a solid–fluid interface, the continuity requires that the normal component of the
mechanical surface velocity of the solid must coincide with the normal component
of the acoustic velocity of the inviscid fluid (see Fig. 11). Thus, the following relation
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Fig. 9 Acoustic sound field of a piezoelectric ultrasound array antenna

Fig. 10 Noise radiation
from the tank of an electric
power transformer

Fig. 11 Solid–fluid interface

Fluid

Solid

n

vm

between the velocity vm of the solid expressed by the mechanical displacement u
and the acoustic particle velocity va expressed by the acoustic scalar potential ψa

arises
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vm = ∂u
∂t

va = −∇ψa

n · (vm − va) = 0

n · ∂u
∂t

= −n · ∇ψa = −∂ψa

∂n
. (139)

In addition, one has to consider the fact that the ambient fluid causes on the surface
a mechanical stress σn

σn = −npa = −nρ0
∂ψa

∂t
, (140)

which acts like a pressure load on the solid.
When modeling special wave phenomena, we often arrive at a partial differential

equation for the acoustic pressure. Therewith, we will also derive the coupling con-
ditions between the mechanical displacement and acoustic pressure at a solid–fluid
interface. For the first coupling condition, the continuity of the velocities, we have
to establish the relation between the acoustic particle velocity va and the acoustic
pressure pa. According to the linearized momentum equation (see (62) and assuming
zero source term), we can express the normal component of va by

n · ∂va

∂t
= − 1

ρ0

∂ pa
∂n

. (141)

Therewith, since n · vm = n · va holds, we get the relation to the mechanical dis-
placement by

n · ∂2u
∂t2

= − 1

ρ0

∂ pa
∂n

. (142)

The second coupling condition as defined in (140) is already established for an
acoustic pressure formulation.

7 Appendix

Here, we provide often used operations both in vector and index notation.

• Scalar product of two vectors

a · b = c → aibi = c (143)

• Vector product of two vectors

a × b = c → εi jka j bk = ci (144)

• Gradient of a scalar

∇φ = u → ∂φ

∂xi
= ui (145)
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• Gradient of a vector

∇a =

⎛
⎜⎜⎝

∂a1
∂x1

∂a2
∂x1

∂a3
∂x1

∂a1
∂x2

∂a2
∂x2

∂a3
∂x2

∂a1
∂x3

∂a2
∂x3

∂a3
∂x3

⎞
⎟⎟⎠ → ∂ai

∂x j
(146)

• Gradient of a second order tensor

∇ [A] = ∂[A]
∂x

=
3∑

i, j,k=1

∂Ai j

∂xk
ei ⊗ e j ⊗ ek (147)

• Divergence of a vector

∇ · a = b → ∂ai
∂xi

= b (148)

• Divergence of a second order tensor

∇ · [A] =
3∑

i, j=1

∂Ai j

∂x j
ei (149)

• Curl of a vector

∇ × a = b → εi jk
∂ak
∂x j

= bi (150)

with

εi jk =
⎧⎨
⎩
1 if i jk = 123, 231 or 312
0 if any two indices are the same
−1 if i jk = 132, 213 or 321

• Double product or double contraction of two second order tensors

[A] : [B] = c → Ai j Bi j = c (151)

• Dyadic or tensor product

a ⊗ b = [C] → aib j = Ci j (152)

[A] ⊗ b = [C] → Ai jbk = Ci jk (153)

[A] ⊗ [B] = [D] → Ai j Bkl = Di jkl (154)

• Trace of a tensor

tr([A]) = b → Aii = b . (155)
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