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Abstract: Cognitive architectures, which originate from the field of Artificial Intelligence, implement models for 
problem-solving and decision-making. These architectures have a wide room for implementation in industrial 
applications. The goal is to adapt a cognitive architecture to the demands of an application in the area of 
building automation. It is analyzed, why cognitive architectures are difficult to apply in industrial domain. 
The result of the analysis is a cognitive process, which is applied to an application in the building automation 
domain. The use of the architectures is demonstrated within a Java-based based middleware. There, the 
cognitive architecture is applied for the automatic generation and improvement of control strategies in 
building automation, which have the goal to minimize energy consumption with minimal reduction of the 
comfort. 

1 INTRODUCTION 

Cognitive architectures provide a general framework 
for developing computational decision-making 
applications and are often, but not necessarily, based 
on theories of the human mind (Langley et al., 2009). 
Autonomous decision-making ability is demanded in 
the context of the growing complexity of industrial 
applications. Therefore, they have a potential to 
contribute to such applications. Unfortunately, up to 
now, the few examples of industrial applications. 
(Kotseruba et al., 2016) raise the question whether 
cognitive architectures are suitable to apply for 
software development besides of experiments. This 
problem is addressed by proposing an approach to 
enhance the systematic application of cognitive 
architectures in the field of industrial systems.  

As a method, we initially review well-known 
examples of cognitive architectures and discuss their 
functionality and usage in industrial applications. 
Then, we specify the types of software applications 
where cognitive architectures fit into and identify 
problems that may emerge during the adaptation of 
the architectures to a certain application. Based on 
this analysis, we propose in the last part of the paper 

our solution that consists of a cognitive process, 
which is common for all studied architectures. The 
process is implemented as an architecture. Finally, the 
functionality of the architecture is demonstrated 
within the project KORE (Cognitive Optimization of 
Control Strategies for Increasing Energy-efficiency 
in Buildings) (Zucker et al., 2016). KORE is applied 
in the domain of building automation, which has the 
purpose to optimize energy consumption under the 
constraints of comfort. 

2 EXISTING APPLICATIONS OF 
COGNITIVE ARCHITECTURES 

Cognition, according to Vernon et al., “can be viewed 
as the process by which the system achieves robust, 
adaptive, anticipatory, autonomous behaviour, 
entailing perception and action” (Vernon et al., 2007). 
It implies that the cognitive system is able not only to 
understand the current situation but also to function 
efficiently in situations for which it was not intended.  

Among cognitive architectures, SOAR (State 
Operator and Result) (Langley et al., 2009) and LIDA 
(Learning Intelligent Distribution Agent) 
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(Ramamurthy et al., 2006) are prominent examples 
with different origins. While SOAR origins from the 
domain of logical problem solvers in classical 
artificial intelligence, LIDA tries to model the human 
mind and origins from neurological theories. Each 
cognitive architecture has its advantages and 
drawbacks.  

SOAR is a general-purpose architecture that 
implements cognitive functionality and defines 
system behaviours by rules. LIDA is a cognitive 
architecture that aims to model the human mind. It 
provides a framework for cognitive architectures, 
where modules can be arbitrary created and linked. 
LIDA uses a partly bottom-up approach, where 
activated content or ideas of what to do are competing 
for attention. The winning content receives the 
attention and gets its action developed and executed. 
The cognitive architecture ICARUS (Langley et al., 
2011) origins from the area of autonomous robots. It 
differs from SOAR as it uses several different 
memories to store skills, concepts and beliefs.  

The cognitive architecture BDI (Belief, Desire, 
Intention) (Gottifredi et al., 2008) adds the 
component of a desire to cognitive architectures, 
where desires represent the goals of the system. SiMA 
(Simulation of the Mental Apparatus & Applications) 
(Schaat et al., 2017) extends the desires further into 
drives, emotions and feelings, which are used as 
evaluation mechanisms of different options of the 
system. Multi-agent solutions have gained attention 
within the community due to their ability to scale and 
allow partitioned development. An approach is the 
ACNF Cognitive Framework (Crowder et al., 2014). 

SOAR and BDI (Gottifredi et al., 2008) have been 
applied as the decision-making in robots. ICARUS 
(Choi et al., 2009), BDI (Dignum et al., 2009), LIDA 
(Sandsmark and Viktil, 2012) and SiMA (Schaat et 
al., 2017) have been applied to games or simulations 
of virtual human-like actors. The agent TAC-Air-
Soar (Heinze et al., 1999) shows the potential of 
cognitive architectures as virtual pilots in the 
modelling of fighter pilots in air combat scenarios. 
Since the theory of cognitive architectures often 
origins from psychology, some of them are used to 
mimic human behaviour in psychological 
experiments (Anderson et al., 2004), (Wendt et al., 
2015), (Gobet and Lane, 2010). In addition, there 
exist real-world applications, where the predecessor 
of LIDA has been deployed. In the US Navy, it 
manages jobs for sailors, where the task is to offer 
jobs for sailors depending on the sailor’s preferences, 
the Navy’s policies, the needs of the tasks and the 
urgency (Franklin and Patterson Jr, 2006). 

3 ANALYSIS OF APPLICATIONS 

Cognitive architectures tend to be more suitable for 
particular application classes. The criteria for such 
applications are analyzed in the following. 

3.1 Suitable Applications 

As the human mind is claimed to be the most complex 
biological system that we know about, it would be 
expected that the same decision process would benefit 
industrial applications that are applied in complex 
environments (Dietrich and Zucker, 2008). These 
applications do not have access to all information 
about their environments and have to make decisions 
based on judgment instead of deterministic inputs. 

Current applications can be categorized into two 
main groups: controllers for physical robots and 
virtual human in simulations. The domains are close 
to the area of the human mind. An application that 
differs from the others is the LIDA sailor application. 
Their common denominator is that they have to select 
one action out of several possible, comparable and 
competing actions, to fulfil certain goals. Due to the 
risk of applying a massive overhead, applications that 
operate only with complicated problems, where the 
environment is completely known are therefore not 
appropriate. 

Because decisions in these applications are based 
on judgment and not on determinism, the evaluation 
of options plays a major role. The program logic 
together with stored data determines how to evaluate 
option. Compared to a straightforward coded 
program, a cognitive architecture has the advantage 
that a lot of necessary program logic is transferred 
from the code into knowledge. Due to the provided 
infrastructure, it can be claimed that if a cognitive 
architecture is used in a certain complexity of an 
environment, the implementation should be possible 
with less effort than using a direct implementation of 
a state machine. 

The claim can be understood in the following 
context: Suppose that a game like Pacman is 
developed. The goal is for a player to eat food and 
avoid the ghosts. In the simplest case, decision-
making consists of some rules that define the 
behaviour for each situation. The more inputs are 
available, the more rules have to be written. At the 
point of competing options, the code gets messy. 
Evaluation of each option regarding some criteria is 
necessary. Here, a cognitive architecture makes 
sense. If such a system is extended, only to the way 
options are created and evaluated has to be addressed. 
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3.2 Problems with Common Cognitive 
Architectures 

Although cognitive architectures seem to be very 
useful, most of them have never left the laboratory 
(Kotseruba et al., 2016). The importance of extracting 
the correct problem is given through an example in 
the project VKT GOEPL (Wendt et al., 2012). The 
purpose was to develop a decision support system for 
the collaboration between agencies to protect critical 
infrastructure in case of an earthquake. It should 
answer queries like "how many hospital beds are 
available within 10 km radius from the epicentre?" A 
cognitive architecture only make sense, if there are 
several competing methods to answer the question. 

Another problem is that although cognitive 
architectures claim to be very general, they tend to be 
highly tailored to a certain problem. As an industrial 
application is often very specific, the cognitive 
architecture must not be too specialized, in order to 
cover the required functionality. For instance, SiMA 
models the human mind with high detail according to 
a model derived from psychoanalysis. Compared to a 
generic architecture like SOAR, SiMA contains much 
pre-programmed functionality. In the project ECABA 
(Zucker et al., 2016), the idea was to apply SiMA with 
minimal changes to a problem in automated building 
control. The SiMA model assumes that a drive is 
independent. Because the proposed drives of the 
building controller are interdependent, a workaround 
with bad benefit/cost ratio had to be used. 

SOAR and BDI use a minimal cognitive cycle. If 
an industrial application has a need for an attentional 
functionality, which filters relevant from non-
relevant content like in SiMA or LIDA, it may not be 
possible to use these architectures because an 
attentional mechanism is not a part of their concepts. 
Perhaps, it is possible to implement this functionality 
with high effort. General-purpose architectures, 
which are more general problem solvers often lack 
the flexibility needed for a certain application. 

4 THE COGNITIVE PROCESS 

To be able to use the potential of cognitive systems in 
industrial applications, the shortcomings described 
previously have to be addressed. The method 
proposed in this paper is to create a meta-architecture 
that consists of a common cognitive process, which 
executes customized functions. According to (Wendt, 
2016), a general cognitive process can be extracted 
and common cognitive architectures can be mapped  
   

 
Figure 1: The cognitive process. 

to it. In this paper, the idea is to use a modified version 
of that process. 

Figure 1 shows an overview. The cognitive 
process describes one cognitive cycle, i.e. the path 
from input to an action. In the following, each step is 
described: 

The first step is to "perceive" the input data (A: 
Read system input), which can be a user request in an 
application. It corresponds to the neural layer in 
SiMA that contains raw data. Sensor data is 
transformed into the internal representation (B: 
Activate Concepts from Input). A knowledge base is 
used to classify the data and to load the matching 
symbol. No additional reasoning is performed. It 
corresponds to the Perceptual Associative Memory of 
LIDA or the Perceptual Buffer in ICARUS. 

Then, the activated symbols are enhanced with 
inferred knowledge. System goals (C: Create System 
Goals) are activated by the sensor content if they are 
not predefined. In addition, inferred knowledge about 
the environment is activated (D: Activate Option 
Related Content). Belief templates are tested and 
beliefs are instantiated in a working memory. Implicit 
knowledge is made explicit. In SiMA, the system 
goals are drives, which rely on sensor data from its 
body. In BDI, desires are tested against the beliefs 
that originated from the sensor data (steps C and D 
are swapped).  

Based on the beliefs and the goals, ways of 
fulfilling the system goals are proposed (E: Propose 
options). These options define what the system is able 
to do. They may contain possible actions that the 
system can execute. In some applications, this step 
may be optional if the options are equal to the actions 
(F: Propose Action for each Option). Options can 
also be interpreted as directives that can be fulfilled 
by actions. In SOAR, operators and in BDI, intentions 
are proposed. In LIDA, the options are presented 
through coalitions of attention codelets with the 
beliefs. All cognitive architectures have some means 
to evaluate the proposed options, in order to rank 
them (G: Evaluate Options). There are two sorts of 
evaluations: Degree of goal fulfilment and the effort. 
In SiMA, a rich set of evaluation methods is used. 
Options are evaluated against the drives, the feelings  
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and the effort. Other methods used by e.g. SOAR is 
the usage of preferences for certain operators like 
"operator1 is better than operator2". 

Through evaluation, options receive a score. One 
option is selected based on its score (H: Select Option 
with Highest Score). In the architectures SiMA and 
LIDA, a second cognitive process would start to 
develop a plan for each option. An action that is 
associated with the option is executed (I: Execute 
Action). It can be an action that alters the state of the 
environment or an action that alters the internal state 
of the system itself. In SOAR, that is what the 
operators are doing. They only alter the internal state 
of the working memory. An external action is 
transformed into actuator commands, in order to 
make a change in the system environment (J: Execute 
Actuator Command). 

Architectures like SOAR and BDI execute the 
described process once, while due to an attentional 
mechanism SiMA and LIDA executes it twice. The 
winning option is further developed into detailed 
plans. 

5 TRANSFORMATION INTO A 
COGNITIVE ARCHITECTURE 

In case of a reactive system, the cognitive process can 
be implemented straightforward. In the general case, 
however, a deliberative system is applied, which 
needs multiple cognitive cycles to decide about an 
action. Figure 2 shows the architecture. 

In most cognitive architectures, the execution of 
actions is sequential. While an external action is an 
action that alters the state of the environment, an 
internal action only alters the internal state. For 

instance, if data is loaded from a long-term memory, 
it does only change the internal state. It may be 
necessary to execute multiple internal actions before 
an external action is executed. The key to handle this 
is to keep track of the system's own decisions in a 
working memory to know what has already been done 
in a sequence of actions. 

The system needs functions. In LIDA, the concept 
of codelets was introduced. A codelet is a small piece 
of code that executes independently on the content of 
the working memory, e.g. to test sensor data and 
activate an internal representation in the Perceptual 
Associative Memory. Inspired by LIDA, codelets will 
be implemented as the functions of the system. They 
wait for a trigger to start. All codelets are assigned a 
process step in Figure 1. The idea is that instead of 
having fixed functions in the architecture, every 
function is a codelet that can be added or removed, in 
order to allow complete customization of the 
cognitive process. 

Every architecture needs memories. The long-
term memory can be in any format, e.g. an ontology 
or a relational database, depending on the purpose of 
the system. Through the codelets, its content is loaded 
and converted into the internal representation. The 
internal representation is defined in two memories: 
the working memory and the internal state memory. 
In the working memory, all content, which is relevant 
for the current situation is stored, similar to SOAR. It 
keeps actual instances of input data, data from the 
long-term memory and data, which is generated 
through codelets. In the internal state memory, only 
decision-making relevant data like goals and options 
is kept. It makes sense to separate the memories as 
one of them only handles meta-data, which is linked 
to the real data. 

 

 
Figure 2: The general cognitive architecture that implements the cognitive process. 
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6 THE APPLICATION KORE 

Building Energy Management Systems (BEMS) 
monitor and control the operation of the building 
systems to maintain acceptable indoor comfort levels 
under the constraint of energy efficiency. For the 
control of these systems, automated decisions are 
made using a control logic, which consists of a set of 
rules defined by an expert. These rules are static or 
updated during a re-commissioning phase. To reduce 
the engineering effort, the focus in the project KORE 
(Cognitive Optimization of Control Strategies for 
Increasing Energy-efficiency in Buildings) (Zucker et 
al., 2016) is to automatically generate and propose 
rule-sets to the building operator. 

A rule-set is defined as a parameterized set of 
interconnected control blocks like the example in 
Figure 3. A control block is function of the building, 
e.g. an actuator for a heating element or a CO2 sensor. 
Defined control blocks are instantiated in Matlab 
Simulink. A Simulink model is then used to simulate 
the rule-sets within a virtual building and get 
feedback on how well they performed. 

The task of the KORE application is to 
automatically generate rule-sets, test them, evaluate 
them and decide about the best method to continue 
the optimization process. The system consists of three 
components: A cognitive system for rule-set 
generation, a simulator to test the generated rule-sets 
and an ontology to store test results as well as 
building information. The ontology is the long-term 
memory of the cognitive system. An algorithm inside 
of the cognitive system does the rule-set generation. 
It arranges predefined control blocks corresponding 
to a problem definition, which are later 
parameterized. 

 

 
Figure 3: Example of a rule structure in KORE. 

There are three parts of information used. The 
problem definition consists of the building structure, 
the environmental setup, e.g., the season of the year 

to be tested, and user requirements regarding comfort 
and energy. The problem definition is stored in an 
ontology, which has been created by domain experts. 
The available utilities include a collection of 
available control blocks and semantic knowledge. 
The solution space consists of rules, generated by 
interconnecting and parameterizing the available 
control blocks. A further concept used is the episode. 
It is the evaluation of a particular generated and tested 
rule structure and parameters. Each episode is 
evaluated regarding the fulfilment of the system 
goals, i.e., energy efficiency, comfort and penalty that 
describes the fulfilment of external rules applied to 
the system. 

 

 
Figure 4: The process of the KORE Application. 

The process of the KORE application is visualized 
in Figure 4. The process steps are described with the 
numbers 1 to 7. It starts with a user request, which 
contains the problem description address, the season 
to optimize and the evaluation criteria (1 in Figure 4). 
The problem description is enriched with information 
stored in the knowledge base and is sent as input to 
the cognitive system (2). First, the system retrieves 
episodes from similar problems to find matching rule-
sets, using case-based reasoning. Rule-sets that 
resulted in episodes with high returns have higher 
probabilities of being selected by the system as 
potential solutions in the future. The cognitive system 
provides options to start rule generation from scratch 
or to vary parameters of existing episodes. The 
generated rule-structure (3) is sent to the building 
simulator (4). It is returned as raw data to an evaluator 
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that adds the evaluations as meta-data (5). The 
episode is stored in the ontology (6). Then, the 
process starts over again or returns to the user if a 
rule-set satisfies the input conditions (2), (7). 

7 IMPLEMENTATION OF KORE 

he cognitive process is to the architecture in Figure 4. 
The main problem is divided into subsystems. They 
are marked with a dark colour in Figure 5. Each 
subsystem is defined as a separate cognitive problem. 
In this paper, one exemplary subsystem will be 
presented to show how a cognitive process is applied 
outside of the standard uses like robots and artificial 
life simulators. 
 

 
Figure 5: Subsystems of the KORE application. 

7.1 Subsystem Request Handling 

When a user request is received by the subsystem 
<Subsystem Request Handling>, the system must 
select among existing episodes. The fulfilment of the 
request by highest evaluated episode is the goal of the 
system. In case the goal is not fulfilled, the second 
best alternative is selected: to generate a new rule-set. 

In Table 1, goals, options and actions of the 
subsystem <Request Handling> are listed. Goals is 
the fulfillment of a request, where <request 
interrupted> is the more important goal. Actions are 
predefined. The options are matched with the actions. 
For each activated episode, an option is generated 
<episode 1..n> that is connected to the action <return 
episode>. In addition, an option is generated to 
generate a new rule-set <new rule-set> with the action 
<generate rule-set>. 

Table 1: Overview of the subsystem Request Handling. 

Goals Options Actions 
request fullfilled episode 1..n return episode 

request 
interrupted new rule-set generate rule-set 

 untested rule-
set test rule-set 

 interruption  
 

Generated, untested rule-sets return to the 
<Request Handling> as <untested rule-set> 
connected to the action <test rule-set>. 

7.2 Software Implementation 

In (Wendt and Sauter, 2016), the ACONA framework 
for implementing cognitive architectures in the Java-
based multi-agent platform Jade was presented. On 
the lowest level, Jade agents are located. To allow 
synchronous calls like reading a value from another 
agent while blocking the method, having multiple 
behaviours running in parallel and to get more control 
over the external communication, the ACONA 
framework adds a layer on top of Java Jade.  

ACONA introduces cell functions, which allow 
remote procedure calls for functions in other agents 
and the communication is completely separated from 
the function logic. Each agent also receives a memory 
with the structure of datapoints for Json strings, in 
order to provide a flexible internal representation.  

Processes are implemented as codelet handlers, 
where a codelet handler is an engine, which runs 
codelets. In Figure 2, the setup is shown. The top 
process is a codelet handler, where the processes steps 
of the cognitive process are also codelet handlers. 
Each process step allows customized codelets to be 
executed. With this software setup, a flexible and 
highly customizable cognitive system has been 
designed. 

7.3 Test Results 

A request is provided through a RESTful web service 
to the <Request Handling Subsystem>. A request 
consists of CO2, energy and penalty requirements. 
The system is demonstrated with two requests: 
<Request 1> and <Request 2>. The goal conditions to 
fulfil is an evaluation in the range [0, 1] of CO2, 
energy and penalty, In <Request 1>, all conditions are 
set to 0.9. In <Request 2>, they are 0.5. In Figure 6, 
dashed lines show the request conditions. 

For beliefs, a memory loader is triggered that 
loads only the metadata of episodes, which perfectly 
matches the scenario to be tested. Three episodes 
match the two requests. Their evaluations are shown 
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with filled lines in Figure 6. After option codelets 
have generated one option for each activated episode 
and an additional option to generate a new rule-set, 
evaluation codelets look for goal conditions and the 
evaluations in the episodes and add them to the total 
evaluation of that particular option. Each option has a 
current state and a next state. Action codelets match 
each option with a precondition state and a 
postcondition state and adds a proposed action to the 
matching option. 

 

 
Figure 6: Evaluation of episodes regarding CO2, energy 
and penalty criteria. 

After evaluation, the option with the highest score 
is selected. The results have been visualized in Figure 
7. For <Request 1>, the option <GenerateRule> was 
selected, which means that no loaded episode fulfilled 
the requirements of the request. All evaluations are 
negative because they do not match the requirements. 
Therefore, a new rule-set and episode have to be 
generated. However, an interesting effect occurs if the 
possibility to generate new rules is removed. The 
system always execute the action of the best option 
and in such a case an episode would be returned 
although it does not fulfill the requirement. 

In <Request 2>, the requirements were lowered to 
0.5 each and the option <OptionEpisode2> was 
selected as it had the best rank. The corresponding 
action was to return the rule-set of that episode to the 
user. 

 

 
Figure 7: Evaluation of available options for two requests. 

8 DISCUSSION 

A general cognitive process was extracted based on 
the analysis of common cognitive architectures. It 
should make it easier to apply cognitive architectures 
in industrial applications. The most important task is 
to find the suitable problem, i.e. problems, where a 
system has several competing options to choose from. 
The cognitive architecture has to be very flexible to 
be applied to industrial applications specialized for 
only one task. The more specialized a cognitive 
architecture gets, the harder it is to implement without 
violating the underlying cognitive model. The 
cognitive process was turned into a general cognitive 
architecture that allows more customization as all 
functions are defined as codelets. Codelets enhance 
and modify existing concepts in the working memory 
in a deliberative way. 

The implementation shows that an architecture 
can be quickly setup and extended through codelets. 
Another advantage is that every codelet can be 
separately tested by unit tests, as the system is "open" 
to injections into the working memory and the 
internal state memory. It is easy to integrate new 
actions or option types with low effort. 

A drawback noticed, which is common for all 
rule-based cognitive architectures, is that with 
increasing possibilities, the complexity of the system 
rises because codelets are generally interdependent. 
For instance, if new ways of evaluations are added, 
perhaps it makes the system unbalanced, which 
results in selecting the "wrong" option. 

As future work, the architecture will be adapted 
and applied in the area of Industry 4.0 within the 
project Self-Aware health Monitoring and Bio-
inspired coordination for distributed Automation 
systems (SAMBA). Apart from the decision-making 
module, the architecture includes other two modules 
for error detection and communication with other 
agents for distributed decision-making. The challenge 
here is to adapt the system in a distributed 
environment, therefore to exhibit collective 
behaviour that will be able to pursue the goals of the 
larger system. However, because the cognitive 
process is general enough, the effort for 
transformation in another domain is expected to be 
kept low. 

As the common cognitive cycle can be extracted 
from the studied cognitive architectures, a perfect 
validation would be to implement an existing 
cognitive architecture with all specialized functions. 
Besides, of the cognitive process, the key to 
implementing an architecture would be to create the 
proper state machine, which is correctly represented 
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within the internal state memory. SiMA, which has 
much specialized cognitive functionality would be 
suitable for such a test. 
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