[Back]


Publications in Scientific Journals:

M. Garcia-Munoz, S. Äkäslompolo, E. Viezzer, M. Willensdorfer, E. Wolfrum et al.:
"Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks";
Nuclear Fusion, 53 (2013), 1230081 - 1230089.



English abstract:
The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations
(MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR
tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses.
Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while
intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally
applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is
observed in low-collisionality, low q95 plasmas with resonant and non-resonant MPs. In low-collisionality H-mode
plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band
frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal
without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing
modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The
fast-ion response to externally applied MPs presented here may be of general interest for the community to better
understand the MP field penetration and overall plasma response.