
Ph.D. Thesis

Model Transformation By-Example

Conducted for the purpose of receiving the academic title
’Doktor der Sozial- und Wirtschaftswissenschaften’

Advisors
o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Institute of Software Technology and Interactive Systems
Vienna University of Technology

Ao.Univ.-Prof. Mag. Dr. Christian Huemer
Institute of Software Technology and Interactive Systems

Vienna University of Technology

Submitted at the
Vienna University of Technology

Faculty of Informatics

by

Michael Strommer
0025232

Schliemanngasse 9/6
A-1210 Vienna

Vienna, May 2008

MTBE

rau
diss

Danksagung

Diese Arbeit wäre ohne die Unterstützung und Hilfe von KollegInnen, BetreuerInnen, Fre-
undInnen und Familie nicht möglich gewesen. Mein besonderer Dank gilt meinen beiden
BetreuerInnen Gerti Kappel und Christian Huemer die mich bei der Wahl des Themas und
der Durchführung der Dissertation unterstützt haben. Meinen Kollegen Manuel Wimmer
und Horst Kargl möchte ich für die zahlreichen Diskussionen danken, die immer wieder
spannende Ergebnisse geliefert haben. Manuel Wimmer möchte ich besonders für die Idee
zu dem Thema dieser Dissertation danken.

Meinen beiden Diplomanden Abraham und Gerald Müller gilt mein Dank für ihre Un-
terstützung bei der Implementierung eines Prototyps.

Natürlich möchte ich mich auch ganz besonders bei meinen Eltern Eva und Norbert
Strommer sowie meinen Freunden bedanken die immer ein offenes Ohr für meine Anliegen
und Probleme hatten. Und zuletzt möchte ich noch meinem Freund Jürgen Falb für seine
Geduld und Hilfsbereitschaft in den letzten Jahren danken.

i

ii

Abstract

Model-Driven Engineering (MDE) is getting more and more attention as a viable alternative
to the traditional code-centric software development paradigm. With its progress, several
model transformation approaches and languages have been developed in the past years.
Most of these approaches are metamodel-based and, therefore, require knowledge of the
abstract syntax of the modeling languages, which in contrast is not necessary for defining
domain models using the concrete syntax of the respective languages.

Based on the by-example paradigm, we propose Model Transformation By-Example
(MTBE), to cope with shortcomings of current model transformation approaches. Our ap-
proach allows the user to define semantic correspondences between concrete syntax ele-
ments with the help of special mapping operators. This is more user-friendly than directly
specifying model transformation rules and mappings on the metamodel level. In general,
the user’s knowledge about the notation of the modeling language and the meaning of
mapping operators is sufficient for the definition of model transformations. The definition
of mapping operators is subject to extension, which has been applied for the definition of
mapping operators for the structural and the behavioral modeling domain. However, to
keep things transparent and user-friendly, only a minimal set of mapping operators has
been implemented. To compensate for the additional expressiveness inherent in common
model transformation languages we apply reasoning algorithms on the models represented
in concrete as well as in abstract syntax and on the metamodels generating adequate trans-
formation code.

In order to fulfill the requirements for a user-friendly application of MTBE, proper tool
support and methods to guide the mapping and model transformation generation tasks
are a must. Hence, a framework for MTBE was designed that builds on state-of-the-art
MDE tools on the Eclipse platform, such as the Eclipse Modeling Framework (EMF), the
Graphical Modeling Framework (GMF), the Atlas Transformation Language (ATL), and the
Atlas Model Weaver (AMW). The decision to base our implementation on top of Eclipse
and further Eclipse projects was driven by the fact, that there is a huge community we can
address with our MTBE plug-in.

Finally, we evaluate our approach by means of two case studies covering the structural
as well as behavioral modeling language domain.

iii

iv

Kurzfassung

Die modellgetriebene Softwareentwicklung kann immer mehr als ernst zu nehmende Al-
ternative zur klassischen Softwareentwicklung angesehen werden. Im Zuge des Entwick-
lungsprozesses der modellgetriebenen Softwareentwicklung sind in den letzten Jahren auch
zahlreiche Methoden zur Modelltransformation entwickelt worden. Viele dieser Ansätze
basieren auf den Metamodellen der jeweiligen Modellierungssprachen und setzen daher
ein Wissen über die abstrakte Syntax voraus, das für die Modellierung von Modellen mit
eben diesen Sprachen nicht notwendig ist.

Aufgrund dieser Einschränkungen heutiger Modelltransformationsansätze entstand die
Idee zu Model Transformation By-Example (MTBE), welches auf beispielgetriebenen Me-
thoden basiert. Dieser Ansatz ermöglicht BenutzerInnen mit geeigneten Mappingopera-
toren semantische Beziehungen zwischen Elementen, definiert in einer konkreten Syntax,
zu spezifizieren. Auf diese Weise lassen sich Modelltransformationen und semantische
Beziehungen benutzerfreundlicher spezifizieren als dies auf der Metamodellebene der Fall
wäre. Das Wissen der BenutzerInnen über die konkrete Syntax einer Modellierungssprache
und die Bedeutung der Mappingoperatoren genügen in den meisten Fällen, um Modell-
transformationen zu erzeugen. Der MTBE-Ansatz unterstützt die Spezifikation von weit-
eren Mapping-Operatoren. Im Rahmen der Dissertation wurden Mapping-Operatoren für
Sprachen zur Strukturmodellierung und zur Verhaltensmodellierung entwickelt. Die An-
zahl der Mappingoperatoren wurde bewusst niedrig gehalten, um die Überschaubarkeit
und Benutzerfreundlichkeit nicht zu gefährden. Der dadurch entstandene Verlust an Aus-
drucksstärke wurde durch Reasoningalgorithmen, sowohl auf der Metamodell- als auch
auf der Modellebene größtenteils kompensiert, um ausführbaren Transformationscode ge-
nerieren zu können.

Neben der konzeptuellen Definition von MTBE ist für den Nachweis der Praxis-
tauglichkeit auch eine Werkzeugunterstützung gefordert, welche die Möglichkeit zum
Modellmapping und zur Generierung von Transformationscode bietet. Daher wurde ein
Framework konzipiert und umgesetzt, das auf bewährten Modellierungsanwendungen der
Eclipse-Umgebung aufbaut. Zu diesen Anwendungen zählen etwa das Eclipse Modeling
Framework (EMF), das Graphical Modeling Framework (GMF), die Atlas Transformation
Language (ATL) und der Atlas Model Weaver (AMW).

Schließlich wurde MTBE anhand von zwei Fallstudien getestet und evaluiert. Diese bei-
den Fallstudien decken sowohl Struktur- als auch Verhaltensmodellierung ab.

v

vi

Contents

Danksagung i

Abstract iii

Kurzfassung v

1 Introduction 1
1.1 Motivation . 1
1.2 Existing Work . 2
1.3 Contribution of the Thesis . 3
1.4 Big Picture and Structure of the Thesis . 5

2 State of the Art 7
2.1 Introduction to Model Transformation . 7
2.2 Some Model Transformation Approaches in Detail 8

2.2.1 QVT . 8
2.2.2 ATL . 9
2.2.3 Graph Grammars . 10
2.2.4 Advanced Model Transformation Features 12

2.3 Why We Benefit from Examples? . 13
2.4 Common By-Example Approaches . 14

2.4.1 Query By Example . 15
2.4.2 Programming By-Example . 17
2.4.3 Web-Scheme Transformers By-Example 18

3 Prerequisites for MTBE 21
3.1 The Metamodeling Stack . 22

3.1.1 The Ecore Model - Core Concepts Reviewed 22
3.1.2 Differences between Ecore and MOF . 23
3.1.3 Models and Transformations . 25
3.1.4 Horizontal vs. Vertical Model Transformations 26

3.2 Metamodel Heterogeneities . 27
3.2.1 Attribute Conflicts . 28

vii

3.2.2 Structural Conflicts . 30
3.2.3 Semantic Conflicts . 33

3.3 Model Heterogeneities . 35
3.4 Refactoring Patterns . 36

3.4.1 Patterns for Reification of Concepts . 37
3.4.2 Patterns for Elimination of Abstract Concepts 38
3.4.3 Patterns for Explicit Specialization of Concepts 38
3.4.4 Patterns for Exploring Combinations of Refactored Concepts 40

3.5 Concrete Syntax vs. Notation . 41
3.6 Metamodel Metrics . 43

3.6.1 Calculating the Explicitness of Metamodels 44
3.6.2 Analysing UML 1.4 and UML 2.1 . 47
3.6.3 Metrics-Related Work . 49

3.7 Requirements for Example Models . 50

4 Basic MTBE Concepts 55
4.1 Shortcomings of Current Model Transformation Approaches 55
4.2 A Five Step Process for MTBE . 59
4.3 A Running Example . 61
4.4 MTBE Frontend - The Black-Box View . 62

4.4.1 Model Mapping . 62
4.4.2 Mapping Definitions By-Example . 64
4.4.3 Validation of Transformation Code and Produced Output Models . . . 65

4.5 MTBE Backend - The White-Box View . 66
4.5.1 Basic Reasoning on User Mappings By-Example 66
4.5.2 Metamodel Mapping . 70
4.5.3 Transformation Model Generation By-Example 70

4.6 MTBE-Related Work . 71
4.7 Summary . 73

5 Advanced MTBE Concepts 75
5.1 Adding Expressiveness to the Model Mapping Language 75
5.2 Reasoning based Pattern Matching . 79
5.3 Adding Expressiveness to the Metamodel Mapping Language 81
5.4 Advanced Reasoning Algorithms . 83
5.5 A Two Step Transformation Process . 84

6 Implementation 87
6.1 Overview of the Graphical Modeling Framework 87
6.2 An Eclipse Based Implementation for MTBE 91

viii

6.2.1 MTBE Workbench . 93
6.2.2 Integration of GMF . 93

6.3 Critical Discussion . 96
6.3.1 Implementation Status . 96
6.3.2 Discussing the GMF Approach . 96
6.3.3 Alternative Implementation Approaches 96

6.4 Summary . 97

7 Applications of MTBE 99
7.1 Application to Structural Modeling Languages 99

7.1.1 Integration Problem: ER2UML . 100
7.1.2 User defined Model Mappings . 101
7.1.3 Reasoning and Metamodel Mappings 103
7.1.4 ATL Code Generation . 103

7.2 Application to Behavioral Modeling Languages 106
7.2.1 Models for Business Processes . 106
7.2.2 Dealing with Heterogeneities in Business Procss Models 108
7.2.3 Integration Problem: UML AD and EPC 110
7.2.4 Model Mappings and Metamodel Mappings 110

7.3 Critical Discussion . 117

8 Open Issues and Future Work 119

Bibliography 121

Curriculum Vitae 129

ix

x

List of Figures

1.1 Model transformation pattern according to [21]. 1
1.2 Typical distribution of knowledge considering software architects. 3
1.3 Big picture of this thesis. 5

2.1 Relationships between QVT metamodels [70]. 9
2.2 PacMan type graph. 11
2.3 Instance graph for the PacMan type graph. 11
2.4 Graph transformation rule that moves PacMan. 12
2.5 Simple retrieval of data within table PERSON. 16
2.6 Simple transition in Flash using motion tweens. 18
2.7 Simple TBE rule. 19

3.1 The OMG’s metamodeling stack in the light of MTBE [68] 23
3.2 The Ecore metamodel for creating models [22]. 24
3.3 Model transformations in the modelware technical space. 26
3.4 Taxonomy of schema integration conflicts. 27
3.5 Attribute integration conflicts, (a) and (b) being different modeling languages. 29
3.6 Property expressed as (a) discriminator, (b) attribute, (c) reference. 30
3.7 Reference direction and property set/subset mismatch. 31
3.8 Concept definition conflicts. 33
3.9 Implicitly missing property. 35
3.10 Part of the UML kernel as pseudo-ontology and as refactored ontology. 36
3.11 Modeling languages and their concrete syntax. 41
3.12 Relationship between abstract and concrete syntax. 43
3.13 Three characteristics of the EM2 metric. 44
3.14 Side effects of the EM2 metric. 45
3.15 Results for UML 2.1. 48
3.16 Demonstrating nesting problems: insufficient example. 51
3.17 Demonstrating nesting problems: sufficient example. 52

4.1 Gap between user intention and computer representation. 57
4.2 Concept hiding in metamodels. 58

xi

4.3 MTBE conceptual framework. 59
4.4 MTBE for UML2ER and vice versa. 61
4.5 MTBE workbench vision. 63
4.6 Basic model mapping language. 64
4.7 Notation table of basic model mapping language. 64
4.8 Basic metamodel mapping language. 70

5.1 Extended model mapping language. 76
5.2 The XOR mapping operator, (a) Valid use, (b) Invalid use, (c) Object Diagram

of (a). 78
5.3 Notation tables of the model mapping language. 78
5.4 Core analyzer patterns. 80
5.5 Extended metamodel mapping language. 82
5.6 Reasoning about derived associations. 83
5.7 2-step transformation generation. 85

6.1 Overview of the Graphical Modeling Framework. 88
6.2 How GMF deals with notation and concrete syntax. 89
6.3 Framework architecture, (1) Underlying frameworks, (2) User front-end, (3)

Pattern matching and creation of weavings, (4) Transformation model gener-
ation. 92

6.4 MTBE Prototype, (a) Mapping editor, (b) Merged Ecore model and merged
mapping definition model, (c) Automatically produced weaving model. . . . 94

7.1 Simplified ER and UML metamodels. 100
7.2 Model mappings between ER and UML example models. 101
7.3 Parts of the UML 2.1 AD metamodel and its concrete syntax. 107
7.4 Parts of the EPC metamodel and its concrete syntax. 108
7.5 Overview of BP model heterogeneities. 109
7.6 Mapping EPC and UML activity diagram - CS + AS perspectives. 111
7.7 Challenges for MTBE in business process models. 118

xii

List of Tables

2.1 Wise-men puzzle: state space. 14

7.1 Summary of model mappings. 102
7.2 Summary of metamodel mappings. 102
7.3 Summary of model mappings for BP models. 112
7.4 Summary of metamodel mappings for BP models. 113

xiii

xiv

Listings

2.1 QVT Relation for mapping packages to schemas. 9
2.2 ATL snippet MM1 2 MM2. 10
2.3 ActionScript 3.0 code for the transition presented in Figure 2.6. 17

3.1 Incomplete ATL transformation for simpleUML to simpleER. 51
3.2 XMI resulting from Listing 3.1. 52
3.3 Correct ATL transformation for simpleUML to simpleER. 52
3.4 XMI resulting from Listing 3.3. 52

4.1 ATL rule for Attribute2Property. 71
4.2 ATL rule for Property2Attribute. 71

7.1 ER2UML transformation including user refined code. 103
7.2 UML2ER transformation including user refined code. 104
7.3 ATL rule for Event2InitialNode and Event2FlowFinal. 114
7.4 ATL rule for EventControlFlowFunction2OpaqueAction. 115
7.5 ATL rule for And2Fork and And2Join. 116

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Software development is a complex task. Developers have tried to overcome complexities
by different kinds of methodologies (e.g., object oriented programming, domain specific
languages, patterns, etc.) and technologies (e.g., CASE-Tools, XML, etc.). One of the latest
paradigms is Model-Driven Engineering (MDE) [8], which aims at defining a framework
for modeling, metamodeling and model transformation. Model transformations are used to
transform between any kinds of models, no matter what domain they cover, as long as these
models fulfill the requirements of a specific model transformation approach. In general, cor-
responding modeling language definitions in form of metamodels are required in a model
transformation process. How model transformation approaches work is best explained fol-

Transformation
Rules

Source Metamodel Target Metamodel

2 Rules

M
2

«executes»

1

«conformsTo» «conformsTo»

«executes»

Transformation
Engine

Source Model Target Model

M
1

«reads» «writes»

Source Model Target Model

Figure 1.1: Model transformation pattern according to [21].

lowing the basic model transformation pattern shown in Figure 1.1. First, we distinguish
between layers M1 and M2 introduced by the OMG in [68]. M1 contains the models, which
are instances of metamodels that reside on M2. Second, transformation rules between so
called source and target metamodel are specified. Third, a transformation engine reads one
source model conforming to the source metamodel and writes a target model conforming

Chapter 1 Introduction

to the target metamodel. A model can be transformed into a semantically corresponding
model (horizontal transformation) or into a model on another level of abstraction (vertical
transformation). This thesis focuses on horizontal model transformations that are used in
various metamodel-based tool integration scenarios, e.g., exchanging models in different
languages via model transformations. Horizontal model transformations are also consid-
ered by a special kind of MDE, namely Model-Driven Architecture (MDA) [64], an Object
Management Group (OMG) initiative. MDA delivers concepts for metamodels representing
both an abstract syntax of the corresponding modeling language and also a data structure
for storing models in repositories. However, this implementation specific focus does not
result in a user-friendly approach to model transformations due to two major reasons:
Concept Hiding. First, metamodels are not only based on first class concepts, but usually
include constraints that are hidden in textual descriptions or, in best case, as formal con-
straint in special section. However, non-first class, i.e. hidden, concepts are available for
notation purposes. For example, in the core of the UML metamodel (defined in the UML
Infrastructure [65]) the concept attribute is hidden in the class Property. Properties can only
be attributes, if the property has a relationship owningClass to a class. When the user has to
define model transformations these hidden concepts must be re-engineered and expressed
in complex rules by a manual process.
Metamodel vs. Model. Second, defining model transfromations using state-of-the-art tech-
nologies like ATL (ATLAS Transformation Language) [40] require a software engineer or
designer to be familiar with metamodeling concepts. Furthermore, she must be aware of
language specialties in the abstract syntax (AS) and how these specialties are mapped to the
model using the concrete syntax (CS). In most cases a software engineer is neither an expert
in metamodeling nor in specifying the CS of a modeling language.

1.2 Existing Work

Model Transformation Approaches. Model transformation is considered as one of the key
technologies in MDE. Therefore, a lot of research efforts address this subject to expedite
the dissemination of the MDE paradigm. A good overview of current model transforma-
tion technologies is given in [21]. All of these approaches are based on metamodels. As
a consequence, the user needs to be experienced in metamodeling. In addition, she must
understand the metamodels involved in a transformation scenario in order to specify trans-
formation rules with common model transformation approaches such as ATL and graph
transformation approaches. This complexity is shown on top of Figure 1.2. The three big
question marks indicate the places where a lack of knowledge is commonly prevalent. This
lack has then to be compensated by rarely available specialists knowing the corresponding
modeling languages by hard. To summarize, the definition of model transformations is a
complex and time consuming task since the user needs detailed know-how in the following

2

1.3 Contribution of the Thesis

three areas:

1. Metamodeling in general, i.e., to know the concepts used in the metamodeling lan-
guage.

2. A sound understanding of the modeling languages and of their concepts.

3. An excellent command of the transformation language being used for the purpose of
model transformation.

By-Example Approaches. By-Example approaches have a long tradition and originated in
the early 1970ies [20]. These approaches promote the use of examples in one way or the
other to overcome complexity of selected problems in the field of computer science. The
most prominent by-example approach is definitely Query By Example (QBE) [93], which is
presented in detail in Section 2.4. The basic idea of QBE is using a simple notation for
defining queries on database tables. The notation is based on a table-like visualization of a
database schemes, where sample instances are defined by the user. The user’s knowledge of
notation elements and their meaning is reused by using such a language design approach.
It is rather is to learn the additional semantics for the QBE language needed for specifying
proper queries compared to learning the fairly complex declarative query language SQL.
Besides QBE we present several other example favoring approaches in Section 2.4.

Language A Language B

?? ?M
2 ??

Transformation
Rules

Model in
Language A

Model in
Language B!?

M
1

Mappings

Figure 1.2: Typical distribution of knowledge considering software architects.

1.3 Contribution of the Thesis

In this thesis we propose Model Transformation By-Example (MTBE) following the idea of the
by-example approaches. MTBE emerged during the realization of the ModelCVS project
[42] that fosters model and tool integration by means of metamodel mapping and model

3

Chapter 1 Introduction

transformation. In contrast to MTBE, the ModelCVS approach focuses on the metamodels
and does not take the models and their concrete syntax into consideration. By our MTBE
approach we allow the definition of inter-model mappings representing semantic corre-
spondences between concrete domain models (M1 layer). This is more user-friendly than
directly specifying model transformation rules based on metamodels (M2 layer). This ad-
vantage of MTBE is illustrated at the bottom of Figure 1.2 where we show two models as
instances of two metamodels. The lights in the bubbles indicate that the user knows how
to correctly interpret the concrete syntax elements. It follows that the user is able to de-
fine adequate mappings between these CS elements. The inter-model mappings are used
to generate the transformation rules in by-example manner, taking into account the existing
mapping (notation) between abstract and concrete syntax elements. The notation includes
the constraints how elements from the abstract syntax (metamodel) are related to the con-
crete syntax. By applying MTBE to the Eclipse Modeling Framework (EMF) [12] and to the
Graphical Modeling Framework (GMF) [23] it is possible to reuse the already available con-
straints to derive transformation rules expressed in ATL. The user’s knowledge about the
CS of the modeling language is sufficient for the definition of semantically corresponding
model transformations. Hence, neither a detailed understanding about the abstract syn-
tax (metamodel) nor about the notation are required. However, it is essential to align two
models of the the same problem domain, to automatically derive the transformation rules.

This leads to the following hypothesis:
It is feasible to develop model transformations in a by-example manner by:

1. Defining a conceptual foundation for MTBE.

2. Building a solid prototype on these conceptual foundations.

3. Evaluating MTBE by means of case studies.

We identified two major contributions of this thesis:
Leveraging Model Transformations. Our MTBE approach helps to ease the production

of transformation code by (semi-)automatically generating ATL rules from mappings on
the model layer. Although we cannot provide a solution for fully-automatically code gen-
eration, we deliver a MTBE process that helps the software engineer safe a considerable
amount of time. Especially, the ATL code generation promotes the generation of declarative
code and does not mix it with imperative code fragments. This increases readability.

Implementing MTBE. In the literature we find two conceptual approaches to MTBE,
which have been developed around the same time. The first one has been developed by
ourselves [89], the other one has been proposed by Varro [84]. At the time of starting the
thesis no tool support and framework design was available. In this thesis we present a
framework design and a functioning proof-of-concept prototype that follows our concep-
tual approach. It allows the definition of model mappings, the reasoning on these mappings

4

1.4 Big Picture and Structure of the Thesis

as well as the generation of transformation code.

1.4 Big Picture and Structure of the Thesis

Model Metrics Heterogeneities Refactoring ModelModel Metrics Heterogeneities

Ecore

Refactoring Model
Transformations

By-ExampleChapter 2

MTBE Basics
ProcessUser Mappings

Code Generation

MM1 MM2 Reasoning

T nf
or

m
sT

o»

nf
or

m
sT

o»
«maps»

Chapter 3

M1 M2

Ad d

«c
o

«c
o n

«maps»

Chapter 3

Implementation/

Advanced
Concepts

Chapter 4

Chapter 5

p
Prototype

enables influences

Critical Reflection
Chapter 6

Figure 1.3: Big picture of this thesis.

In Figure 1.3 we provide an overview of the research topics addressed in this thesis. By
this figure it becomes evident that the thesis is structured according to the arguments pre-
sented in the hypothesis. Each of the five colored blocks is discussed in its own chapter.
The figure has to be read from top to bottom because lower concpets in an upper area are
further elaborated in a lower area. In addition, dashed gray lines with arrows show strong
dependencies from one part of the thesis to another one.

On top of this figure we show technologies and approaches that significantly influenced
our MTBE approach. An overview of these technologies and approaches is given in Chap-
ter 3. We present work on metamodeling by means of Ecore, metamodel heterogeneities,
refactoring patterns for metamodels, and our model metric for measuring the explicitness
of metamodels. There is a strong dependency between heterogeneities and both, model
metrics and refactoring because the latter two specifically face the problem of the former
one.

Chapter 4 MBTE basics represents the core of our MTBE approach. We address the con-

5

Chapter 1 Introduction

ceptual MTBE process consisting of five different steps, each of which is discussed in sub-
sequent sections.

Based on the basic concepts of MTBE, we discuss advanced extensions in Chapter 5. We
give a detailed description of advanced concepts and useful extensions in order to maximize
the amount of code, which is automatically generated. These concepts comprise, for ex-
ample, special reasoning algorithms to cope with troublesome metamodel heterogeneities.
Hence, our findings about heterogeneities play a major role for the contribution of this chap-
ter.

The second major contribution of this thesis , i.e., the implementation of MTBE, is de-
scribed in Chapter 6. We present employed technologies and frameworks that provide the
basis for our MTBE framework. Furthermore, we explain the implementation aspects in
detail. In Chapter 7 we elaborate on two case studies having proved the advantages of our
approach. This chapter also covers a critical reflection of our work on MTBE. This critical
reflection also leads to directions for future work and enhancements for our implementation
being discussed in Chapter 8.

6

Chapter 2

State of the Art

Contents
2.1 Introduction to Model Transformation . 7
2.2 Some Model Transformation Approaches in Detail 8

2.2.1 QVT . 8
2.2.2 ATL . 9
2.2.3 Graph Grammars . 10
2.2.4 Advanced Model Transformation Features 12

2.3 Why We Benefit from Examples? . 13
2.4 Common By-Example Approaches . 14

2.4.1 Query By Example . 15
2.4.2 Programming By-Example . 17
2.4.3 Web-Scheme Transformers By-Example 18

In this chapter we give an overview of the research and work that is related most in the
context of this thesis. The two major fields of related work are already visible in the title
of the thesis - Model Transformation By-Example. We first focus on model transformation
approaches in general. Next we present tried and tested work of common by-example ap-
proaches.

2.1 Introduction to Model Transformation

A key technique for automatic management of modeling artifacts are model transforma-
tions [54]. Several model transformation approaches and languages have been proposed in
the past six years [21]. Czarnecki and Helsen provide a very comprehensive and detailed
categorization of various model transformation approaches. Following [21] we define the
basic concepts of model transformation as follows:

• A source model that conforms to a given source metamodel.

• A target model that conforms to a given target metamodel.

Chapter 2 State of the Art

• Some sort of transformation definition that is based on the source and target meta-
models.

• A transformation engine that executes the transformation and produces a target model
from some source model.

Note that these basic concepts may be further extended. For example, one could allow
for the use of more than one source and target (meta)models. Areas for model transforma-
tions are manifold. There are horizontal as well as vertical model transformation scenarios
possible. We face a vertical transformation when moving from platform independent mod-
els to platform dependent models or even to code. When switching or migrating to other
modeling languages at the same level we are designing horizontal model transformations.

2.2 Some Model Transformation Approaches in Detail

After this brief and very basic introduction to model transformations we continue by de-
scribing three of the latest model transformation technologies and approaches. To foster a
better understanding of these approaches we underpin our explanations by small examples.

2.2.1 QVT

QVT stands for Query/Views/Transformations and represents a specification for model
transformations still under development by the OMG [70]. The goal of this specification
is to standardize model transformations. Besides the outstanding final version there is no
tool implementation available supporting the complete QVT standard so far. QVT defines
four different ways of specifying model transformations as depicted in Figure 2.1, i.e., four
different transformation languages. Relations and Core are of a declarative style whereas
Operational Mappings and the Black Box are languages favoring the imperative style. The
complete Operational Mappings language is supported by the SmartQVT 1 tool, which is
available as Eclipse plug-in. Another tool implementation of QVT supporting imperative
as well as the declarative Relations language is ATL 2 described in the next subsection. In
Example 1 we briefly demonstrate the use of the Relations approach, which is then mapped
automatically to the Core, acting as operational semantic basis for Relations.

Example 1. Assume we have two metamodels SimpleUML and SimpleRDBMS and want to trans-
form instances of these metamodels. The first mapping that needs to be defined is PackageToSchema
as is shown in Listing 2.1. The direction of model transformation is specified during runtime, which
makes relation PackageToSchema directionless. The domain in a relation is just a typed variable, that
originates from a given metamodel. This may be seen as a pattern that is going to be matched within

1http://smartqvt.elibel.tm.fr/
2http://www.eclipse.org/m2m/atl/

8

2.2 Some Model Transformation Approaches in Detail

Relations

Black
Box

RelationsToCore
TransformationOperational

Mappings

Core

declarative imperativeimperative

Figure 2.1: Relationships between QVT metamodels [70].

input and output models. Both name attributes are bound to the same variable pn, which acts as a
condition forcing them to be the same in both models in order to let the pattern match.

Listing 2.1: QVT Relation for mapping packages to schemas.
1 t ransformat ion umlToRdbms (uml : SimpleUML , rdbms : SimpleRDBMS) {
2 top r e l a t i o n PackageToSchema {
3 pn : S t r i n g ;
4

5 domain uml p : Package {
6 name=pn
7 }
8 domain rdbms s : Schema {
9 name=pn

10 }
11 }
12 }

2.2.2 ATL

The Atlas Transformation Language (ATL) was introduced by the Atlas Group and the TNI-
Valiosys Company in 2003 [14]. ATL aims at providing a practical implementation for the
MOV/QVT [70] standard. As such it provides a transformation engine able to transform
any given source model to a specified target model. However, before the engine can how-
ever perform the transformation the user has to specify a proper ATL program based on
some valid and executable metamodels. ATL supports queries, views and transformations.
The transformation language is based on rules that are either matched in a declarative way
or called in an imperative way. Besides rules, ATL provides so called helpers that are similar
to e.g. Java methods in declarative style. For a complete description of the abstract syntax
of ATL and its execution semantics we refer to the ATL user manual [5] as well as the project
site [4]. To illustrate ATL we will give a small example.

9

Chapter 2 State of the Art

Example 2. Assume we have two metamodels MM1 and MM2 as well as two model instances
M1 and M2 such that the instance of functions M1/l

tMM1 and M2/l
tMM2 hold. MM1 defines

just one meta class, say Operation with one attribute String : name. On the other hand MM2
also just defines one meta class, i.e., Method, which contains the attribute String : signature.
We now define an ATL transformation program that transforms any given M1 into M2. The code
that transforms these simple models is depicted in Listing 2.2. The first two lines define the header
section of an ATL program. This primarily determines input metamodels and conforming models
as well as output metamodels and conforming models. What follows is an ATL matched rule that
matches elements from the source model in its source pattern ("from part") and transforms them
into elements form the target model with its target pattern ("to part"). Matched elements are bound
to variables that can be used throughout the current rule, e.g. in the "to part" in order to assign
attributes. Variables are also bound to target elements that are created by this rule. This makes sense
if a rule contains multiple target pattern elements.

Listing 2.2: ATL snippet MM1 2 MM2.
1 module MM1_2_MM2
2 c r e a t e OUT : MM2 from IN : MM1;
3

4 rule Operation2Method {
5 from
6 o : MM1! Operation
7 to
8 m : MM2! Method (
9 s ignature <− o . name

10)
11 }

2.2.3 Graph Grammars

Besides the above presented approaches to define model transformations, we want to elab-
orate on graph transformations. Several approaches have been developed that use graph
grammars to transform from source to target models [86, 83, 53, 76]. The description of
basic concepts of graph grammars are based on the very intuitive presentation in [34]. As
the name already suggests, graph transformations are highly based on graphs, which con-
sist of vertices V and edges E. A vertex v1 in V is connected to say v2 through an edge e
such that s(e) yields the source v1 and t(e) yields the target v2. Also, we can distinguish
between two different kinds of graphs, i.e., type graphs and instance graphs. Type graphs
capture concepts from the real world, which have been derived by generalization of real
world entities. Based on these types specified in a type graph, we can build instance graphs
that represent snapshots of possible realizations. We could also think of type and instance
graphs as metamodels and models, respectively. Having specified the modeling space for
very basic graph transformations, we now turn to the transformation rules that operate on
the instance graphs. The specifications of these rules is also done by means of graphs. The
concrete syntax for specifying these rules is the same as the one used to specify instance

10

2.2 Some Model Transformation Approaches in Detail

PacMan

marbles:int

1

1
1

FieldGhost

Marble

Figure 2.2: PacMan type graph.

marbles=4

P:PacMan

M:Marble G:Ghost

F1:Field F2:Field F3:Field

Figure 2.3: Instance graph for the PacMan type graph.

graphs, which in turn is based on UML object diagram concrete syntax. In order to explain
basic semantics of these graph transformation rules we give a small example. The example
is again taken from [34] due to simplicity and didactic reasons.

Example 3. Everyone knows the PacMan game. It should therefore be no problem to construct
a metamodel for this simple game, which contains the concepts of Field, Ghost, Marble and
PacMan as shown in Figure 2.2. The type graph also contains the relationships through which these
four generalizations of game concepts are related to each other. Figure 2.3 depicts a corresponding
instance graph. We now aim at moving our PacMan instance P to the Field F2 in order to acquire the
Marble M. Therefore this instance graph can be considered as source graph of our transformation. A
sample transformation rule that moves our PacMan instance to Marble M is specified in Figure 2.4.
Formally, a graph transformation rule is specified as p : L→ R, where p is the name of the rule and
L and R are possible subgraphs of source and target instance graphs G and H . Our source instance
graph is depicted in Figure 2.3. The subgraph L can be considered as precondition and R as post-
condition. So, whenever L matches in a source instance graph the postcondition R has to create the
corresponding target graphH . Our move(p) rule matches a subgraph of our source instance graphG
and therefore transforms the affected regions into an target instance graph, where P:PacMan moves
from F1:Field to F2:Field, the M:Marble is removed and instead the attribute marbles of P:PacMan
increased to 5.

11

Chapter 2 State of the Art

p:PacMan p:PacMan

L R

marbles=m m:Marble marbles=m+1
move(p)

f1:Field f2:Field f1:Field f2:Field

Figure 2.4: Graph transformation rule that moves PacMan.

2.2.4 Advanced Model Transformation Features

Generic Model Transformations. Typically model transformation languages, like ATL or
graph grammars, allow to define transformation rules based on types defined as classes in
the corresponding metamodels. Consequently, model transformations are not reusable and
must be defined from scratch again and again with each transformation specification. Varró
et al. [85] define a notion of generic transformations, which are closely related to templates
of C++ or generics in Java. Both templates and generic transformation rules are not bound
to specific types at design time, but dynamically bound at runtime. Generic transforma-
tion rules are best suited for recurring transformation problems such as transitive closures.
These generic transformations are supported by the VIATRA2 framework, implemented as
an Eclipse plug-in. In contrary to our approach VIATRA2 does not foster an easy to debug
execution model. Graph transformation rules in VIATRA2 may be further extended by Ab-
stract State Machine rules to introduce control mechanisms for graph transformation rules
and, hence, formulate complex transformation programs. This introduces an additional for-
malism within the framework. In addition there exists no explicit mapping model between
source and target model.

Transformation Patterns. Very similar to the idea of generic transformation is the def-
inition of reusable idioms and design patterns for transformation rules described in [1].
Instead of claiming to have generic rules, the authors propose the documentation and de-
scription of recurring problems in a general way, i.e. the definition of patterns. These pat-
terns, which are independent of any type system in terms of a metamodel, may be reused by
the transformation engineer in a concrete scenario. Summarizing, this approach solely tar-
gets documentation, whereas implementation issues on how these patterns could be imple-
mented in a generic way - remain open. [1] does support idioms, which describe recurring
design problems specific to a certain application domain.

Mappings for bridging metamodels. Another way of reuse can be achieved by the ab-
straction from transformation rules to model mappings as is done in our framework or by
the ATLAS Model Weaver (AMW) [26]. AMW lets the user extend a very generic weaving

12

2.3 Why We Benefit from Examples?

metamodel, which allows the definition of correspondences between any two metamodels.
Through the extension of the base weaving metamodel one can easily define new weaving
operators or reuse existing ones of other weaving languages. The semantics, of these weav-
ing operators is determined by the transformation model that takes the concrete weavings
as input and generates a transformation model operating on the concrete models of two
modeling languages. This transformation model acting upon the weaving model and pro-
ducing a transformation model by itself is called Higher Order Transformation (HOT). For
an application of the combination of AMW and HOT using Atlas Transformation Language
[2] see [27]. The semantic of weaving operators, is specified by means of the HOT. This
makes it very difficult to debug a possibly unintended result of the transformation process.

Weaving models as introduced by [26] are considered as specialization of the more gen-
eral concept of a mapping model. In [33] the authors present an approach, which allows the
definition of inter-model mappings using UML. They build on the semantics of mathemat-
ical relations and apply those definitions on model mappings in the software engineering
field. With these formal foundations they define the visual syntax and the semantics of
model mappings by relying on and extending the UML.

2.3 Why We Benefit from Examples?

Examples play a key role in the human learning process. There exist numerous theories on
learning styles in some of which examples are to be seen as major artifact. For a description
of today’s popular learning style theories see for example [60, 28, 44]. All these theories,
especially the referenced ones, are quite similar concerning their notion of a learning di-
mension, e.g., visual, sensing, active, and reflective. The sensing dimension promotes the
use of examples.

Examples have proven to be helpful in the deduction of general rules, as exemplified
in [63]. It is therefore by no accident that instructive and intuitive examples are common
tools in teaching of computer science. Especially in those fields that are strongly driven
by algorithms and mathematics. Examples help to introduce abstract terms and definition
such as a state space. Nievergelt and Behr [63] use the cannibal and missionary puzzle
to introduce state spaces and in succession generalization from a concrete problem. This
way of presenting complex and abstract theories and models makes them understandable
to beginners and therefore targets the needs of students.

In order to better understand this example-based strategy to the understanding of com-
plex scientific results we will motivate the field of modal logic by Example 4.

Example 4. When trying to introduce modal logic to students, often the same intuitive and simple
example is chosen. In the literature this example is referred to as "‘wise-men puzzle"’ [36]. Basically
the problem situation looks as follows. There are three wise men and five hats, which three of them
are red and two of them are white colored. Each wise men now gets one hat put on, but does not see

13

Chapter 2 State of the Art

M1 M2 M3
1. R R R
2. R R W
3. R W W
4. W R R
5. W W R
6. R W R
7. W R W

Table 2.1: Wise-men puzzle: state space.

of which color it is made of. Instead he can see what color the hats of the other two wise men have.
Suppose now that the first two wise men say they don’t know which color their hat has. The question
remains: Does the third man know, which color his head is made of?

A solution for this problem can be easily found by first writing down all possible states as is shown
in Table 2.1. M1...M3 denotes each of the wise men and W and R stand for white and red, respectively.
In order to solve the problem we can eliminate solutions that can’t be true, assuming that the first two
wise men have said the truth and are indeed wise concerning their reasoning capabilities. Solution
number 3 and 7 can be deleted right away as one of the two wise men would know the color of his hat.
We can delete one more possible solution, if we let the second wise man take the first man’s statement
into account. His not knowing the solution too, we can also exclude number 2. Because if 2 was the
solution the second man could reason about the first man’s statement and conclude that his own hat
was red. But he does not know his hat, so we can erase 2 as possible solution. This last step is of
course most difficult and needs usually some time to think about. Now that we have only solutions
number 1,4,5 and 6 left we can say for sure that the third man wears a red hat.

This relatively simple example of reasoning about knowledge has approved itself in lec-
tures about modal logic as a starting point. The intuitive way of finding a solution, e.g.,
for the wise men puzzle may serve as basis for a more general, formal way of solving such
problems in computer logics. One modal logic capable of formalizing and solving the wise
men puzzle would be KT45n [36].

2.4 Common By-Example Approaches

MTBE was inspired by popular by example approaches, some of which we present briefly
in the following subsections. But what does by example really mean? What do all these
approaches have in common? The main idea, as the name already suggests, is to give the
software kind of examples, how things are done or what the user expects, and let it do the
rest automatically. In fact this idea is closely related to fields such as machine learning or
speech recognition. Common to all by example approaches is the strong emphasis on user
friendliness and a “short” learning curve. According to [20] the by example paradigm dates

14

2.4 Common By-Example Approaches

back to 1970 - see “Learning Structure Descriptions from Examples” in [90].

2.4.1 Query By Example

One of the most well known by example approaches was developed by Zloof in 1975. It is
called Query by Example (QBE) [93] and acts as a visual language for relational data base
management and manipulation like SQL. Data base operations originally supported by this
approach are:

• queries on tables,

• insertions on tables,

• deletions on tables,

• updates on tables,

• table creations,

• table updates,

• query data base meta information.

The main advantage of QBE lies in its simplicity, which makes QBE easy to learn and use.
This is achieved by imitating the user’s thought process, when it comes to formulating a
request to the data base. Also, this concrete syntax for the formulation of requests has the
same style and uses the same operations throughout QBE, i.e., for each of the above men-
tioned data base operations. The functionality is however limited compared to data base
query languages, such as SQL. With the rise of abstractness and reduction of complexity
one looses flexibility in the design of problem solutions. QBE is therefore not used for any
data base management scenario.

Figure 2.5 shows a simple QBE query demonstrating how the visual syntax looks like.
The central syntactical artifact in QBE is the skeleton table, which is empty at the begin-

ning of every QBE application. An arbitrary number of such empty tables will be instanti-
ated upon one working canvas, if operations on more than one table is required by the user.
These tables serve as open space for examples given by the user. Tables in QBE allow for
two different inputs:

• constant elements (e.g. 1980-01-27 in Figure 2.5) and

• example elements also called variables (e.g. ANY in Figure 2.5).

15

Chapter 2 State of the Art

PERSON SSN NAME DAY OF BIRTH

P.ANY P.ANY 1980-01-27

(a)

PERSON SSN NAME DAY OF BIRTH

P.ID P.ANY 1980-01-27

PROJECT SSN PROJECTNAME

ID P.ANY

(b)(b)

Figure 2.5: Simple retrieval of data within table PERSON.

Note that example elements are always underlined. P. has the meaning of print and there-
fore selects all the columns that should be presented in the result set of the query. Example
elements or variables are - as the name suggests - placeholders for any single tuples stored
in a specific column in that table. It follows that for every column a variable preceded by a
print operation P. is defined the result table for those columns is returned. This is of course
equivalent to projection πcolumn,...(Table) in relational algebra. Constant elements on the
contrary represent a concrete value of an attribute that has to be matched in order to return
a result set. Moreover QBE allows the specification of conditions upon attribute values that
must be satisfied.

Example 5. Having these syntactic and semantic definitions in mind one can easily understand the
example given in Figure 2.5(a). This QBE query selects the tuples consisting of SSN and NAME
from the table PERSON, whose DAY OF BIRTH equals 1980-01-27. In SQL this QBE query would
be expressed as follows:

SELECT SSN, NAME

FROM PERSON

WHERE DAYOFBIRTH=’1980-01-27’;

Example 6. Joins upon several tables can be achieved by using the same variable names across differ-
ent tables as depicted in Figure 2.5(b). Here the variable name ID is referenced by table PROJECTS
to ensure, only tuples, that are related via a distinct SSN to each other, form a solution. Again, in
SQL this QBE query looks like:

SELECT SSN, NAME, PROJECTNAME

FROM PERSON p, PROJECT pr

WHERE p.SSN = pr.SSN AND DAYOFBIRTH=’1980-01-27’;

From these two examples one recognizes that the query formulation in QBE is more in-
tuitive and easier to learn in comparison to the query language SQL. Especially when more

16

2.4 Common By-Example Approaches

complex tasks, such as grouping, are used, SQL queries soon get harder to grasp and main-
tain. The prime target audience of QBE are of course people who are not familiar with
programming languages.

2.4.2 Programming By-Example

Programming by Example (PBE) is also known in literature as Programming by Demonstra-
tion. In any case the paradigm of programming by means of visual tool support aims to
simplify the task of creating a computer program. Instead of hand coding every single in-
struction of an executable program, a tool supports the user by visual abstractions from
common programming languages. There exist various approaches how these abstractions
take place. In the following we give a few examples that illustrate some of these approaches.

Example 7. The Stagecast Creator3 [79, 77] is kind of an integrated development environment
(IDE) that lets one create simulations and games without a programming language just by knowing
semantics of visual abstractions and rules. This tool originated from KidSim developed by Cypher
et al. in 1994 [78]. The major contribution of the Stagecast Craeator is the combination of the
programming by demonstration (PBD) and the visual before-after rules paradigms. The former is
concerned about the way the user can record a certain behavior of the future program whereas the
latter is concerned about the visualization of the instructions recorded in this PBD manner.

Example 8. Consider Excel macros, which record every step the user takes to later automatically
do exactly the same again without user input. No command of Visual Basic is needed in order to
perform complex tasks. This approach is best described by the metaphor: "Watch what I do".

Example 9. Another example for PBE could be the flash timeline and its support for enabling auto-
matic animation creation. Flash also implements visual before-after rules as the user specifies some
sort of pre and post conditions for Flash instances on different keyframes, which represent discrete
points in time. Figure 2.6 shows various screenshots demonstrating this way of specifying anima-
tions. At first the user inserts a keyframe at the beginning and draws a circle. Next she creates
another keyframe some moments ahead and moves the circle, which has automatically been pasted at
the same position as the first one, to some place on right side of the canvas. Finally a motion tween is
inserted between these two points in time and the frames in between, capturing the movement of the
circle, are interpolated accordingly. This is in fact a major relief in the development of animations.
The Flash Actionscript 3.0 code, which would do this animation, is depicted in Listing 2.3.

Listing 2.3: ActionScript 3.0 code for the transition presented in Figure 2.6.
1 import f l . motion . Animator ;
2 var tes t_xml :XML = <Motion duration=" 18 " xmlns=" f l . motion .∗ "
3 xmlns : geom=" f l a s h . geom.∗ " xmlns : f i l t e r s =" f l a s h . f i l t e r s .∗ ">
4 <source >
5 <Source frameRate=" 12 " x=" 150 " y=" 151 " sca leX=" 1 " sca leY=" 1 "
6 r o t a t i o n =" 0 " elementType=" movie c l i p " instanceName=" t e s t " symbolName=" wheel ">

3www.stagecast.com

17

Chapter 2 State of the Art

Figure 2.6: Simple transition in Flash using motion tweens.

7 <dimensions >
8 <geom : Rectangle l e f t ="−40" top="−40" width=" 80 " height=" 80 "/>
9 </dimensions >

10 <transformat ionPoint >
11 <geom : Point x=" 0 . 5 " y=" 0 . 5 "/>
12 </transformat ionPoint >
13 </Source >
14 </source >
15

16 <Keyframe index=" 0 " tweenSnap=" true " tweenSync=" t rue ">
17 <tweens>
18 <SimpleEase ease=" 0 "/>
19 </tweens>
20 </Keyframe>
21

22 <Keyframe index=" 17 " tweenSnap=" true " tweenSync=" t rue " x=" 151 .95 ">
23 <tweens>
24 <SimpleEase ease=" 0 "/>
25 </tweens>
26 </Keyframe>
27 </Motion >;
28

29 var tes t_an imator : Animator = new Animator (test_xml , t e s t) ;
30 t es t_an imator . play () ;

Example 10. Besides the paradigm of PBE there exists the one of visual programming languages,
which seems to be closely related to PBE as it also fosters the development of complex programs by
means of visual abstractions. An example of these visual programming languages would be Quartz
Composer of Apple Inc. coming along since Mac OS X v10.4 Tiger. Quartz Composer is used
for efficient creation and prototyping of animations and simulations. A domain specific modeling
language (DSL) is used to represent the data that is then rendered with OpenGl. These animations
can later be easily integrated in other development environments such as Apples Cocoa or Carbon.

2.4.3 Web-Scheme Transformers By-Example

Lechner et al. [47] follow the original approach of QBE, but with extensions for defining
scheme transformers, which is demonstrated in the area of web application modeling with

18

2.4 Common By-Example Approaches

Tdef IndexForEntWithinPC

ENT
ATT

+ PC

+ IU

ATT=„SSN“

ENT

Q G

Figure 2.7: Simple TBE rule.

WebML [15]. Therefore, the original QBE approach is extended by introducing a genera-
tion part (WebML model after transformation) in the template definitions in addition to the
query part (WebML model before transformation). Finally, XSLT code is generated to trans-
form the WebML models, which are represented as XML files within the accompanying tool
WebRatio. This approach is called transformers by-example (TBE).

Example 11. Figure 2.7 shows the transformer graphical concrete syntax of the TBE approach.
On top of the rectangle appears the name of the transformer. On the left marked with a Q resides the
query template of the transformer. And on the right marked with a G we find the generative template.
Within those parts we find elements from the WebML language specification. Our query part now
selects all entity types ENT that are composed of an attribute ATT called SSN and transforms them
into a page class containing an index unit for a specific entity type. This entity type is however
connected to those entity types ENT from the query part, which have at least one attribute with
name SSN. We have highlighted this relationship with a dashed line.

19

Chapter 2 State of the Art

20

Chapter 3

Prerequisites for MTBE

Contents
3.1 The Metamodeling Stack . 22

3.1.1 The Ecore Model - Core Concepts Reviewed 22
3.1.2 Differences between Ecore and MOF 23
3.1.3 Models and Transformations . 25
3.1.4 Horizontal vs. Vertical Model Transformations 26

3.2 Metamodel Heterogeneities . 27
3.2.1 Attribute Conflicts . 28
3.2.2 Structural Conflicts . 30
3.2.3 Semantic Conflicts . 33

3.3 Model Heterogeneities . 35
3.4 Refactoring Patterns . 36

3.4.1 Patterns for Reification of Concepts 37
3.4.2 Patterns for Elimination of Abstract Concepts 38
3.4.3 Patterns for Explicit Specialization of Concepts 38
3.4.4 Patterns for Exploring Combinations of Refactored Concepts 40

3.5 Concrete Syntax vs. Notation . 41
3.6 Metamodel Metrics . 43

3.6.1 Calculating the Explicitness of Metamodels 44
3.6.2 Analysing UML 1.4 and UML 2.1 . 47
3.6.3 Metrics-Related Work . 49

3.7 Requirements for Example Models . 50

Before we introduce our MTBE approach we provide a detailed discussion on the terms
and technologies used to realize MTBE, both conceptually and practically. Metamodeling
may be performed in various ways leading to heterogeneities or hidden concepts on the
metamodel and model layer. Therefore, any MTBE approach needs to be aware of these
heterogeneities because of their strong impact on the model transformation code. One way
to cope with these heterogeneities and to solve them is based on refactoring patterns. This
is shown in this chapter. Additionally, we present a metamodel metric that is used to detect

Chapter 3 Prerequisites for MTBE

some heterogeneities or give an overview to what extent they are prevailing. Furthermore,
we explain the difference between concrete syntax and notation, as these two concepts are
central to the MTBE approach.

3.1 The Metamodeling Stack

Model Transformation By-Example defines not a new transformation language but instead
relies on existing implementations of such languages. Those implementations in turn rely
on the metamodeling structures of the development environment, such as Eclipse. In the
case of MTBE we build upon the Eclipse Modeling Framework (EMF) [12]. The EMF defines
Ecore, which acts as a basic modeling language for the creation of metamodels. Ecore is ba-
sically an implementation of the OMG’s Meta Object Facility (MOF) [68]. However, instead
of implementing all details of MOF, Ecore comprises just the EMOF specification and, thus,
leaves out many of the core constructs of UML 2.0. The Ecore model is depicted in Figure
3.2 and is described in more detail in Subsection 3.1.1.

The UML Infrastructure specification [65] presents a four-level metamodel hierarchy that
relates MOF to UML, Models of UML and runtime instances based on these UML models.
The levels are labeled as M3, M2, M1 and M0. Between these layers there exist so called
«instanceOf» relationships. The metamodeling architecture is also shown in Figure 3.1. In
the context of MTBE we refer to the metamodeling structure as modelware technical space.
We replaced the MOF model on M3 by Ecore that acts as our metametamodel for defining
metamodels, e.g. MM1, to represent modeling languages. The relation among models on
different layers is stereotyped by the label «conformsTo» as suggested in Bézivin [13]. The
MTBE approach is concerned with the modeling languages and their models. Since, we do
not include runtime instances in our work, we shaded this layer in Figure 3.1. The major
artifacts in MTBE are therefore metamodels and models.

3.1.1 The Ecore Model - Core Concepts Reviewed

As mentioned earlier the Ecore model is an implementation of the EMOF specification with
a focus on tool integration and interoperability issues, in contrast to the OMG’s focus on
meta data repositories. Figure 3.2 shows nearly all class definitions of Ecore. Meta classes
in gray represent abstract classes. References in blue depict so called derived EReferences
and are computed automatically from other existing and required EReferences. The core
concepts of Ecore and for the building of metamodels are the metaclasses EClassifier and
EStructuralFeature with their concrete specializations EClass, EAttribute and EReference, re-
spectively. As described in the figure EAttribute and EReference inherit both from the super
class EStructuralFeature and are contained via the eStructuralFeature reference in an EClass
instance. Ecore supports all simple Java types like boolean, int, float as well as various

22

3.1 The Metamodeling Stack

M3 Ecorep
ac

e

OMG
Layers

M2

M3

«conformsTo»

MM1ec
hn

ic
al

 S
p

M2

«conformsTo»

MM1
od

el
w

ar
e

Te

M1 M1M
o

M0 Runtime
Instances

«conformsTo»

Figure 3.1: The OMG’s metamodeling stack in the light of MTBE [68]

object types such as java.util.Date. For the definition of modeling languages also meta-
classes for Operations or Packages for structuring are provided. The EFactory reflects an
implementation specific design pattern as the name already suggests. EModelElement and
ENamedElement may be seen as convenience classes encapsulating common features.

3.1.2 Differences between Ecore and MOF

Although the above presented model strongly relates to MOF, there exist some major dif-
ferences in the design of these two meta modeling languages, which are briefly discussed
in this subsection.

• References vs. Associations EMOF does not support the modeling of relationships
between elements. CMOF on the other side imports UML constructs to attain the con-
cept of an Association. This Association class is responsible for navigability expressed
by ownedEnd and navigableOwnedEnd features pointing to Properties acting as roles.
For a visualization in terms of a UML class diagram see [68]. Because of the use of
UML association this also includes the concept of a role. Formal Semantics for both
are found in [56]. In general, UML associations are bidirectional allowing to obtain the
classes on each end. In Ecore we have the concept of an EReference in terms of a meta
class to establish links or edges between modeling entities or nodes. An EReference is

23

Chapter 3 Prerequisites for MTBE

Figure 3.2: The Ecore metamodel for creating models [22].

24

3.1 The Metamodeling Stack

always part of an EClass an has an eType, which points to one specific EClass including
the one it is contained within to allow for self references. In contrast to MOF ,an ERef-
erence only allows navigating in one direction, i.e., an instance of EClass containg the
EReference, navigates to the the other EClass but not vice versa. In order to allow navi-
gating both directions one has to define a second EReference on the other EClass and to
declare the two separate EReferences opposite to each other with the eOpposite feature.
Another difference is that Ecore does not explicitly support the concept of a role. ERef-
erences do have attributes for name and multiplicity, but this is not a compensation for
UML roles.

• Generalization When modeling generalization among EClasses one has to be aware
of the fact, that although Ecore allows multiple inheritance by defining eSuperTypes
with multiplicity 0..n, Java does not. However, Java offers an alternative for multi-
ple inheritance by providing the construct of an interface that is implemented by sub
classes acting as kind of a super class. But we can specify, whenever inheriting from at
least two EClasses, which of the EClasses shall be the one getting extended in Java. In
graphical concrete syntax this is annotated in a concrete metamodel with the stereo-
type «extends» at one generalization link.

• Data Types At the data type level, Ecore provides Java simple types and some object
types as explained above. MOF on the other hand imports the UML PrimitiveTypes
package from the UML infrastructure, which consists of four basic primitive types
that shall be reused.

3.1.3 Models and Transformations

Now that we have introduced a language for meta modeling and have explained its
core constructs, we turn to the field of model transformations and how they fit into our
modelware technical space. Bézivin et. al. [9] argue for model transformations being just
another kind of models, i.e., transformation models. They say:

“Model transformations can be abstracted to a transformation model.”

Figure 3.3, which is based on their work, illustrates the general notion of a transfor-
mation model. Refinements of this presentation are found in [9]. In the left part of the
figure we have marked the OMG’s layers as well as corresponding example modeling
artifacts MM1 and M1. Further, we have sketched in a second metamodel MM2 with
corresponding model M2. As we already know from Chapter 2, a model transformation
operates on a given source model to produce a specified target model. In addition,
this model transformation has to be aware of the metamodels representing the types or

25

Chapter 3 Prerequisites for MTBE

M3 Ecore

OMG
Layers

M2

M3

«conformsTo»

MM1 MM2TM MMM2

«conformsTo»

MM1 MM2TM MM

M1 M1

M0 Runtime
Instances

«conformsTo»

M2TM
«transforms» «transforms»

Figure 3.3: Model transformations in the modelware technical space.

concepts of these models, i.e., the instances of these metamodels. A model transformation
is interpreted as a transformation model, e.g., TM in Figure 3.3, which is an instance of a
transformation metamodel TM MM . This metamodel for defining model transformations
is in turn an instance of the metametamodel Ecore. In Figure 3.3 following [9] we introduce
two new association types. These are «transforms» and «knows». So a transformation
model needs to know at least two different metamodels and transforms at least between
two models. Note that we do not differentiate between source and target models. In
general, we believe a transformation should not have a distinct direction. Instead, it
should be possible to apply a transformation model both directions. However, this does
not apply to lots of transformation language implementations. We also point out that a
transformation model can be applied to various input models and can generate more than
one output models at a time.

3.1.4 Horizontal vs. Vertical Model Transformations

MTBE primarily targets the use case of horizontal model transformations. But what about
vertical model transformations from, e.g., platform independent to platform specific models
(PIM, PSM)? A vertical model transformation results in a decrease in abstraction, whereas a
horizontal model transformation leaves the level of abstraction unchanged. If UML is used
to create an abstract model, i.e. a PIM, one can easily define stereotypes to extend the UML
metamodel. The mapping of stereotypes has not yet been tested in the context of MTBE.
Though this type of extension mechanism should not pose any problem.

Another way to model in a more concrete way building a separate metamodel. Then
all concepts are represented in terms of a metamodel independent of the model. Taking

26

3.2 Metamodel Heterogeneities

Metamodel
Conflict

Attribute Structural Semantic
Conflict Conflict Conflict

DataType
Conflict

Property Definition
Conflict

Concept Definition
Conflict

Naming
Conflict

Scaling
Conflict

DefaultValue
C fli t

Discriminator/
Attribute/

Reference Conflict

Domain/Range
C fli t

Attribute/Class
Conflict

Reference/Class
C fli t

Synonym

HomonymConflict

ValueRepresentation
Conflict

Intensional
Conflict

Conflict

1:n Property
Conflict

Conflict y

Reference/
Attribute Conflict

Multiplicity
Conflict

1:n Reference
Conflict

1:n Attribute
Conflict

Missing Properties

Implicitly Missing
PropertiesConflict

Extensional
Conflict

Properties

Subset

Overlapping

6© 2007 BIG Vienna University of Technology, TK & IFS University Linz

• Aggregation

• Reference: Multiplicity, Ordered,
U i T iti Cl

Figure 3.4: Taxonomy of schema integration conflicts.

two different metamodels as input MTBE can also be applied to vertical model transforma-
tions if desired. The reason why vertical model transformations are not the main objective
of MTBE is, that there are typically no such big differences between the two metamodels
neither in graphical notations nor in the concepts being used. We think that automated
matching tools such as Coma++ [6] produce faster mapping results than manually defined
correspondences.

3.2 Metamodel Heterogeneities

There has been a tremendous amount of work on analyzing and classifying different types
of structural integration conflicts between schemas which represent the same "real world"
domain. For this work, we reuse classifications of structural integration conflicts from
[Kim], [KashyapSheth], [Härder], [Conrad], [NaumannLegler], and [Schmitt] as a basis for
our classification of model integration conflicts.

When using a meta modeling language, such as MOF, it is quite likely that semantically
equivalent modeling concepts are defined in different ways with different MOF concepts.
Therefore, in the next paragraphs we look at integration conflicts between semantically

27

Chapter 3 Prerequisites for MTBE

equivalent metamodels which are not identically defined. Instead, they are defined us-
ing different MOF modeling concepts and modeling styles. Nevertheless, they present the
same modeling concepts.

Figure 3.4 represents our taxonomy of schema integration conflicts which are classified
into the following three main categories:

• Attribute Conflicts: This category covers conflicts which may occur between two cor-
responding attributes, i.e., the attributes are equivalent but not identically defined.
Consequently, the values of the attributes are not the same, although the represent the
same information.

• Structure Conflicts: Different structures representing equivalent modeling languages
are the result either of defining properties of modeling concepts in different ways or
of defining properties as concepts and vice versa.

• Semantic Conflicts: This category covers conflicts due to using different names for the
same concept (synonyms) or same names for different concepts (homonyms). Further-
more, a concept may be a subset of another one or concepts may overlap. These four
conflicts are with regards to extensional conflicts. In addition, we look at intensional
conflicts such as (implicitly) missing properties.

In the following subsections, we elaborate on each category in more detail. In particular,
we first describe the integration conflict in general and then discuss a typical integration
example.

3.2.1 Attribute Conflicts

An attribute conflict occurs, when a semantic relationship between values of two attributes
exists, but the attributes are representing the same information with different values or
the attributes have different meta-properties. When using MOF-based metamodels, the
following mismatches between attributes may occur:

• Data type: Semantically equivalent attributes can have different data types. Conse-
quently, attribute values are syntactically different represented. In such cases it must
be observed, if the values may be converted (restricted or unrestricted) or not. In MOF
Strings, Integers, and Booleans may be used as data types.

Example 12. Figure 3.5 illustrates the case of a data type mismatch, where in language (a) the
upper multiplicity attribute maxMulti is ot type Integer whereas in (b) the maxCard attribute
is of type String.

28

3.2 Metamodel Heterogeneities

visibility : Enum [0..1]
PropertyData type

Mismatch

isPrivate : Boolean
Attribute1

2 5s b y u [0]
maxMulti : Integer
minMulti : Integer= 0

Scaling
Mismatch

Default value
Mismatch

s a e oo ea
maxCard : String
minCard : Integer=1 M2

M1

2

3

1

3

4

Value
representation

Mismatch

Multiplicity

M1

visibility = protected
maxMulti = -1

name : Property
isPrivate = false
maxCard = N

name : Attribute
4

5

T

Mismatch
5

(a) (b)

10© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Figure 3.5: Attribute integration conflicts, (a) and (b) being different modeling languages.

• Default value: If default values are varying and the multiplicity of at least one at-
tribute is optional, i.e., zero-to-one multiplicity, it must be ensured that the default val-
ues correspond to each other or a proper mapping function for the default values is
provided.

Example 13. Mapping 3 in Figure 3.5 represents a default value mismatch for the attributes
minMulti and minCard, whose default values are 0 and 1, respectively. As these defaults are
not identical a separate mapping function has to be provided for the an integration task.

• Multiplicity: An attribute has an upper and lower multiplicity which are typically
zero-to-one, one-to-one, zero-to-many, or one-to-many. The default value for an attribute’s
multiplicity constraint is one-to-one. Conflicts may occur when two corresponding at-
tributes have different upper or lower multiplicities. For example, when one attribute
has a multiplicity zero-to-one and the other one-to-one, it must be ensured that the one-
to-one attribute is set in any case, also when the zero-to-one attribute is not set.

Example 14. The attribute visibility in Figure 3.5(a) has a multiplicity of zero-to-one in
contrast to isPrivate in (b), which is required.

• Scaling: Attributes are often differently defined with respect to the meaning of scales.
Furthermore, this category also comprises cases in which one domain is a subset of
another one or domains are overlapping. Mappings between attributes having dif-
ferent scales can be expressed in terms of functions or lookup tables. However, this
conflict is often responsible for applying injective instead of bijective mappings.

Example 15. The Visibility attribute of Property in Figure 3.5 is of type Enum, which may
be any possible visibility feature such as private, public, protected and package. The attribute
isPrivate of Attribute is of type Boolean and can therefore only represent a subset of possible
values compared to the Visibility attribute.

29

Chapter 3 Prerequisites for MTBE

Property expressed as (a)
Discriminator, (b) Attribute, (c)
Reference

C1
a1

2 {id}a2 {id}

Class ClassClass

Attribute
* *Discriminator

vs. 1

isID : Boolean
Attribute

Attribute IDs

Attribute

DescAtt IDAtt

* *

M2

{isID?}
1

2

3

vs.
Attribute

Attribute
vs.

Reference

1

2

M1C1:Class

a1:DescAtt 2 IDAtt

c1 : Class

a1:Attribute a2:Attribute

c1 : Class

IDs

Discriminator
vs.

Reference
3

(a) (b) (c)

a1:DescAtt a2:IDAtt
a1:Attribute a2:AttributeisID = false isID = true

11© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Figure 3.6: Property expressed as (a) discriminator, (b) attribute, (c) reference.

• Value representation: It is also possible that semantic equivalent attribute values are
varying in their representation. This is typically the case when different symbols are
used for the same concepts.

Example 16. The data type mismatch in mapping 1 of Figure 3.5 also has value representation
mismatch as consequence as different symbols are used for specifying upper bounds of multi-
plicities. In (a) we could encode unbounded multiplicity by the value -1 whereas in language
(b) we could use a * to allow for an arbitrary number of elements.

3.2.2 Structural Conflicts

This category comprises integration conflicts arising when equivalent modeling concepts
are expressed with different metamodel structures. Different structures mainly result on
the one hand from properties of equivalent modeling concepts defined with different mod-
eling elements (cf. Figure 3.6a property definition conflicts) and on the other hand from
the fact that concepts may be represented by attributes or references instead of classes (cf.
Figure 3.6b concept definition conflicts). In the following, we elaborate on these two conflict
subcategories.

Property Definition Conflicts

Discriminator/Attribute/Reference Conflict: MOF allows many ways to define proper-
ties of modeling concepts. In practice, three distinct variants of property definitions are
often occurring in metamodels. The first variant is that a property can be expressed via a
discriminator of an inheritance branch and at runtime the property can be derived by look-
ing up the instantiated class. The second variant is that the property is defined with an
additional attribute, and finally the third variant is that the property can be expressed by
using an additional reference.

30

3.2 Metamodel Heterogeneities

prefix : String
Class

name : String
Class

1

2

superClassessubClasses

* *

isID : Boolean
Attribute

DescAtt IDAtt
*

*

*

prefix : String
name : String

Reference Direction
Mismatch1

3

M2isID : BooleanDescAtt IDAtt

1:n Reference
Mismatch

1:n Attribute
Mismatch2

3

M2
M1C1:Class

subClasses

C1:Class
superClasses

C2:Class

a1:DescAtt a2:IDAtt

C2:Class

a1:Attribute a2:Attribute
isID = false isID = true

(a) (b)

12© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Figure 3.7: Reference direction and property set/subset mismatch.

Example 17. In Figure 3.6 the mentioned variants are shown by a concrete example. Each variant
represent the same information, namely that an attribute is either identifying or descriptive, however
the metamodels have quite different structures. Figure 3.6(a) shows that a Class can have arbitrary
Attributes whereas Attribute is an abstract class and only the concrete subclasses DescAtt and IDAtt
can be instantiated. In Figure 3.6(b) an equivalent definition is illustrated by using the attribute isID
in the class Attribute which is used as a flag, instead of using additional subclasses. Finally, Figure
3.6(c) uses an additional reference IDs to mark the set of identifiable attributes. Even though, each
metamodel leads to different abstract syntaxes of the models, they represents the same information.
Consequently, there exists an isomorphism for transformation models between these representations
without loosing information.

Domain/Range Conflict: This integration conflict results from the fact that in MOF only
uni-directional references can be modeled, i.e., no bi-directional association as in UML are
possible, and in most cases it does not make any difference, if a reference is modeled from
the class A to the class B or vice versa. For example, when one wants to define the concept of
inheritance between classes in a metamodel, this can be done by saying "a class has arbitrary
subclasses" or alternatively "a class has arbitrary superclasses". It has to be mentioned that
independent which alternative is chosen, it is possible to compute the inverse reference.

Example 18. Figure 3.7 shows the aforementioned example of defining the inheritance concept for
classes by means of references (cf. Figure 3.7 subClasses and superClasses) which are the inverse to
each other. If one wants to transform models from the left to right hand side, the reference super-
Classes must be computed as by the following OCL constraint.

Reference superClasses:= Class.allInstances()
->select(e|e.subClasses = obj1);

An analogous computation has to be done when moving form the right to left hand side for the
reference subclasses as shown below.

31

Chapter 3 Prerequisites for MTBE

Reference subClasses:= Class.allInstances()
->select(e|e.superClasses = obj1);

1:n Property Conflict

1:n Reference Conflict: This kind of conflict category represents the case that one refer-
ence of a metamodel corresponds to more than one references of another metamodel. The
additional complexity of these conflicts is that when moving from one to n references, we
have to split the single reference in several subsets by looking at attribute values or refer-
ence links of the referenced objects. Consequently, when moving form n references to one
reference, the reference sets must be united to one set.

Example 19. Figure 3.7 illustrates the mismatch of sets in mapping 3. In (a) a Class can have
two different sets of attribute types, i.e., DescAtt and IDAtt, whereas in (b) Class just references
Attributes. Due to mapping 3 these we have to merge the sets of DescAtts and IDAtts when trans-
forming from (a) to (b) or split the set of Attributes when transforming from (b) to (a). Note, that in
the latter case a proper constraint has to be defined on the Attribute of (b), which allows for splitting
up a single set into two.

1:n Attribute Conflict: An attribute value normally contain one information unit, how-
ever, sometimes, one attribute value represents several information units. This typically is
a design decision if one attribute is used to store more information units or if for each infor-
mation unit a separate attribute is modeled. If an attribute is used to hold more than one
information units and corresponds to a set of attributes, the single value must be split into
several values, which are then assigned to n attributes. Going the other way round, several
values must be concatenated into one.

Example 20. In Figure 3.7 an attribute conflict is shown in mapping 2. Here we have a two-to-one
mapping from attributes prefix and name to name. Prefix and name must therefore be concatenated
when moving from (a) to (b) and name must be split properly when moving from (b) to (a). For the
latter case a meaningful mapping must also specify proper tokens or constraints, which allow to split
up a single value.

Property/Concept Conflicts

Attribute/Class Conflict: An attribute/class mismatch occurs, when a concept is mod-
elled as an attribute in one metamodel and in another metamodel as a class, which contains
the attribute. This means, on the instance level, the attribute values must be converted into
objects and also the structure must be ensured by linking the two objects.

Example 21. As an example consider mapping 1 in Figure 3.8, where on one side of the mapping
attributes maxCard and minCard are contained in the “main” class Attribute itself (cf. a), but on
the other side these attributes are separated into the class Multiplicity.

32

3.2 Metamodel Heterogeneities

Generalization2

Attribute/Class
Class

Class
1

superClasses

*

isOverlapping

superClassessubClasses * *

*
maxCard
minCard

Attribute Attribute

/
Mismatch

Reference/Class
Mismatch

* *
2

maxCard
minCard

Multiplicity
minCard

1

(a) (b)

Reference/Class
Mi t h

() ()

Mismatch

Reflexive
Reference

Association
Object

Connector
ObjectReference Object Object

13© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Figure 3.8: Concept definition conflicts.

Reference/Class Conflict: In one metamodel, only a reference is modeled and in another
metamodel a class is defined, which can be seen similar to an association class in UML. This
means, on the instance level, the reference link must be converted into an object and for
ensuring the structure the object must be linked with the containing and referencing objects
of the source reference.

Example 22. Figure 3.8 illustrates a reference/class conflict for the concept of generalization of (a)
and (b) in mapping 2. In (a) we modeled the the generalization concept as simple reference called
superClasses. However, in (b) we introduced an additional class called Generalization to model
inheritance graphs.

3.2.3 Semantic Conflicts

Naming Conflicts

Under the category naming conflicts we subsume conflicts due to lexical representation of
element names. This kind of conflict only complicates the discovery of semantically related
elements, i.e., matching phase, however, after recognizing naming conflicts, no additional
complexity results in the mapping phase.

Synonym Synonyms describe the same concept, however, they use different terms. In
metamodels, attributes, references, and classes can be named differently, although they rep-
resent the same concept.

33

Chapter 3 Prerequisites for MTBE

Homonym Homonyms use the same terms, however, they elements stand for different
concepts. This means, in metamodels, elements with the same name can stand for different
concepts.

Extension Conflicts

The extension of a set is its members or contents. This means, talking about metamodel
classes, the extension defines all instances of a class. When comparing the extensions of
two semantically related classes, the following situations may occur: equal, distinct, subset,
and overlapping. The first two situations are no source for integration conflicts; however, the
second two are.

No Conflict Cases Equal: This means, two concepts are semantically equivalent and also
the extensions of the two concepts are the same. In such cases, a simple one-to-one corre-
spondence is enough for describing the mappings, which typically do not lead to an inte-
gration conflict. Distinct: If the extensions of two concepts have no intersection, then no
semantic relationship should exist between the two concepts. Consequently, no mappings
should occur between the two concepts not leading to an integration conflict.

Conflict Cases Subset: Two concepts can be semantically related, however, the extension
of one concept may be only a subset of the extension of the other concept. This means, a
condition is necessary in order to identify the subset which is actually semantically equiva-
lent.

Overlapping: This case is even more complicated than the subset case, because both sides
require conditions to identify which parts actually match.

Intension

The intension of a set is its description or defining properties. This means, when we are
talking about the intension of a class, we talk about the properties of the class. In MOF
attributes and references represent properties of classes. When two classes which are se-
mantically related are compared, also the attributes and the references of the classes should
match. However, due to different viewpoints and slightly different modeling domains, not
all attributes and references matches.

Missing Properties It may occur that two semantically related classes have different prop-
erties. Sometimes the properties can be derived from other information, like the type of the
object (cf. c2) or other properties (derived properties), but often they cannot be automat-
ically computed, because the information is simply not present in the metamodel. The
resulting problem of missing properties is 0:1 mappings. The problem is that the values of

34

3.3 Model Heterogeneities

Property expressed as (a)
Discriminator, (b) Attribute, (c)
Reference

C1
a1

2 {id}a2 {id}

Attribute

Implicitly Missing Property

isID : Boolean
Attribute

DescAtt IDAtt
{isID?}

/isID=false /isID=true/isID=false /isID=true
(a) (b)

14© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Figure 3.9: Implicitly missing property.

these kind of features cannot be set with values of the DSL models. In order to produce valid
UML models, we must distinguish between optional and mandatory features. The first case
is that the feature is optional leading to no problems because a null value can be assigned.
The second case is the more problematic, namely if the UML attribute is mandatory. We
can check if a default value is available for this attribute. If no default value is defined for
the feature, the user must specify a value in the mapping model which is automatically as-
signed for this particular feature. In case, properties have standard values, these values can
be implied. If this is not possible, then in the integration solution the user must give values
for such integration scenarios.

Implicit Missing Properties When comparing two semantically equivalent classes, even
if one class has one property missing compared to the other, often it is possible that this
property can be inferred via the type and can be seen as implicitly available with a standard
constant. This problem is related to Property Definition Conflicts of Section 3.2.1. Example:
When we are comparing the metamodels in Figure 3.9(a) and (b), it seems that the class
Class in Figure 3.9(b) has one additional property, namely isAbstract. However, this infor-
mation can be expressed with the type information in Figure 3.9(a), thus it can be seen, that
the two subclasses have an additional attribute with a constant value, e.g. DescAtt has a
derived constant attribute isID with the value false.

3.3 Model Heterogeneities

In data engineering additionally to schema conflicts also conflicts on the data layer have
been studied. Since the integration scenario was merging two or more schemas into one
integrated schema as well as merging data from various sources into one representation,
typing errors, outdated data, or different representations have been taken into considera-
tion. Our primary tool integration scenario is the transformation of one model into another.
More specifically, we have to create a new target model from an existing source model.
Therefore, the reported data integration conflicts are not relevant. Nevertheless, some inte-

35

Chapter 3 Prerequisites for MTBE

NamedElement
name : String

C

PD

Class
isAbstract : Boolean

C

subclass *
*

superclass
PD

owningClass 0..1

AssociationC

0..10..1 association

2..*

owning-
Association

gyProperty
aggregation : Kind
lower : Integer
upper : Interger

PD

PD

PD

C

*

2..

ownedEnd
*

a

d1

f

memberEnd

ownedAttribute

{xor} d2

f

Ps
eu

do
-O

nt
ol

og

Kind
none
shared
composite

PD

PD

PD

E

Class
name : String

C

PD

AbstractClassC

ConcreteClassC

{disjoint}
C

PD

association 1

1
owning-

Association owning-
Class

e bAssociation
name : String

d2

d
On

to
lo

gy
P

C

PD 1 c

GeneralizationC

1

*
1
*

CompositionP.C
RoleC

Multiplicity
upper : Integer
lower : Integer

C

PD

association

memberEnd

1

2..*
{disjoint}

0..1

PD Re
fa

ct
or

edsubClasssuperClass

{disjoint}

Property
name : String

C

PD

SharedCompositionP.C

NonCompositionP.C

AttributeCNonAttributeC

{disjoint}

RoleC

NonRoleC

ownedEnd *c
AttributeCNonAttributeC

* ownedAttribute

NavigableRole NonNavigableRole IntrinsicAttribute

g

U U U

Attribute
Role

NonAttribute
Role

Attribute
NonRole

C
C

C
C

C

C

Figure 3.10: Part of the UML kernel as pseudo-ontology and as refactored ontology.

gration issues cannot be answered by looking at the metamodel layer only. Even if meta-
models are identically defined, differences between languages are possible, which can only
be determined with the help of instances of the metamodels, i.e., the models, and their use
and interpretation. This is due to the fact that the semantics of the modeling languages are
not defined within language definitions; instead they are only implemented in tool support
such as code generators or simulation environments.

3.4 Refactoring Patterns

The aim of metamodeling lies primarily in defining modeling languages in an object ori-
ented manner leading to efficient repository implementations. This means that in a meta-
model not necessarily all modeling concepts are represented as first-class citi-zens. Instead,
the concepts are frequently hidden in attributes or in association ends. We call this phe-
nomenon concept hiding. In order to overcome this problem, we propose refactoring as
a second step in the lifting process, which semi-automatically generates an additional and
semantically enriched view of the conversion step’s output, i.e., a what we call pseudo-

36

3.4 Refactoring Patterns

ontology. For a detailed discussion on this conversion step and the term pseudo-ontology
we refer the interested reader to [41]. However, the motivation for the shift from metamod-
els to ontologies is the available tool support for matching and the reasoning possibilities
coming along with ontologies. Generally, we do not distinguish between metamodels and
ontologies. We present the refactoring work we have done for ontologies in this section as
the refactoring step can of course be directly applied to metamodels. Thus, refactoring also
is of relevance to MTBE. First, with refactoring it is possible to solve heterogeneity prob-
lems. And second, one needs to be aware of possible refactorings when defining the CS,
because many hidden concepts have a distinct representation in the CS, though.

Figure 3.10 gives an example of how concept hiding is achieved in metamodels. In the
upper part it shows a simplified version of the UML metamodel kernel which is defined in
the UML Infrastructure [19], represented as a pseudo-ontology. As we see in Figure 3.10 the
pseudo-ontology covers twelve modeling concepts but uses only four classes. Hence, most
of the modeling concepts are implicitly defined, only. To tackle the concept hiding problem,
we propose certain refactoring patterns for identifying where possible hiding places for
concepts in metamodels are and also how these structures can be rearranged to explicit
knowledge representations. The refactoring patterns given in the following subsections are
classified into four categories. The description of each pattern is based on [11] and consists
of pattern name, problem description, solution mechanism, and finally, of an example based
on the UML kernel. The kernel is shown in the upper part of Figure 3.10 as a pseudo-
ontology (before applying the patterns) and in the lower part of Figure 3.10 as a refactored
ontology (after applying the patterns). The numbers in the figure identify where a certain
pattern can be applied and how that structure is refactored, respectively.

3.4.1 Patterns for Reification of Concepts

a) Association Class Introduction A modeling concept might not be directly represented
by object properties but rather hidden within an association. In particular, it might be repre-
sented by the combination of both properties representing the context in which these object
properties occur.

Refactoring: A new class is introduced in the ontology similar to an association class in
UML to explicitly describe the hidden concept. Since there is no language construct for
association classes in OWL, the association is split up into two parts which are linked by
the introduced class. The cardinalities of the new association ends are fixed to one and the
previously existing association ends remain unchanged.

Example 23. The combination of the roles of the recursive relationship of Class, sub-class and su-
perclass, occurs in the context generalization.

37

Chapter 3 Prerequisites for MTBE

b) Concept Elicitation from Properties In metamodels it is often sufficient to implement
modeling concepts as attributes of primitive data types, because the primary aim is to be
able to represent models as data in repositories. This approach is in contradiction with
ontology engineering which focuses on knowledge representation and not on how concepts
are representable as data.

Refactoring: Datatype properties which actually represent concepts are extracted into
separate classes. These classes are connected by an object property to the source class and
the cardinality of that object property is set to the cardinality of the original datatype prop-
erty. The introduced classes are extended by a datatype property for covering the value of
the original datatype property.

Example 24. The properties Property.lower and Property.upper represent the concept Multiplicity
which is used for defining cardinality constraints on a Property.

3.4.2 Patterns for Elimination of Abstract Concepts

c) Abstract Class Elimination In metamodeling, generalization and abstract classes are
used as a means to gain smart object oriented language definitions. However, this benefit
is traded against additional indirection layers and it is well-known that the use of inheri-
tance does not solely entail advantages. Furthermore, in metamodels, the use of abstract
classes which do not represent modeling concepts is quite common. In such cases gener-
alization is applied for implementation inheritance and not for specialization inheritance.
However, one consequence of this procedure is a fragmentation of knowledge about the
concrete modeling concepts.

Refactoring: In order to defragment the knowledge of modeling constructs, the datatype
properties and object properties of abstract classes are moved downwards to their concrete
subclasses. This refactoring pattern yields multiple definitions of properties and might be
seen as an anti-pattern of object oriented modeling practice. However, the properties can be
redefined with more expressive names (e.g. hyponyms) in their subclasses.

Example 25. The property NamedElement.name is used for class name, attribute name, association
name and role name.

3.4.3 Patterns for Explicit Specialization of Concepts

d) Datatype Property Elimination In metamodeling it is convenient to represent similar
modeling concepts with a single class and use attribute values to identify the particular
concept represented by an instance of that class. This metamodeling practice keeps the
number of classes in metamodels low by hiding multiple concepts in a single class. These
concepts are equal in terms of owned attributes and associations but differ in their intended
semantic meaning. For this purpose, attributes of arbitrary data types can be utilized but in
particular two widespread refinement patterns are through booleans and enumerations.

38

3.4 Refactoring Patterns

d1) Refactoring for Boolean Elimination Concepts hidden in boolean attribute are un-
folded by introducing two new subclasses of the class owning the boolean, and defining
the subclasses as disjoint due to the duality of the boolean data type range. The subclasses
might be named in an x and non-x manner but descriptive names should be introduced into
the ontology by the user.

Example 26. Class.isAbstract is either true or false, representing an abstract or a concrete class,
respectively.

d2) Refactoring for Enumeration Elimination Implicit concepts hidden in an enumera-
tion of literals are unfolded by introducing a separate class for each literal. The introduced
classes are subclasses of the class owning the attribute of type enumeration and are defined
as disjoint, if the cardinality of the datatype property is one, or overlapping if the cardinality
is not restricted.

Example 27. Property.aggregation is either none, shared, or composite, representing a nonCompo-
sitionProperty, a sharedCompositionProperty or a CompositionProperty.

e) Zero-or-one Object Property Differentiation In a metamodel the reification of a con-
cept is often determined by the occurrence of a certain relationship on the in-stance layer.
In such cases, the association end in the metamodel has a multiplicity of zero-or-one which
implicitly contains a concept refinement.

Refactoring: Two subclasses of the class owning the object property with cardinality of
zero-or-one are introduced. The subclass which represents the concept that realizes the rela-
tionship on the instance layer receives the object property from its superclass while the other
subclass does not receive the object property under consideration. Furthermore, the object
property of the original class is deleted and the cardinality of the shifted object property is
restricted to exactly one.

Example 28. Property.association has a multiplicity of zero-or-one, distinguishing between a role
and a nonRole, respectively.

f) Xor-Association Differentiation Xor-constraints between n associations (we call such
associations xor-associations) with association ends of multiplicity zero-or-one restrict mod-
els such that only one of the n possible links is allowed to occur on the instance layer. This
pattern can be used to refine concepts with n sub-concepts in a similar way like enumeration
attributes are used to distinguish between n sub-concepts. Thus, xor-associations bind a lot
of implicit semantics, namely n mutually excluding sub-concepts which should be explicitly
expressed in ontologies.

Refactoring: This pattern is resolvable similar to the enumeration pattern by introducing
n new subclasses, but in addition the subclasses are responsible for taking care of the xor-
constraint. This means each class receives one out of the n object properties, thus each

39

Chapter 3 Prerequisites for MTBE

subclass represents exactly one sub-concept. Hence, the cardinality of each object property
is fixed from zero-to-one to exactly one.

Example 29. Property.owningAssociation and Property.owingClass are both object properties with
cardinality zero-or-one. At the instance layer it is determined if an instance of the class Property is
representing an attribute (contained by a class) or a nonAttribute (contained by an association).

3.4.4 Patterns for Exploring Combinations of Refactored Concepts

Refactorings that introduce additional subclasses, i.e., patterns from category Specialization
of Concepts, must always adopt a class from the original ontology as starting point since
the basic assumption is that different concept specializations are independent of each other.
Hence, in the case of multiple refactorings of one particular class, subclasses introduced by
different refactorings are overlapping. In Figure 3.10 this is denoted using a separate gener-
alization set for each refactoring. However, this approach requires an additional refactoring
pattern for discovering possible relation-ships between combinations of sub-concepts.

g) Concept Recombination In order to identify concepts which are hidden in the ontology
as mentioned above, the user has to extend the ontology by complex classes which describe
the concepts resulting from possible sub-concept combinations.

Refactoring: User interactions are required for identifying the concepts behind the com-
bination of concepts by evaluating the combinations in a matrix where the dimensions of
the matrix are the overlapping generalization sets in consideration.

Example 30. When studying the textual descriptions of the semantics of UML one finds out that
some relationships between the different kinds of properties define additional concepts which are
not explicitly represented in the ontology. In particular, the evaluation of role/nonRole and at-
tribute/nonAttribute combinations leads to the additional intersection classes depicted in the lower
part of Figure 3.10.

Summarizing, the results of the refactoring step, either of ontologis or metamodels are
characterized as follows:

• Only datatype properties which represent semantics of the real world domain (on-
tological properties) are contained, e.g. Class.className, Multiplicity.upper. This
means no datatype properties for the reification of modeling constructs (linguistic
properties) are part of the refactored ontology.

• Most object properties have cardinalities different from zero-or-one, such that no con-
cepts are hidden in object properties.

• Excessive use of classes and is-a relations turns an ontology or a metamodel into a
taxonomy.

40

3.5 Concrete Syntax vs. Notation

M3 Ecorep
ac

e

OMG
Layers

M2

M3

«conformsTo»

MM1ec
hn

ic
al

 S
p

CS MMMap MMM2

«conformsTo»

MM1
od

el
w

ar
e

Te CS MMMap MM

M1 M1M
o

M0 Runtime
Instances

«conformsTo»

CS MMap M
«relates»

Figure 3.11: Modeling languages and their concrete syntax.

3.5 Concrete Syntax vs. Notation

So far we have been addressing the definition of the abstract syntax (AS) of a modeling
language by means of metamodels, only. However, modeling languages often also comprise
graphical concrete syntax. We then talk about visual modeling languages. In what follows
we simply talk about concrete syntax (CS), but in general we mean graphical concrete syntax
unless stated otherwise.

Definition The graphical concrete syntax is part of a visual modeling language and defines in a
formal way how abstract syntax (AS) elements are rendered to the screen. This formal definition for
CS elements includes for example shape, appearance, layout and position.

For an in depth discussion on the topic of CS see [31, 7, 30]. Also Fondement [30] discusses
not only graphical concrete syntax but also textual concrete syntax, which we do not cope
with in our MTBE approach. We want to embed the notion of CS within our modelware
technical space, though. As already mentioned in the above definition we need a formal
way to define our CS elements. The probably most intuitive way of defining these elements
is by using again the well known meta modeling paradigm.

Figure 3.11 shows how the CS metamodel CS MM , which is again based on Ecore, is
contained in our metamodeling stack. Because CS MM acts as our modeling language for
visually rendered elements we are able to define models that actually represent those visual
objects. Model CS M defines all CS elements for the modeling language MM1. But the
definition of the CS is not enough for the implementation of a visual modeling language.
What is left is the defintion of how metamodel elements of the modeling language and

41

Chapter 3 Prerequisites for MTBE

instances of the CS MM relate to each other. The relationship of all those elements can be
captured by a mapping model, which formally specifies model correspondences.

Definition The mapping model relating AS and CS we call notation. The notation may be defined
as follows:

Triple :=< as_E, cs_E, const(as_E)? > (3.1)

. In this basic definition we can relate one AS element as_E from MM1 with one CS element cs_E
from the model CS. In addition one may give an optional constraint operating on as_E.

We have introduced a mapping mechanism for AS and CS and must finally provide the
language definition for the mapping models, i.e., the notations, themselves. This is again
done by a proper metamodel for mapping models that we callMap MM in Figure 3.11. The
references the notation must have to the AS and the CS are depicted as «relates» stereotyped
references. So we have one meta layer crossing relationship between MM1 and Map M .
Technically this can be achieved by importing Ecore in the Map MM and directly use con-
cepts of Ecore.

Notation in the Light of MTBE

In this subsection we show how we make use of the concept of notation in our MTBE ap-
proach. In Section 6.1 we show how the concept of notation has been implemented within
state of the art modeling environments.

The primary idea of MTBE is to exploit the concrete notation of modeling languages,
which is well known by the user, for defining mappings between semantically correspond-
ing model elements on the M1 layer. In order to further discuss the by-example approach
for model transformations, the interrelationships between the abstract syntax, concrete syn-
tax and the mapping between them, which describes the notation of the modeling language,
have to be clarified. In accordance with MMF [17] and GMF [23] Figure 3.12 depicts how
these three parts of a formal language definition are interrelated in terms of an UML pack-
age diagram.

The package abstract syntax summarizes elements of the abstract syntax, i.e., the meta-
model. For example for UML these would be concepts such as property, class and association.
In contrast, the package concrete syntax covers graphical elements, e.g., ellipse, label, and
rectangle, which can be further combined to more complex forms, e.g., ClassRectangle, At-
tributeLabel. Finally, how elements of the abstract syntax are mapped to elements of the
concrete syntax is defined in the package as_2_cs which mainly consists of triples defined
in Equation 3.1. The optional constraint part (const(as_E)) of the triple is the most relevant
part for this work. In case no constraint is defined, there is a one-to-one mapping between
an abstract syntax element and a concrete syntax element, i.e., the concept defined in the
metamodel is directly represented by one concrete notation element. However, the other

42

3.6 Metamodel Metrics

Language

as_2_cs

Concrete
Syntax

Abstract
Syntax

< Property, Label,
Property.assoc == null …>

Arrow, Label
Node

Class
Property

Figure 3.12: Relationship between abstract and concrete syntax.

case is the more interesting in context of solving the concept hiding problem. The pres-
ence of a constraint defines a new sub-concept for the notation layer, which is not explicitly
represented by one of the metamodel classes. Consequently, when defining model transfor-
mations based on the abstract syntax, the constraints for these sub-concepts must be defined
by the user in the query part or when going the other way round by setting the property
values correctly in the generation part of the transformation rules. This is a tedious and
error-prone task that requires excellent knowledge about the metamodel.

With MTBE this circumstance can be improved by incorporating the existing constraints
defined in the triples (cf. Defintion 3.1) of the as_2_cs package (cf. Figure 3.12) into the
model transformation generation process in order to minimize the effort for re-engineering
and defining these constraints by hand.

3.6 Metamodel Metrics

Evaluation of models is a hard and ambiguous task. Whether a model can be asserted as
semantically correct within a certain domain of discourse always depends on the viewpoint
of the observer. In order to gather objective facts about models, the use of metrics is neces-
sary. Metrics have a long history in software development as a quality measure. Measured
value can be interpreted for itself, or it can be combined to create aggregated metrics for
stating a more abstract conclusions. During the triumphal procession of Object Oriented
Programming (OOP) in the last one and a half decades and the subsequent development of
Object Oriented Modeling (OOM) techniques, a lot of effort was made to develop metrics
for object-oriented models (OO-metrics). OO-metrics allow to make statements about the
quality of software models [51][91][50].

With the advent of Model Driven Engineering (MDE) [75], the need of formal metamod-

43

Chapter 3 Prerequisites for MTBE

MM

Concept

CS

5
5

5
5

counting

semantic

a) explicite MM

5
7

0
7

counting

semantic

b) implicite MM

7
5

counting

5
5

semantic

c) unused MM-Classes

Figure 3.13: Three characteristics of the EM2 metric.

els for modeling languages arises and consequently the need for metrics for metamodels.
Basically a metamodel can be seen a s a model; it also consists of classes, relations, inheri-
tance, etc. However, the intension of a metamodel (the AS) is different from that of most M1
models. A metamodel is an object oriented language definition. Therefore the instances of a
metamodel are again models with a graphical notation, the CS. Nevertheless, metamodels
can be treated as models for a specific domain, the domain of modeling language definition.
Hence, most of the metrics for OOM can be applied to metamodels [49].

In this section we introduce a new metric, which discovers the explicitness of a metamodel.
We define explicitness in the context of metamodels as the number of concepts in the mod-
eling language that are first class concepts in the metamodel. This definition is based on the
assertion that the number of first class concepts in the abstract syntax can differ from that in
the concrete syntax. For example consider the modeling concept Attribute in the UML class
diagram. In the UML 2.0 class diagram metamodel there exists no first class definition for
Attribute . It is hidden in the class Property [41]. But in the concrete syntax of UML 2.0 class
diagrams, there exists a notation for the concept Attribute.

3.6.1 Calculating the Explicitness of Metamodels

Modeling languages have specific modeling concepts, which can be expressed with its CS
elements. The composition of modeling concepts is defined in the metamodel (the abstract
syntax). These modeling concepts, which are used in the concrete syntax, do not neces-
sarily have an exact counter part in the abstract syntax. Concepts in the metamodel are
often reused with the help of attributes and associations to other concepts. We call this
phenomenon concept hiding [41]. Our aim is to get a metric to estimate the explicitness of
metamodels. The Explicitness of MetaModel (EM2) metric can be calculated by counting
all concrete classes of a metamodel and dividing it by the number of CS elements.

44

3.6 Metamodel Metrics

5
7

counting

5
5

semantic

x) notation redundancy

MM

Concept

CS

5
3

counting

5
5

semantic

y) notation overload

5
4

5
5

counting

semantic

z) notation combination

Figure 3.14: Side effects of the EM2 metric.

EM2(as, cs) =
count(as.concreteClasses())

count(cs.elements())

A metamodel does not only consist of concrete classes but of abstract classes as well. Since
abstract classes have no conceptual representation on the concrete syntax, they cannot be
instantiated. For this reason abstract classes are not counted.

Interpretation of the Metric EM2

In general, we can make three assertions about the ratio between the number of concrete
classes in the metamodel and the number of CS elements.

EM2 value Interpretation
< 1 Concept deficit
= 1 Concept equilibrium
> 1 Concept redundancy | overload

A graphical representation is given in figure 3.13. The ellipses represent the metamodels
with their first class concepts. The clouds represent the semantic concepts of the modeling
language. The diamonds represent the CS elements. The links between these three elements
depict the reference between the metamodel and its CS. The top right fraction (cf. counting
in figure 3.13) represents the ratio by counting MM-concepts and CS elements without in-
cluding further information. The bottom right fraction (cf. semantic in figure 3.13) represents
the semantically correct ratio that describes the ratio of concepts and their representation on
the concrete syntax. To determine the bottom right fraction, further information is neces-
sary, that is included in the links between metamodel and CS. In the following we discuss
the three aforementioned distinct cases of the EM2 metric.

• Concept deficit: An EM2 value smaller than one means that there exist more concepts
in the concrete syntax than in the abstract one (see figure 3.13b). The reason for this is

45

Chapter 3 Prerequisites for MTBE

that the concepts are hidden in the metamodel. In the field of model transformations,
which are defined on the metamodel, it is easier to map one metamodel to another if
no hidden concepts exist in the metamodel. A balance smaller than one is an indicator
for the need of refactoring [41].

• Concept equilibrium: An EM2 value of one means that there are exactly as many con-
cepts in the metamodel as in the concrete syntax (see figure 3.13a).

• Concept overload: An EM2 value greater than one can have two reasons. The first one
is a CS element with more than one concept in the metamodel. Two concepts in the
metamodel with similar semantics is a non-realistic assumption and can be left out.
The second reason are metamodel concepts, which do not represent a CS element (see
figure 3.13c).

Side Effects of the Metric

Automatically applying the metric to a modeling language may entail some side effects.
Only concrete classes of the metamodel and all CS elements that form the concrete syntax
are counted. Depending on the metamodel, a concrete class must not necessarily have a
CS element. This increases the denominator of the fraction and results in a higher EM2

(the upper right fraction in figure 3.13c). This would be interpreted as a more explicit meta-
model. The bottom right fraction in figure 3.13(c) depicts the semantic ratio between con-
cepts, metamodel classes and its CS elements.

Counting metamodel classes with no representation in the concrete syntax can be pre-
vented by following the mapping between a metamodel concept and its CS. If there is a link
with no constraint, the metamodel class has a CS element. Otherwise, the class hides some
information and is not a first class element for this concept. A constraint link is a mapping
between a metamodel class and a CS element having further restrictions, e.g., that a associ-
ation to another metamodel class ought to be set, or that an attribute of the metamodel class
must have a specific value. With this further information, most of the side effects and the
resulting misinterpretation of the balance can be avoided.

On the level of the concrete syntax, it is possible that a language concept has two or more
CS elements, like the interface CS in UML. By counting all these CS elements, the numerator
of the fraction increases and the balance becomes lower, see figure 3.14x. This would lead to
interpret the metamodel as less explicit, with more hidden concepts. Evaluating the map-
pings between the CS and the metamodel, as aforementioned, can avoid this circumstance.
If there exists a link without a constraint between a metamodel class and two CS elements
this two CS elements are counted as one.

One and the same CS elements can be used for different concepts (3.14y). This result
in a lower numerator of the fraction and leads to the interpretation of an overspecified

46

3.6 Metamodel Metrics

metamodel. Again following the links between CS elements and metamodel elements is a
solution to this problem.

CS elements represent a concept of the modeling language, but it is possible that the
combination of two or more CS elements stands for a different concept which has no explicit
CS. This changes the balance to a higher ratio if the concept is explicit in the metamodel
but could not be counted on the concrete syntax because combined CS elements are not
countable (3.14z). In this case following the links between metamodel concepts and CS
elements provides no solution. An approach to cope with this problem is to analyze one or
more concrete examples (M1 models) and analyze how CS elements can be combined.

3.6.2 Analysing UML 1.4 and UML 2.1

The UML metamodel 1.4.2 [66] and 2.1 [69] for class modeling were chosen as test cases
for the EM2 metric. Strictly counting concrete classes in the metamodel and predefined CS
elements from the specifications, we found the following estimates for the EM2 value.

Metamodel version EM2 value
UML 1.4.2 ≈ 0, 77
UML 2.1 ≈ 0, 64

These estimations have however to be taken with care because of possible inaccuracies
in counting CS elements. There exist several CS elements where it is not clear whether to
count them as one or each separately, as we did in our evaluation scenario. As an example
for this kind of problem you might consider the Dependency relationship and its various
stereotyped CS elements attached to it. Also we have not eliminated arising side effects,
except for the CS combination side effect. Due to lack of space we only present a notation
table for UML 2.1 in Figure 3.15, which helps reproduce the numbers of our metric.

Discussion of the Metric Results

Although the results are not totally unbiased they seduce that both metamodels rely on
implicit concepts. Furthermore, we can say there is a greater implicitness incorporated into
the UML 2.1 metamodel than in the UML 1.4.2 metamodel. The class Attribute represents
just one concept in UML 1.4.2 that has been made implicit in UML 2.1. In the following we
now go more into details and illustrate the characteristics and side effects of our metric.

As a potential source of implicitness of concepts we discovered the usage of enumera-
tions, which are heavily applied in both metamodels. The definition of the EM2 metric
does not involve the count of enumerations and their literals. But these literals often repre-
sent a CS element, often in combination with some classes. For example, the enumeration
AggregationKind is used in both metamodels to distinguish between three different CS ele-
ments, that is to say regular association, aggregation, and composition.

47

Chapter 3 Prerequisites for MTBE

«abstraction»

«name/stereotype»

«access»

«import»

«merge»\name

* name

«abstract»

{constr.}

{XOR} {constr.}

«dataType»
Int.

«import»
alias

XOR, else, etc.

{complete,disjoint}

{incomplete,overlapping}
{complete,overlapping}
{incomplete,disjoint}

name:String

name:String=Horst

«Enum»
name

«Enum»

name

name

«Interface»
name

true/false

123

null

„ABC“

*

{OCL} i > j and self.size > i

+toString():String

«primitive»
name

«substitute»

«use»

„+“

„~“

„-“

„#“

Abstraction

Association

AssociationClass

Class

Comment

Constraint

Datatype

Dependency

ElementImport

Enumeration

EnumerationLiteral

Expression
Generalisation

GeneralisationSet

InstanceSpecification
InstanceValue

Interface

InterfaceRealization

LiteralBoolean
LiteralInteger
LiteralNull
LiteralString
LiteralUnlimited Natural
OpaqueExpression
Operation

Package

PackageImport

PackageMerge

Parameter

PrimitiveType

Property

Realisation

Substitution

Usage

-

-

-
-
-

-

-

Number of AS Elements Total: 34
Number of CS Elements Total: 53

attribute1

AS: 5 CS: 14 AS: 8 CS: 13 AS: 12 CS: 16 AS: 9 CS: 10

Figure 3.15: Results for UML 2.1.

The depicted side effect notation overload in figure 3.14, appeared in the UML 2.1 meta-
model in the case of the meta classes ElementImport and PackageImport. Both classes make
use of the same CS element. The meaning between the two can only be made unambiguous
when considering the connected model elements, i.e., Classes or Packages.

Notation redundancy could also be recognized in both metamodels. Consider the inter-
face class as an example, which can be graphically represented by two different means. An-
other example would be the various possible CS forms of an association (with a diamond in
the middle or without, or with an arrow or without). The algorithm described above would
filter such redundancies to eliminate the problem and concentrate on concepts instead of
graphical representations.

We also encountered the problem of unused concrete meta classes that do not define a
general notation. The responsibility is instead delegated to some other classes, that can be
subclasses of the class under consideration. For example, the class Parameter in UML 2.1
has no direct link to any CS element. The class Operation therefore defines the CS for its
parameters. Similar to the count of unused meta classes is the count of general CS elements
that have no concrete class in the metamodel. The class MultiplicityElement, that is declared
abstract, specifies a general CS for multiplicities, which can be further specialized in cor-
responding subclasses. The EM2 metric takes the CS into account, but omits the abstract
class, leading to a rare side effect, that we call standalone notation.

Combining CS elements is common practice in the UML metamodels. Take as an exam-
ple the CS for a stereotype, that is composed of the CS of a simple class and the name of
the stereotype within guillemets. When computing our metric for the two metamodels we
counted each combined CS element as individual to avoid the side effect resulting from
notation combination.

48

3.6 Metamodel Metrics

3.6.3 Metrics-Related Work

Best to our knowledge, there has been no work on metrics for explicitness of metamodels
and our work is the first study on this topic. However, our work is mainly influenced by
two orthogonal research directions, on the one hand by metrics for UML class diagrams and
on the other hand by metrics for Ontologies.

Metrics for UML class diagrams are mostly based on metrics for OO programs. This is
due to the close connection of UML class diagrams to OO programming languages like Java.
In [91] six different metrics for UML class diagrams are analyzed and compared whereas the
question arises which model elements, e.g., classes, attributes, and associations, have impact
on the complexity of a class diagram. In [55] the metrics are more generically defined based
on graph structures. Again, the metrics operate on quantitative characteristics, e.g., node
count, edge count, and path length, and then these single metrics are combined to higher-
order metrics.

Summarizing these proposed metrics for UML class diagrams mostly focus on the quan-
titative analysis of model elements, thus the metrics only measure the explicit definitions.
Our work is different, because we look for implicit concepts which are hidden in combina-
tions of model elements. In addition, we are analyzing language definitions and therefore
we study the relation between modeling concepts, abstract syntax, and concrete syntax,
which is certainly not applicable to UML class diagram models.

In [92] and [18] various metrics for ontologies are discussed which mainly measure the
structural dimension in the same way as with OO models reflecting the fact that most on-
tologies are also represented in an object-oriented manner. Additionally to the structural
measurement in Gangemi et al. [32] measurements for the functional dimension and us-
ability, as well as a NLP-driven evaluation are introduced. Furthermore, the OntoClean
approach [87] tries to detect both formal and semantic inconsistencies in an ontology. This
perception goes along with our that counting the number of elements of certain types is not
sufficient to specify the complexity of a model.

Our work is different to the proposed ontology metrics in that with our metric we are able
to indicate how many concepts are implicitly represented which is due to the exploitation
of the abstract to concrete syntax mapping which is metamodeling depending and not an
ontology topic. Nevertheless, many ontology techniques are promising for the semantic
evaluation of models and metamodels which is subject to future work.

The most related work is [38] in which OO metrics are applied to assess five versions of
UML metamodels. The authors propose metrics for the stability of UML metamodels and
for the design quality of UML metamodels such as reusability, flexibility, and understand-
ability, which are computed from single measures.

Our work is different due to two facts. First, we also incorporate the CS of the modeling
language, and second, we analyze which modeling concepts are missing in the abstract

49

Chapter 3 Prerequisites for MTBE

syntax as first class definitions. However, it is interesting that in [38] the computed value
for understandability of UML 2 is much worse compared to its predecessor. Furthermore, it
would be very interesting to compute the measurements for the design quality before and
after applying our proposed refactoring patterns as introduced in [41].

3.7 Requirements for Example Models

So far we have not explained how our MTBE approach works in detail. However, we have
to discuss the requirements we put on our example models in order to generate transforma-
tion code nearly without any user interaction, i.e., on a semi-automatic basis. Basically there
is no limitation on the number of example models the user may want to specify for a specific
transformation scenario between two different modeling languages. There can be either one
big example or many small ones to foster clarity and traceability. Information from all ex-
amples is gathered and reasoned, though. A must in any case is the coverage of all relevant
concepts available in the modeling languages. We also assume that tooling exists, which
fully supports a modeling language. This means that a complete mapping between AS and
CS is available by a proper notation as described earlier in Section 3.5. A concept on the
modeling layer M1 must therefore be represented by a tool creating a CS element, which
has a 1-to-1 or 1-to-many mapping to some AS elements. Special forms of implicit concepts
on the modeling layer is discussed in Section 7.2. Besides this simple rule of using every
concepts available in the example models we have experienced problems when using mod-
eling structures made possible by the use of links between objects. Sometimes it is not sure
how elements should be linked together or what linking structures should be supported. In
the following example we deal with a nesting problem.

Example 31. Figure 3.16 shows two examples of modeling languages simpleUML on the left and
simpleER on the right side. Below these examples we show the corresponding metamodels that
slightly differ in size. But excepts for this difference in meta elements used for modeling the two
languages, we can in general model the same problem domains in either simpleUML or simpleER.
As a consequence we do not loose any relevant information when transforming from simpleUML
models to simpleER models and vice versa. By the blue dashed lines we depict the notation for the
CS and AS elements of interest, only. We omitted to map the concepts of Attribute and also to define
the Enum by a proper EEnum instance in the simpleUML metamodel. Notational mappings 3 and
4 can be seen as equivalent, as are the concepts of Class and Entity. So we can define or generate
a rule, which transforms Classes into Entities with their corresponding name Attribute, see Listing
3.1, second ATL rule. In Ecore models we must have a model root element, which can be for ex-
ample the name of a diagram. In our case we simply named it Root for both languages. There can
be just one instance of Root containing all other modeling objcts. So the first challenge is to assign
proper values to the containment references of these Root elements during transformation. We can
use ATL’s built-in resolve algorithms for this challenge. Line 7 demonstrates how reference sets can
be correctly assigned and bypass instances of Package, which lie between a Root instance and some

50

3.7 Requirements for Example Models
«import» «import»«import» «import»

StarWars

«import»

Jedi
name: String
bilit E [0 1]

Jedi
name

ability: Enum[0..1] (0,1) ability

Root Root

M1

M2

*

Root Root

subpackages

*

M2

1
33

Package Entity

*

*

*

11

Class Attribute22

Attribute

*

SimpleUML SimpleER

Figure 3.16: Demonstrating nesting problems: insufficient example.

Class instances in simpleUml. The output of this transformation is depicted in Listing 3.2, which
shows the output simpleER model serialized as XMI. As can be seen we have transformed all classes
from the source simpleUML model into Entities but the intended containment structure has been
broken. This arises from the fact that we do not cope with subpackages and their child Classes.

Figure 3.17 shows an nearly identical example as in Figure 3.16. Though, they differ in the sim-
pleUML model. In Figure 3.17 we provide an additional subpackage called Space within our basep-
ackage StarWars on M1. The notation of this subpackage concept is given by mapping number 4.
With this additional element in our example model we can derive proper ATL code, which includes
the subpackage concept. We do not go into reasoning details in this section but in 5.2. Listing
3.3 shows the code to preserve the containment structure in Line 8. Note, that this now includes
“second” level Packages not more. Recursive helper would be needed to include Classes of level n
Packages, i.e. recursively nested Packages and Classes. In Listing 3.4 we finally show the correct
output simpleER model of the transformation in Listing 3.3.

Listing 3.1: Incomplete ATL transformation for simpleUML to simpleER.
1 module uml2er ; −− Module Template
2 c r e a t e OUT : er from IN : uml ;
3

4 rule r o o t 2 r o o t {
5 from r : uml ! Root
6 to r2 : er ! Root (
7 e n t i t i e s <− r . packages −> c o l l e c t (c | c . c l a s s e s)
8)
9 }

10

11 rule c l a s s 2 e n t i t y {
12 from c : uml ! Class
13 to e : er ! E n t i t y (
14 name <− c . name
15)

51

Chapter 3 Prerequisites for MTBE
«import» «import»«import» «import»

StarWars

«import»

Jedi
name: String
bilit E [0 1]

Jedi
nameSpace

XWing
ability: Enum[0..1] (0,1) ability

Root Root

M1

M2

g

*

Root Root

subpackages

*

M2

1

44
33

Package Entity

*

*

*

11

Class Attribute22

Attribute

*

SimpleUML SimpleER

Figure 3.17: Demonstrating nesting problems: sufficient example.

16 }

Listing 3.2: XMI resulting from Listing 3.1.
1 <?xml vers ion=" 1 . 0 " encoding=" ISO−8859−1" ?>
2 <xmi : XMI xmi : vers ion=" 2 . 0 " xmlns : xmi=" ht tp ://www. omg . org/XMI" xmlns : er=" ht tp :// er ">
3 <er : Root>
4 < e n t i t i e s name=" J e d i "/>
5 </er : Root>
6 <er : E n t i t y name="XWing"/>
7 </xmi : XMI>

Listing 3.3: Correct ATL transformation for simpleUML to simpleER.
1 module uml2er ; −− Module Template
2 c r e a t e OUT : er from IN : uml ;
3

4 rule r o o t 2 r o o t {
5 from r : uml ! Root
6 to r2 : er ! Root (
7 e n t i t i e s <− r . packages −> c o l l e c t (c | c . c l a s s e s) ,
8 e n t i t i e s <− r . packages −> c o l l e c t (s | s . subpackages −> c o l l e c t (c1 | c1 . c l a s s e s))
9)

10 }
11

12 rule c l a s s 2 e n t i t y {
13 from c : uml ! Class
14 to e : er ! E n t i t y (
15 name <− c . name
16)
17 }

Listing 3.4: XMI resulting from Listing 3.3.
1 <?xml vers ion=" 1 . 0 " encoding=" ISO−8859−1" ?>

52

3.7 Requirements for Example Models

2 <er : Root xmi : vers ion=" 2 . 0 " xmlns : xmi=" ht tp ://www. omg . org/XMI" xmlns : er=" ht tp :// er ">
3 < e n t i t i e s name=" J e d i "/>
4 < e n t i t i e s name="XWing"/>
5 </er : Root>

53

Chapter 3 Prerequisites for MTBE

54

Chapter 4

Basic MTBE Concepts

Contents
4.1 Shortcomings of Current Model Transformation Approaches 55
4.2 A Five Step Process for MTBE . 59
4.3 A Running Example . 61
4.4 MTBE Frontend - The Black-Box View . 62

4.4.1 Model Mapping . 62
4.4.2 Mapping Definitions By-Example . 64
4.4.3 Validation of Transformation Code and Produced Output Models . . 65

4.5 MTBE Backend - The White-Box View . 66
4.5.1 Basic Reasoning on User Mappings By-Example 66
4.5.2 Metamodel Mapping . 70
4.5.3 Transformation Model Generation By-Example 70

4.6 MTBE-Related Work . 71
4.7 Summary . 73

The contribution of this chapter is to lay out basic concepts for MTBE for defining map-
pings on the M1 layer between concrete domain models. Based on these user mappings
between concrete syntax elements and the notation included in the modeling languages we
are able to derive model transformation code based on the M2 layer. In addition, challenges
are discussed which are encountered, when generating model transformation code from the
user defined inter-model mappings.

4.1 Shortcomings of Current Model Transformation
Approaches

In the MDE research field various model transformation approaches have been proposed
in the previous 5 years, mostly based on either a mixture of declarative and imperative
rules such as ATL [40], or on graph transformations such as AGG [82], Fujaba [62], [61],
and BOTL [11], or on relations such as MTF [37]. Moreover, the Object Management Group

Chapter 4 Basic MTBE Concepts

(OMG) has published a first version of QVT [70] which should become the standard model
transformation language. Summarizing all these approaches, it can be said that state of the
art for defining model transformations is to describe model transformation rules between
a source and a target metamodel (M2 layer), whereas the rules are executed on the model
layer (M1 layer) for transforming a source model into a target model. Consequently, each
of these approaches is based on the abstract syntax of modeling languages, i.e., on their
metamodels, only, and the notation of the modeling language is totally ignored.

In collaboration with the Austrian Ministry of Defense and based on experiences gained
in former integration scenarios [88], [74] we are currently realizing a system called Mod-
elCVS [42] which aims at enabling tool integration through transparent transformation
of models between metamodels representing different tools’ modeling languages. Hence,
we developed various model transformation examples for tool integration purposes using
some of the aforementioned approaches, and in doing so, we discovered two main issues
which prevent the user-friendly definition of model transformations. On the one hand there
is a gap between how the modeler reasons about aligning two models and how the corre-
sponding rules are defined in order to be executable by the computer, and on the other hand
not all concepts of a modeling language supported by the concrete notation are explicitly
represented in the metamodel. In the following we discuss these two issues in more detail.

Issue 1: There is a huge gap between the user’s intention of aligning two languages and
the way model transformation rules are defined for being automatically executable by the
computer. Mostly, the user reasons on models representing real world examples shown
by concrete notation elements and mappings between semantically corresponding model
elements. However, this way of thinking is not appropriate for defining model transfor-
mations with currently available model transformation languages, because they support
defining model transformation rules based on the abstract syntax, only.

Figure 4.1 illustrates this problem by an alignment scenario for UML and ER models. The
upper half of Figure 4.1 depicts that for the user it is appropriate to reason on models rep-
resenting real world examples expressed in concrete notation of the modeling language to
find the semantic equivalent parts. In contrast, the lower half of Figure 4.1 shows the same
domain model in abstract syntax visualized as an UML object model. As one can see, the
abstract syntax is designed for the computer in order to process the models efficiently and
not for the visualization of the domain knowledge in an easy understandable way. Hence,
when trying to understand a domain model in abstract syntax one has to explore more
model elements compared to the concrete notation representation, and furthermore, one
has to know all relevant details of the metamodel, i.e., the language definition. Moreover,
this problem is further aggravated by the following issue.

Issue 2: The aim of metamodeling lies primarily in defining modeling languages in an
object-oriented manner leading to efficient repository implementations. This means that in
a metamodel not necessarily all modeling concepts are represented as first-class citizens.

56

4.1 Shortcomings of Current Model Transformation Approaches

Metamodel

Notation

Abstract
Syntax

Student1

examiner
*

examinee
Professor Professor Student

UML ER
MAP

name name

Professor:Class

name:Property name:Property

Professor:Entity

name:Attribute

Student:Entity

examines:Relationship

namename
examineeexaminer

Student:Class

examiner:Propertyexaminee:Property

examines examines

name:Attribute

examinee:Roleexaminer:Role

1 *

examines:Assoc

Class

Property

Association

Entity Cardinality

Role

Attribute Relationship

T

owning
Association

0..1
0..1
association

memberEnd
2..*

ownedEnd
*

*

owningClass 0..1

ownedAttributes

2..**
roles

0..1

refersTo

{XOR}

1

roles
1

role

cardinality

relationship 1

entity1

attributes*

Figure 4.1: Gap between user intention and computer representation.

Instead, the concepts are frequently hidden in attributes or in association ends. We call this
phenomenon concept hiding. For an in-depth discussion of concept hiding and how concepts
can be hidden see [41].

As an example for concept hiding in metamodels consider Figure 4.2. In the upper part
it shows a simplified version of the UML metamodel kernel which is defined in the UML
Infrastructure [65]. In the lower part a domain model is shown in concrete UML syntax as
defined by the notation tables in the UML Superstructure [67]. As one can see in Figure 4.2,
the metamodel covers more than 10 modeling concepts but uses only four classes. Hence,
most of the modeling concepts are implicitly defined, only. It is left as an exercise to the
reader to find out where and how the concepts attribute, navigable role, non-navigable role, and
multiplicity are defined in the metamodel.

These two issues mainly circumvent the user-friendly definition of model transforma-
tions. Therefore, we propose an orthogonal and extending approach to existing model
transformation approaches for defining semantic correspondences in the concrete syntax
of the models and the automatic generation of model transformations for the abstract syn-
tax. This procedure allows a more user-friendly development of model transformations.
Before going into details about the by-example approach we have to discuss which tasks
are currently involved when model transformations are developed.

In general, before actually formalizing the model transformation rules in a model trans-

57

Chapter 4 Basic MTBE Concepts

ProfessorProfessor StudentStudent11
name:Stringname:Stringname:Stringname:String

**

examiner examinee

Where are these concepts defined?
Attribute
Navigable Role
Non navigable Role
Multiplicity

subclass

superclass

ownedAttribute

owingClass

ownedEnd

memberEnd

associationowning
Association

*

2..*

0..1 0..1

0..1

*

*

*

NamedElementNamedElement

name:String

ClassClass

isAbstract:Boolean

AssociationAssociation

PropertyProperty

aggregation:Kind

lower:Integer

upper:Integer

««enumenum»»
KindKind

• none
• shared
• composite

M
2

M
1 examines

Figure 4.2: Concept hiding in metamodels.

formation language the user has to acquire knowledge about semantic correspondences
between the concepts of the modeling languages as incorporated in their metamodels. One
appropriate way to gain this knowledge is to start modeling the same problem domain with
both modeling languages. By comparing the two resulting models the semantic correspon-
dences between model elements can be easily found which again can be used to derive the
correspondences between the metamodel elements. In addition, these models entail an-
other benefit - they can be deployed for testing purposes as input for the expected model
transformation and for comparing the output of the model transformation execution.

After clarifying all necessary semantic correspondences the user has to implement the
gained mapping knowledge in the model transformation rules. For this task the user has
to understand how the notation is represented in abstract syntax elements and how miss-
ing concepts in the abstract syntax can be reconstructed, e.g., by setting attribute values
and links to other objects. Here comes MTBE into play. First, the mappings are explic-
itly definable between the domain models shown in concrete syntax which allows also the
documentation of the semantic equivalences. Second, these mappings are a good starting
point for automatically generating the required model transformation code which is more
efficient in contrast to current approaches where the user has to implement all of them by
hand.

58

4.2 A Five Step Process for MTBE

ClasstransformationClass 4

tota
m

od
el

to

Class Class Class

Class
Class Class

transformationClass

Class Class

Class
Class Class

4

mappingmappingmappings 3

co
nf

or
m

s_
t

M
et

co
nf

or
m

s_
t

5

MTBEGen
5

Class

Class Class Class

Cl
Class Class

Class

Class Class Class

Class
Class Class

M
od

el

Class

Class Class Class

Class
Class Class

mappingmappingmappings

Class

Class Class

Class
Class Class

ClassM

2
pp g

1 1

Figure 4.3: MTBE conceptual framework.

4.2 A Five Step Process for MTBE

This section discusses a conceptual five step process for MTBE at a glance. The key focus
of this process is the automatic generation of transformation programs regarding semantic
correspondences between two languages as can be seen in Figure 4.3. In this framework the
model transformation generation process requires 5 steps, that are explained in the follow-
ing. Each step is thereby marked properly in Figure 4.3.

• Step 1. The initial step is the definition of models of the same problem domain in
both modeling languages (cf. left and right of the lower half of Figure 4.3 1). The
user can decide if a single model, which covers all aspects of the languages, or several
examples, each focusing on one particular aspect. Presumably the second approach
is more preferable. The requirements on the models are twofold. First, certainly they
must conform to their metamodels. Second, concerning completeness, all available
modeling concepts of the modeling languages should be covered by the models. The
second issue is closely related to the question of what appropriate test cases for model
transformations are, which is e.g. discussed in [29]. However, the requirements for
example models and what difficulties arise in conjunction with model and metamodel
heterogeneities have been already discussed in Section 3.2.

• Step 2. The second step in the framework is that the user has to align the domain mod-
els (M1) by defining semantic correspondences (mappings) between model elements

59

Chapter 4 Basic MTBE Concepts

of the left and right side (cf. middle of the lower half of Figure 4.3). For simplicity, it is
assumed that the models on the left and on the right side represent the same problem
domain, as explained in step 1. In this Chapter of basic MTBE concepts we assume
full equivalence mappings, only. However, in Chapter 5.1 we introduce other map-
ping language concepts, which allow for more expressiveness and dealing with more
complex mapping scenarios.

Concerning the example models, general reference models for several modeling do-
mains such as structural, interaction, and process modeling can ease the development
of the required examples. However, this part is also subject to future work.

• Step 3. After finishing the mapping task, the third step is that the MTBE Generator
(cf. MTBEGen in Figure 4.3) takes the user-defined mappings as input and produces
equivalences between metamodel elements. The output of this particular task should
be a complete mapping model between the two given metamodels.

• Step 4. Based on the generated metamodel mappings the MTBEGen component has
to produce an executable transformation program, which is based on metamodel
elements. The resulting model transformation programs can transform any source
model, which conforms to the source metamodel, into a target model, which con-
forms to the target metamodel. However, as we explain later in this Chapter , the
generation process may need some user interactions for resolving ambiguities in the
mappings, arising from heterogeneities concerning the extend of the modeling lan-
guages. Another necessary condition for the transformation generation process is that
the MTBEGen needs access to the package as_2_cs (cf. Figure 3.12 Section 3.5) in order
to compute all necessary conditions for the query and property values for the genera-
tion parts of the transformation rules.

• Step 5. At last the generated transformation programs may need some user refine-
ment for resolving ambiguities in the mappings, arising from heterogeneities concern-
ing the extent of the modeling languages. Also it is possible to subsequently test the
generated model transformation programs or transformation models on the the mod-
els, that were already used for defining the mappings between the two languages.
This is another benefit of the by-example approach, as the input and output models
for testing the model transformations are already available and no extra work for de-
veloping test cases is necessary. The target models generated by the transformation
program can be compared to the already existing models. When some differences be-
tween the two models arise, the user can decide if the mappings on M1 should be
revised and a newer version of the model transformation program should be gener-
ated or if the mappings on M1 are correct and the model transformation needs some
fine-tuning directly in the transformation code. To act as a good test case is one of the

60

4.3 A Running Example

User-defined Mapping

Mapping CS - AS (Notation)

AS2AS Mapping

Conditional Equivalence Mapping

Full Equivalence Mapping

Legend:

Professor

name:String

Student

name:String
examinesexaminer examinee

1 *

Professor:Class Student:Class

name:Property name:Property

examines:Association

examiner:Property

upper: 1

lower: 1

examinee:Property

upper: -1

lower: 1

examinesProfessor Student
1 *

name name

examiner examinee
M

o
d

el
 e

xp
re

ss
ed

 in
 A

S
 (M

1)
M

o
d

el
 in

 C
S

 (M
1)

min: 1

max: -1

name:Attributename:Attribute

Student:EntityProfessor:Entity

examiner:Role examinee:Role

examines:Relationship

:Cardinality :Cardinality

min: 1

max: 1

a

b

c

d

M
et

a
M

o
d

el
 (M

2)

Entity Cardinality

Role

Attribute Relationship

role

entity

role
role

attribute

refersTo

cardinality

2..*

0..1

*

*

1

1

1 relationship

1
Class

Property

Association

0..1

*

0..1 0..1

2..*

*

ownedAttribute

ownedEnd

memberEnd

owningAssociation association owningClass

{ XOR }

e

Figure 4.4: MTBE for UML2ER and vice versa.

requirements of good example models!

4.3 A Running Example

We exemplify the operating mode of MTBE by a concrete running example. In order to do
so, consider the situation in which we have two UML classes Professor and Student as well
as a one-to-many relationship between them. This simple UML class diagram is depicted in
the upper left corner of Figure 4.4. In addition, the same problem domain is also modeled in
terms of an ER diagram that can be found in the upper right of Figure 4.4. In the upper half
both models are represented in concrete syntax, whereas the lower part of Figure 4.4 repre-
sent the same models in abstract syntax, which is the type of representation the computer
uses for model transformation execution. For simplicity and higher readability the models
in abstract syntax are represented as UML object diagrams. The example models shown in

61

Chapter 4 Basic MTBE Concepts

Figure 4.4 are quite simple, however, they are sufficient to show the most important aspects
of our proposed MTBE approach.

In the following subsections the steps 2 and 3 of the MTBE framework (cf. Figure 6.3) are
discussed in more detail. Step 2 has to be carried out by users themselves and concerns the
alignment of two domain models shown in concrete syntax (cf. subsection 4.4.2). Step 3 is
split into 4 sub-steps, to give an in-depth discussion of the work the MTGen has to do. In
particular, we explain how the abstract syntax is analyzed to collect all necessary data for
the model transformations. Therefore, we interpret the models shown in abstract syntax as
object models consisting of objects, attribute values and links, because these models can be
seen as instances of the metamodel, which again can be seen as a simple class diagram. Con-
sequently, we first explain the creation of objects (cf. subsection 4.5.1), then the placement
of attribute values (cf. subsection 4.5.1), and finally the linking of objects (cf. subsection
4.5.1). By collecting the data of these three sub-steps, it is possible to derive all necessary
information in order to define the query parts (e.g., the from part of ATL rules) and also
the generation parts (e.g., the to part of ATL rules) of the model transformation rules (cf.
subsection 4.5.3).

4.4 MTBE Frontend - The Black-Box View

By MTBE frontend we mean the graphical user interface, i.e., the workbench the user is
confronted, when she decides to apply MTBE on some transformation scenario. Figure 4.5
shows the basic workbench vision that acts as our design prototype for an Eclipse-based
implementation. We have identified four major views that have to be presented to the user
in some perspective or view. The top level view and most important to the transformation
designer is the model mapping view, which she can draw the mappings between graphical
CS elements in an appropriate editor. After a reasoning process the produced metamodel
mappings can be viewed in a separate editor. This not only allow the view of metamodel
mappings but also their modification. The third part of the MTBE perspective shows the
generated transformation code, i.e., the ATL code automatically produced from the meta-
model mappings. And our last view component is associated with the models that have
been the outcome of the generated model transformation program. This allows the testing
of the ATL code and eases the correction of errors by manual refinements in one of the upper
three view components depicted in Figure 4.5.

4.4.1 Model Mapping

The main purpose of our frontend is to allow the definition of model mappings, i.e., to map
elements of different modeling languages.

But what is a model mapping? Naumann and Leser [48] define a schema mapping to

62

4.4 MTBE Frontend - The Black-Box View

ATL-Coderule1
rule2

rule1
rule2

module ER2UML

M → M‘

M → M‘

Mapping

M
M

MM MM‘

A
TL

Pr
ev

ie
w

M‘ → M

M‘ → M

Ex
am

pl
es

M M‘

Professor

name:String

Student

name:String
examinesexaminer examinee

1 *

examinesProfessor Student
1 *

name name

examiner examinee

Professor

name:String

Student

name:String
examinesexaminer examinee

1 *

examinesProfessor Student
1 *

name name

examiner examinee

module UML2ER

Figure 4.5: MTBE workbench vision.

be a set of correspondences between an arbitrary number of attributes of different schemas.
Following this definition we can use the term correspondence and mapping equally. Fur-
thermore, such mappings define a semantic correlation between mapped elements. There
exist basically two ways to obtain mappings between models and schemas. One of these
techniques is matching, which is an automatic task done by a tool following predefined
matching strategies. See for example [6]. The second technique is defining mappings man-
ually. This is the procedure we have chosen in our MTBE frontend. There are four different
value correspondences available, i.e., 1 : 1, 1 : n (split), n : 1 (merge) and m : n. Value cor-
respondences can further be annotated with transformation functions, which can perform
some calculations or string manipulations.

Naumann defines two kinds of usage for mappings in general that can be directly
adopted for model mappings. First, we can use mappings for the representation of knowl-
edge and thus for some model integration task. And second, we can use value correspon-
dences as the basis for a more complex task, i.e., the transformation of models. Often a
fundamental problem of correspondences stems from the lack of a semantic foundation.
Without having the semantics of mappings defined tool support is often not reliable in terms
of transformation correctness criteria.

In MTBE we basically face the same problem of lacking semantics for model mappings.
But we can argue first that a model mapping has not always one specific semantic meaning

63

Chapter 4 Basic MTBE Concepts

Package
BasicMappingLanguage

ViewElement

SimpleMapping

Mapping RightViewElementLeftViewElement
rhs

 [1..*]

lhs

 [1..*]

Figure 4.6: Basic model mapping language.

SimpleMapping

Meta Element Concrete Syntax Element Example

See running example CS mapping professor:Class 2
professor:Entityprofessor:Entity

Figure 4.7: Notation table of basic model mapping language.

thus allowing for semantic variation points as in UML. And second the meaning of a map-
ping gets determined only when we perform some reasoning on these model mappings in
order to deduce a proper mapping model on the M2 layer.
Abstract Syntax. Figure 4.6 defines a very basic mapping language for MTBE, which solely
consists of one mapping operator, i.e., our SimpleMapping.

context SimpleMapping inv:
self.lhs->size()=1 and
self.rhs->size()=1

Concrete Syntax. Figure 4.7 shows the CS for our basic mapping language according to the
AS defined above.

4.4.2 Mapping Definitions By-Example

The user has to define mappings between model elements of the two concrete domain mod-
els as shown in Figure 4.4 page 61. These mappings are illustrated by thin dotted lines be-
tween elements of the two models in Figure 4.4 page 61. For the sake of clarity, we omitted
some of the mappings as this helps to focus on those mappings that are of special interest
for our algorithms explained in the next subsections. As mentioned before mappings speci-
fied by users are solely full equivalence mappings, i.e. one-to-one mappings. Furthermore,

64

4.4 MTBE Frontend - The Black-Box View

these mappings can be regarded as bidirectional in contrast to other by-example transfor-
mation approaches, e.g., [47]. Hence, model transformation code can be generated for both
directions, namely from UML to ER, and vice versa.

4.4.3 Validation of Transformation Code and Produced Output Models

The task of validation is very closely related to testing. First we have to ask: what can be
validated? We can validate transformation code, i.e., the transformation model produced by
MTBE, and the (meta)models involved in the transformaton process. However we can only
check for syntactical correctness with models. Semantic validation is not possible as their
exists in most cases no formal specification of metamodels yet. Most prominent example for
a missing formal semantic specification is the UML. Hence, we can only check for syntactic
correctness.

Validation can either be done manually by the user or automatically with tool support.
We briefly discuss both ways, but won’t go into detail as the validation and testing field for
transformations and their are research areas of its own. However these topics are vital for
the success of model transformation approaches and can be seen as major requirements.

Manual Validation. Generated transfromationcode can be reviewed by the programmers
themselves and validated by executing the code with some input models and afterwards
comparing with the output models. By again executing the transformation the other direc-
tion having now the output models as inputs one can aim at a full round trip. If information
gets lost this is directly visible and the user can start with a refinement process, which may
start at the model mapping layer and can finally reach the code layer, i.e., the transformation
model derived by MTBE. A great benefit stems from the fact that test models are already
available as they have been specified during step 1 of the MTBE process. Therefore the
cost of time creating proper test cases for transformation code testing is reduced. However,
additional critical test cases must be provided if they exist.

Automatic Validation. Automated testing is one of the key features in model transforma-
tions. Especially the graph grammar based approaches suffer from termination and unique-
ness issues arising during rule execution. For an in depth discussion on syntactical correct-
ness criteria, termination and confluence see for example [45]. In this work Küster presents
a graph transformation approach and how validation on the transformation rules can be
achieved. Sadilek et al. [73] are especially concerned with the testing of metamodels, but
similar approaches acting upon models are possible. In Fleurey et al. [29], the authors
discuss the usefulness and appropriateness of input models of some model transformation
program. They define rules and a framework that help the user to design sound input
models. These rules could be integrated into MTBE as supporting technology.

But there are several tasks the user can perform independently from these rather sophis-
ticated approaches in order to test the transformation code. Input and output models must

65

Chapter 4 Basic MTBE Concepts

conform to their respective metamodels. If any model is produced that does not conform to
the well-formedness rules of the metamodel we have indication for an error in the transfor-
mation code. Similarly the transformation model can be checked against the transformation
metamodel or the textual concrete syntax can be parsed for syntax errors.

4.5 MTBE Backend - The White-Box View

In contrary to the frontend presented in the previous Section, we now take a closer look
at what happens behind the curtain. It is about the MTBE “engine”, that tries to generate
executable transformation code. The aim of this Section is to layout how this automatic
process works and what the basic ideas have been at the beginning of the development of
our MTBE approach. The term white-box view refers intuitively to everything that is part
of the program, the internal system.

The MTBE process outline in Figure 6.3 shows the backend related tasks or process steps 3
and 4. Step 3 can now be split up into 4 sub-steps, to give an in-depth discussion of the work
the MTBEGen has to do. In particular, we explain how the abstract syntax is analyzed to
collect all necessary data for the model transformations. Therefore, we interpret the models
shown in abstract syntax as object models consisting of objects, attribute values and links,
because these models can be seen as instances of the metamodel, which again can be seen as
a simple class diagram. Consequently, we first explain the creation of objects (cf. subsection
4.5.1), then the placement of attribute values (cf. subsection 4.5.1), and finally the linking
of objects (cf. subsection 4.5.1). By collecting the data of these three sub-steps, it is possible
to derive all necessary information in order to define the query parts (e.g., the from part
of ATL rules) and also the generation parts (e.g., the to part of ATL rules) of the model
transformation rules (cf. subsection 4.5.3).

4.5.1 Basic Reasoning on User Mappings By-Example

Second, we need to know how the model elements shown by the concrete syntax correspond
to the model elements shown by the abstract syntax. These definitions are provided by the
package as_2_cs as described in section 3.5. The links between concrete syntax and abstract
syntax are illustrated in Figure 4.4 page 61 as thin solid arrows for the right and for the left
side, respectively. Again we left out some of the links to focus on the mapping definitions
which are relevant for the following discussions.

Object Creation

As we defined semantic correspondences between model elements of the two domain mod-
els in the previous step, we can now move on to the object creation process. Assume first

66

4.5 MTBE Backend - The White-Box View

that we want to transform the UML class diagram into an ER diagram. Therefore, the algo-
rithm has to analyze the abstract syntax of both models and additionally the user-defined
mappings. In particular, the algorithm has to check if a certain type of object in the UML
model is mapped to a certain type of object in the ER model. If this is the case, there is
also a full equivalence mapping on the abstract syntax layer and a simple transformation rule
without a condition can be generated for this object type. For example, objects of type class
are mapped to objects of type entity (cf., mapping a in Figure 4.4 page 61), only. However,
some objects of the same type are mapped to different object types depending on their at-
tribute values and links. In this case, an additional mapping operator is available for the
abstract syntax layer, namely conditional equivalence mapping. The conditions for the con-
ditional equivalence links are derived from the as_2_cs package, i.e., the concept hiding is
resolved, and finally these conditions manifests in the query part of the model transfor-
mation rules. For example, property objects of the UML class diagram are mapped to both
attribute objects (cf., mapping b in Figure 4.4 page 61) and role objects (cf., mapping d in
Figure 4.4 page 61) of the ER model. Taking the constraints property.owningClass != null and
property.association == null of the as_2_cs package into account, we can assure that only an
ER attribute is generated when the property actually represents an attribute in the UML class
diagram. The same procedure can be applied for properties representing roles.

After completion of this step we have created all necessary objects for an ER diagram
from a UML class diagram, which are the basis for our next steps to be performed. The same
procedure can also be applied for a ER diagram to an UML class diagram transformation as
our transformations can be generated in either direction.

Placement of Attribute Values

This step constitutes the placement of attributes values for the created objects. In contrast
to the object creation step where primary the query parts of the transformation rules were
relevant, this subsection focuses on the generation parts, i.e., how to set the attribute values.
First of all, we have to differentiate between two different kinds of attributes which occur
in metamodels, namely ontological attributes and linguistic attributes.

Ontological attributes represent semantics of the real world domain which can be incor-
porated by the user by setting the values explicitly in the concrete syntax. Examples for
ontological attributes are Class.name and Attribute.name. In order to set the ontological at-
tributes in the generation part of the transformation rules we use heuristics, e.g., string
matching. In our example, we can conclude that the name of a class should be the name of an
entity when considering the class professor and the entity professor (cf., mapping b in Figure
4.4 page 61), because these two attributes have the same value.

Linguistic attributes are used for the reification of modeling constructs which cannot be
set explicitly by the user in the concrete syntax, e.g., Class.isAbstract or Property.aggregation.

67

Chapter 4 Basic MTBE Concepts

Hence, these attributes have predefined ranges of values as they are fixed elements of the
language definition. When dealing with linguistic attributes in context of MTBE we need
to exploit the information stored in the as_2_cs mappings, because in these mappings the
concepts become explicit by defining the required condition, i.e., how the values have to be
set to fulfill the requirements for the sub-concept. For example, when transforming an ER
attribute to an UML property, we also have to set the linguistic attributes of the property
class (e.g. Property.aggregation) which can be done by incorporating the information stored
in the as_2_cs mapping.

Linking Objects

Finally the links between the created objects have to be deduced from the metamodel, from
our triples of the as_2_cs mappings containing OCL constraints, from the user-defined map-
pings, and user interaction as the last choice when the last three mentioned options are not
sufficient. This part of the transformation step is obviously the most interesting one, as
most difficulties arise at this stage. In particular, the user-defined mappings on the concrete
syntax can result in ambiguous mappings, i.e., mappings that are controversial and it is
not automatically decidable which case should be chosen for the general model transforma-
tion. Especially 0..1 associations in combination with xor-constraints in the metamodel are
relevant in this context, as they might entail some hidden concepts. Another reason of un-
ambiguous mappings is the heterogeneity of the expressiveness of the modeling languages.

In the following the creation of object links is described, whereby we classify some inter-
esting cases regarding to multiplicity of the association ends of the metamodel, namely 1..1,
0..1 and 0..1 in combination with xor-constraints.

Unambiguous Mappings Concerning unambiguous mappings, we discovered two inter-
esting cases, namely association ends with multiplicity 1..1 and 0..1.

• 1..1 association ends: We encounter such association ends in our ER metamodel be-
tween Entity and Attribute as can be seen in the bottom of Figure 4.4 page 61. In
addition, when looking at the middle of Figure 4.4 page 61, one can see, that each ER
attribute is linked to an ER entity as this is the mentioned constraint of the ER meta-
model. Furthermore, one can see that each UML attribute is linked to an ER attribute
and that the containing UML class is linked to the containing ER entity, respectively.
Consequently, if we transform an UML property, that is actually an attribute, into an
ER attribute, we can automatically create the link between entity and attribute.

• 0..1 association ends: This kind of association ends in the metamodel allows concept
hiding, as is done in the UML metamodel for the class Property. A property can ei-
ther be a special kind of role or an attribute belonging to a certain class. As we will

68

4.5 MTBE Backend - The White-Box View

see, association ends of this kinds are not as easy decidable as 1..1 association ends
are, because the links are not required on the abstract syntax layer and can vary, also
within the same example. However, in case of unambiguous mappings, i.e., the link is
always or never present on the abstract syntax layer, a general model transformation
rule can be derived. For example, ER relationship has two links to its roles and UML
association has two links to its properties. Furthermore, ER relationship is mapped to
UML association (cf., mapping c in Figure 4.4 page 61) and the ER roles are mapped
to the UML properties of the association (cf., mappings d and e in Figure 4.4 page 61).
When going from ER to UML, we can deduce that each corresponding association
should have links to the properties which correspond from the roles of the ER rela-
tionship. However, the second possible kind of link between association and role (cf.
concerning association end owningAssociation in Figure 4.4 page 61) is not automati-
cally decidable as we see in the next subsection.

Ambiguous Mappings In this part we describe an example that shows that especially for
object linking some ambiguities can occur which have to be resolved by user interactions.

In Figure 4.4 page 61 two user-defined mappings are shown, which are the source for
ambiguity mappings on the abstract syntax layer. In this example the role examinee in the
ER model is mapped to the navigable role examinee in the UML class diagram, but the role
examiner is mapped to the non-navigable role examiner in the UML class diagram. Now we
want to discuss the impacts on the abstract syntax layer mappings. The problem arises that
it is not decidable which general transformation rule should be derived, because one role
of the ER model is mapped to an UML property, which has a link to an class object (cf.,
mapping e in Figure 4.4 page 61), and another role of the ER model is mapped to an UML
property which has instead an link to an association object (cf., mapping d in Figure 4.4
page 61). This unambiguity results from the metamodel of UML where an xor-constraint
exists between owningAssocation and owningClass, as can be seen in Figure 4.4 page 61, and
from the fact that UML differentiates between navigable role and non-navigable role with-
out supporting the general role concept. As our definition of the ER metamodel does not
allow for two different kinds of roles as the UML metamodel does, we cannot derive an
general transformation rule. Instead the user must decide on how to deal with roles from
the ER model in the UML model. This example shows that in general it is not possible to au-
tomatically derive all model transformation rules, not even between modeling languages,
which share the same modeling domain. Instead, for some rules the user has to interact and
decide, which alternative is appropriate, such as in our example to generate navigable roles
in the UML model for roles of the ER model.

69

Chapter 4 Basic MTBE Concepts

Package
BasicMetaMappingLanguage

FullEquivalenceMappingConditionalEquivalenceMapping

condition

Ecore

ENamedElement EquivalenceMapping
source

target

Figure 4.8: Basic metamodel mapping language.

4.5.2 Metamodel Mapping

Abstract Syntax. In the above we have already discussed how we can derive metamodel
mappings based on the information given by the user and how these mappings look like.
For the sake of completeness and we present the AS for our metamodel mapping language
in Figure 4.8. Also we explain in the next chapter how this language can be extended to
ease the generation of model transformation code. Figure 4.8 shows that the central map-
ping element is the abstract class EquivalenceMapping, which concrete mapping classes in-
herit from, i.e., ConditionalEquivalenceMapping and FullEquivalenceMapping. So this abstract
root class acts as extension point for more specialized metamodel mapping operators. We
also include the Ecore package here to be able to reference any AS element used in our
metamodels.

4.5.3 Transformation Model Generation By-Example

At last all gathered information can be aggregated to generate proper ATL transformations.
In the following, two examples are shown just to give an idea how the query parts and
generation parts of the ATL transformations are generated.

The first example as presented in Listing 4.1 is a transformation from ER attributes to UML
properties, which actually represent UML attributes in the concrete syntax. Note that the gen-
eration part of this rule is the most interesting part, because the attribute value assignments
for ontological and linguistic attributes have been automatically generated.

70

4.6 MTBE-Related Work

Listing 4.1: ATL rule for Attribute2Property.
1 module ER2UML;
2 c r e a t e OUT : UML from IN : ER ;
3

4 rule A2P {
5 from a : ER ! A t t r i b u t e
6 to p : UML! Property (
7 name <− a . name ,
8 aggregat ion <− ’ none ’ ,
9 . . .

10 owningClass <− a . e n t i t y
11)
12 }

Listing 4.2: ATL rule for Property2Attribute.
1 module UML2ER;
2 c r e a t e OUT : ER from IN : UML;
3

4 rule P2A {
5 from p : UML! Property (
6 p . owningClass . ocl IsUndefined ()
7 = f a l s e and
8 p . a s s o c i a t i o n . ocl IsUndefined ()
9)

10 to a : ER ! A t t r i b u t e (
11 name <− p . name ,
12 e n t i t y <− p . owningClass
13)
14 }

The second example shown in Listing 4.2 is an ATL rule that incorporates the condition of
the abstract to concrete syntax mapping for UML in its query part in order to produce ER
attributes for UML properties which are actually representing UML attributes on the concrete
syntax layer, only.

4.6 MTBE-Related Work

With respect to our approach of defining inter-model mappings between domain models
(M1) and the derivation of model transformation code from these mappings we distin-
guish between three kinds of related work: first, related work concerning on linking model
elements between models within a separate model (model weaving), second, declarative
and example-based transformation rules mainly supported by graph transformations and
third, related by-example approaches starting from their origin approach, namely query-
by-example.

In general, our approach of defining similarities between modeling languages and models
is related to model transformation. Model transformation in the context of MDE is a rapid
emerging topic as can be seen in the model transformation workshop at the MoDELS/UML
2005 conference. One of the first and nowadays one of the most matured approaches is
the ATLAS Model Weaver (AMW) [26] and the ATLAS Transformation Language ATL [40].

71

Chapter 4 Basic MTBE Concepts

The idea behind model weaving is to define a relationship between a left model (or meta-
model) and a right model (or metamodel) with certain kind of mapping operators which
can also be user-defined. This approach is related to the mapping between two concrete
domain models of two different modeling languages, however, the difference lies in the
representation of the models and in the level of the mappings. AMW works with the ab-
stract syntax representation of a model, while our approach works with mappings between
models represented with the concrete syntax of the modeling languages. The benefit of
mapping examples shown in concrete syntax is the absence of hidden concepts which occur
quite often in metamodels. Our work is also different to the AMW in that the model trans-
formation generation process of the AMW currently focuses on using mappings between
metamodels (M2 mappings) and therefore based on the abstract syntax as input to derive
ATL code [39], while our approach aims at generating model transformation code from M1
mappings. Hence, we have shifted the definition of the mappings from the abstract syntax
to the concrete syntax and from the metamodel layer to the model layer.

Our proposed MTBE approach follows the main principles of the query by example (QBE)
approach introduced in [93]. The aim of QBE is to have a language for querying and manip-
ulating relational data. This is achieved by skeleton tables, which consists of example rows
filled out with constants, constraints, and variables, combined with commands. Commands
describe what to do with the selected tuples that match the defined queries, such as deletion
or selection of the tuples. In order to operate on relational data stored in DBMS, real queries
(e.g., SQL scripts) are derived from the skeleton tables and can be executed on relational
models. Lechner et al. [47] follow this original approach of QBE, but with extensions for
defining scheme transformers, which is demonstrated in the area of web application mod-
eling with WebML [15]. Therefore, the original QBE approach is extended by introducing
in addition to the query part (WebML model before transformation) also a generation part
(WebML model after transformation) in the template definitions. Finally, XSLT code is gen-
erated to transform the WebML models which are represented within the accompanying
tool WebRatio as XML files.

Our work reuses the main idea of the aforementioned by-example approach [47], but our
work is different to this work in that first, we propose the use of real world examples in-
stead of using abstract examples, second, we introduce bi-directional mappings in contrast
to uni-directional template based examples, third, our domain for applying a by-example
approach is the modeling technical space [46], while the others are based on relational data,
and fourth, we also consider the abstract syntax to concrete syntax mappings to tackle the
problem of implicitly defined modeling concepts and are therefore able to make them ex-
plicit.

Other by-example based approaches related to our proposed MTBE approach are pro-
gramming by-example [72], [3], and [24] as well as XSLT style sheet generation by-example
[71]. The objective of these approaches is to facilitate the end user to be able to perform tasks

72

4.7 Summary

which normally need more knowledge, e.g., knowledge about programming languages like
Visual Basic, Java or even XSLT. The way PBE tries to to achieve this objective is to record
the users actions (e.g., by a trace model) maybe in more than one iteration, and generate
a program from the trace models to automatically perform the afore manually performed
task by the computer.

The difference to the programming by-example approaches is that we statically define the
mappings between two models instead of the iterative adaptation of the examples to get the
resulting code, in our case the ATL code.

Parallel to our MTBE approach Dániel Varró proposed in [84] a similar approach. The
overall aim of Varró’s approach is comparable to ours, but the concrete realizations differ
from each other. With our basic MTBE approach we describe the definition of semantic cor-
respondences on the concrete syntax, which are propagated to the abstract syntax. From
these mappings ATL rules can then be derived. Varró’s approach uses the abstract syntax
to define the mappings between source and target models, only. The definition of the map-
ping is done with reference nodes leading to a mapping graph. To transform one model into
the other, graph transformation formalisms [25] are used. However, both approaches gen-
erate model transformation rules semi-automatically leading to an interactive and iterative
process.

4.7 Summary

In this chapter we have introduced a basic by-example approach for defining semantic cor-
respondences between domain models shown in their concrete notation, that allows the
derivation of model transformation code. This approach tackles concept hiding in meta-
models, which results in complex query and generation parts of model transformation rules.
Furthermore, the user can reason about semantic correspondences in a notation and with
concepts the user is familiar with. Hence, metamodel details resulting from the need for
efficient API and repository implementations are hidden from the user.

We have presented relevant issues concerning MTBE, however, various extensions of the
presented concepts are discussed in the following chapters, e.g., application on larger mod-
eling languages, also from other modeling domains and full elaboration of the so far gained
insights. In particular, MTBE requires proper tool support and methods guiding the map-
ping and transformation code generation tasks in order to fulfill the requirements for the
user-friendly application of MTBE. Therefore, Chapter 6 then elaborates on an implementa-
tion of a prototype in order to be able to evaluate our proposed approach in the large.

73

Chapter 4 Basic MTBE Concepts

74

Chapter 5

Advanced MTBE Concepts

Contents
5.1 Adding Expressiveness to the Model Mapping Language 75
5.2 Reasoning based Pattern Matching . 79
5.3 Adding Expressiveness to the Metamodel Mapping Language 81
5.4 Advanced Reasoning Algorithms . 83
5.5 A Two Step Transformation Process . 84

In the previous chapter we have introduced MTBE and how it is split up into five distinct
task comprising the MTBE process. Nevertheless, extensions and advanced concepts for
MTBE are needed to face more complex integration scenarios than the one considered in
Section 4.3. In particular, we develop additional mapping operators, both on the M1 layer
and the M2 layer to capture and store more integration knowledge for the final code genera-
tion using higher order transformations. Also, we do reasoning on models and metamodels
by means of pattern matching in a heuristic way and by means of reasoning algorithms.

5.1 Adding Expressiveness to the Model Mapping Language

In this section, we present a refined version of our model mapping language by first
introducing its AS and subsequently its CS.

Abstract Syntax. The metamodel for the model mapping language defines all mapping
concepts that may be applied by the user to accomplish the task of bridging two model-
ing languages by means of mapping example models shown in their concrete syntax. The
abstract root class ViewElement, depicted in Figure 5.1, is in fact only for implementation
convenience and to visualize that inheriting classes have an associated element on the view.
The central class is the abstract class Mapping, that serves as basis for all kinds of connec-
tions relating two graphical model elements of source and target languages. The design of
mapping ends in the metamodel (cf. references lhs and reference rhs) allows for all kinds

Chapter 5 Advanced MTBE Concepts

Package
AdvancedMappingLanguage

ViewElement

SimpleMapping

Mapping RightViewElementLeftViewElement

CompoundMapping ValueMapping ExpressionXOR

rhs

 [1..*]

lhs

 [1..*]

lhsExpression
 [0..1]

rhsExpression
 [0..1]

contextmappings

 [2..*]

Figure 5.1: Extended model mapping language.

of mappings, i.e., one-to-one, one-to-many, and many-to-many. Elements of the languages to
be integrated must have the corresponding abstract class LeftViewElement or RightViewEle-
ment as superclasses. How these requirements are realized within our MTBE approach is
discussed in Subsection 6.2.2.

Actually, the remaining concrete classes form the bases for the concrete syntax of the
mapping language, for which we defined a notation. However, the specification provided
in Figure 5.1 is not sufficient to completely determine the abstract syntax of our mapping
language. There exist further well-formedness rules for model which have to be defined
with the Object Constraint Language (OCL) for each concrete subclass of class Mapping.

Simple Mapping. The concept that allows the user to draw simple one-to-one mappings
between any two concrete syntax elements is represented by the SimpleMapping class. Ad-
ditionally, to restrict on 1..1 multiplicities, the following constraint is necessary.

context SimpleMapping
inv: self.lhs -> size() = 1 and self.rhs -> size() = 1

Compound Mapping. To allow for one-to-many and many-to-many mappings, we intro-
duced the CompoundMapping class. In order to complete the syntax specification the follow-
ing constraint must hold for compound mappings.

context CompoundMapping
inv: self.lhs -> size() > 1 or self.rhs -> size() > 1

Value Mapping. The classes ValueMapping and Expression constitute what was intro-
duced as string manipulation operator [81]. Whenever attribute values represented by

76

5.1 Adding Expressiveness to the Model Mapping Language

labels are part of a mapping, it would be nice to have some sort of functions that can be
applied to modify the participating attribute values appropriately. The container, which
encapsulates the actual value mappings is the ValueMapping class, able to manage two lists
whose elements point to a label. For each of these two lists, a function may be applied to.
This function is stored within instances of Expression that supports e.g. the concatenation
of values by accessing list elements through their index. A ValueMapping is however
not self-dependent and thus must have a context specified, which can be either of type
SimpleMapping or CompoundMapping.

XOR. The last operator we have to specify is the XOR. While experience has shown, that
an explicit XOR operator on the concrete syntax layer is not desirable in common use cases
as it can be derived on the metamodel layer automatically, we include it in the mapping
language description for sake of completeness. The Role mappings of XOR must be unique.
For xor-ed simple mappings we must further specify

context XOR
inv: self.mappings-> forAll(m | m.oclIsTypeOf(SimpleMapping))
inv: self.mappings.lhs-> asSet()-> size() = 1
xor self.mappings.rhs-> asSet()-> size() = 1

as a constraint. The first invariant says that this constraint can only be applied on map-
pings of type SimpleMapping. The second invariant is needed to further restrict the way XOR
may be applied to SimpleMappings. More specifically we have to ensure that all SimpleMap-
pings have on one side, i.e., either left-hand side or right-hand side, exactly one ViewElement
in common.

Example 32. An example of a wrong usage scenario of the XOR operator is given in Figure 5.2(b).
Figure 5.2 also shows a valid application of XOR in (a). In (c) we depict the corresponding Object
Diagram, which shows how serialization is done and gives a notion of how domain elements are
mapped to ViewElements. In Chapter 6 we demonstrate how this mapping is done in tool support in
practice.

For the type CompoundMapping a similar constraint may be specified.

Concrete Syntax. Above we have described the AS of our model mapping language. Now
we briefly present what the corresponding CS of the model mapping language looks like.
Figure 5.3 depicts the notation tables for our mapping language. Each concrete class of
our mapping language has a distinct CS element for defining model mappings. How these
elements may be used in real world examples has been already presented in our previous
work [81] for business process models. In this thesis, see Section 7.1, we present a concrete
application of the model mapping language for bridging structural modeling languages as
well as business modeling languages.

77

Chapter 5 Advanced MTBE Concepts

Jedi Jedi Charakter

XOR
XOR

LukeJedi LukeJedi

() (b)

L1:LeftViewElement S1:SimpleMappingJedi:Class

(a) (b)

R1:RightViewElement

L2:LeftViewElement S2:SimpleMapping

X1:XOR
isAbstract=true

isAbstract=false

Luke:Class
Jedi:Entity

L2:LeftViewElement S2:SimpleMappingisAbstract=false

(c)

Figure 5.2: The XOR mapping operator, (a) Valid use, (b) Invalid use, (c) Object Diagram of
(a).

SimpleMapping

Meta Element Concrete Syntax Element

lhs, rhs (of ValueMapping)

Meta Element Concrete Syntax Element

{label}

CompoundMapping Expression {Value@Pos1}…{Value@Pos2}

ValueMapping XOR «XOR»

Figure 5.3: Notation tables of the model mapping language.

78

5.2 Reasoning based Pattern Matching

Note this CS approach acts as a guideline. Implementation may slightly differ in some
aspects. Also the semantic of our mapping language is only defined in natural language. A
formal semantics is still missing and it is not clear yet in which way to define it.

5.2 Reasoning based Pattern Matching

This subsection covers the conceptual step number three outlined in Subsection 4.2. Model
transformations operate on the model level but need to be defined having knowledge how
metamodel elements semantically correspond to each other. This is why we have to per-
form a movement from model mappings defined by the user up to metamodel mappings.
Unfortunately, user mappings are in general not as accurate as metamodel mappings have
to be in order to be used as input for the generation of model transformations. Model
mappings usually consist of ambiguities mainly because of various structural and seman-
tical heterogeneities occurring between different modeling languages and due to the user-
friendly model mapping language.

To cope with the shift in “mapping space”, we propose reasoning based on pattern match-
ing. By applying any kind of predefined or custom-defined model pattern, we aim to create
metamodel mappings from model mappings on an automatic basis. These metamodel map-
pings can be made persistent in a so-called mapping model, which allows to relate all kinds
of metamodel elements. In the following, we present six core patterns that are illustrated
in Figure 5.4. The first three patterns operate on the model level (cf. M ⇔ M ′ in Figure
5.4) and produce an initial mapping model, whereas the last three patterns are based on the
metamodel level (cf. MM ⇔ MM ′ in Figure 5.4) and aim at the refinement of the initial
mapping model.

Initializer Pattern. The first pattern matches if classes, attributes, and references in meta-
models are identical resulting in full equivalence mappings between metamodel elements.
The basis for this pattern represents simple mappings between model elements and rea-
soning capabilities to check whether mapped objects (e.g., instance of class A and instance
of class B in Figure 5.4) have equivalent attribute values and links. With the help of this
pattern, all simple equivalence mappings between two metamodels can be found. How-
ever, with this pattern it is not possible to resolve structural or semantical heterogeneities
between modeling languages. For resolving such problems, we propose the following five
patterns.

Pathway Pattern. The second pattern poses a challenge as alternate paths have to be
found if someone wants to set the link from an instance of A to an instance of B when
transforming from M ′ to M . Analysis of the metamodel alone would not be sufficient,
because metamodels might be nearly identical but the reference semantics are different. An
analysis of both models represented in AS has to be performed to check for the existence of
an equivalent path in M ′ between an instance of C and an instance of D.

79

Chapter 5 Advanced MTBE Concepts

e.g. ER
model

e.g. UML
model

e.g. ER
metamodel

e.g. UML
metamodel

Initializer
Pattern

Compound
Pattern 1

Compound
Pattern 2

Choice
Pattern

Split/Merge
Pattern

M

M'

↔
↔

andand xor

MM

MM'

:A :B

A B

:C :D

:A :A:B

A B

:B

:B

A B

:C
:C

:D

C C C

and

M
od

el
 L

ay
er

M
et

am
od

el
 L

ay
er

Pathway
Pattern

Figure 5.4: Core analyzer patterns.

Split/Merge Pattern. The third pattern illustrates the case, where two concepts are rep-
resented as two classes explicitly in one language, whereas these two concepts are nested
within one class in the other language. As an example consider the UML class Property,
that specifies the concept multiplicity as attributes, whereas in the ER metamodel the con-
cept multiplicity is expressed explicitly as a class. This means, in transformations there is
either a merge of objects and values or a split into separate objects. In principal, there is no
restriction on the number of classes that need to be merged or splitted as long as they are
somehow related and connected through references. Note that a merge of classes leads to
concept hiding whereas a split makes concepts explicit.

Compound Pattern 1 – no structural connection. This pattern reasons about metamodel
mappings which have been produced from compound mappings of the model level. In
case no structural connection between instances of class A and class B can be found in the
example model, then we simply define two independent classes A and B to be equivalent
with one class C. This is the most trivial form of one-to-many mappings and leads to trans-
formation rules which simply create two unrelated instances from one instance of class C.

Compound Pattern 2 – structural connection. This pattern also reasons about metamodel
mappings produced for compound mappings of the model level and represents the oppo-
site case of Compound Pattern 1 in the sense that a structural connection between instances of
class A and class B can be found in the example model. Consequently, this pattern produces
metamodel mappings which lead to transformation rules for creating two linked instances
from one instance of class C.

Choice Pattern. We encountered the case in which two distinct classes, such as class A
and class B, are mapped to the one class C. This kind of metamodel mappings is produced
for simple model mappings pointing from instances of one class to instances of several
classes. Whenever this pattern is matched, further reasoning on the model represented in

80

5.3 Adding Expressiveness to the Metamodel Mapping Language

AS in combination with the CS definition is needed trying to distinguish between the con-
cepts which are hidden. Again, consider our simple UML to ER integration scenario of
Figure 4.4. Instances of class Property represent on the one hand attributes when no link to
an association instance is set and on the other hand roles when a link is set. This distinction
is also represented in the CS of UML, thus the constraints can be reused to build the xor con-
straint between the metamodel mappings. If the feature comparison in combination with
the CS definition does not yield any result, the user has to decide and adjust the metamodel
mappings or transformation code manually.

The application of these core patterns is vital for the generation and refinement of the
metamodel mapping model. The metamodel mapping language, see Figure 5.5, allows at
the moment only for full or conditional equivalence mappings. However, for model trans-
formation generation purposes this metamodel can be extended with additional mappings
to be able to contain further information generated by the analyzer component.

5.3 Adding Expressiveness to the Metamodel Mapping
Language

After applying the pattern matching on the model layer and the metamodel layer, we have
to provide some way to store the retrieved information about semantic correspondences
between metamodel elements. Conceptually, we have however spotted three possibilities
to move from user mappings to executable transformation code:

1. Generate model transformation code in the course of pattern matching using a template
based approach as supported by code generation frameworks.

2. Apply a Higher Order Transformation (HOT) [27] containing the pattern matching capa-
bilities for analyzing the model mappings and generate a transformation model.

3. Run the pattern matching on model mappings and produce an intermediate mapping
model upon a HOT is executed for producing a transformation model.

We believe that an intermediate mapping model capturing the derived correspondences
between metamodel elements is well suitable for MTBE due to the following reasons.

• Existing implementations using mapping models between metamodels (e.g., HOTs
and graphical editors) can be reused.

• Using a HOT ensures that we do not leave the "modeling technical space".

• A mapping model between metamodels allows to keep track of the actual model
transformation code generation. Thus, debugging is made easier.

81

Chapter 5 Advanced MTBE Concepts

Package
AdvancedMetaMappingLanguage

Ecore

ENamedElement

FullEquivalenceMapping ConditionalEquivalenceMapping

condition

EquivalenceMappingsource [1..*]

target [1..*]

attributeMappings

 [1..*]

referenceMappings

 [1..*]

Figure 5.5: Extended metamodel mapping language.

• Complexity is reduced by separation of concerns by splitting the task moving from
model mappings to model transformation code into two separate tasks.

• Customized HOTs may be easily applied leading to extensibility.

Figure 5.5 shows our basic mapping language for metamodels. The central concepts in
this metamodel are represented by the classes ConditionalEquivalence and FullEquivalence
used to distinguish between conditional equivalence mappings and full equivalence map-
pings. Equivalence mappings can additionally contain other mappings for specifying which
reference mappings and attribute mappings belong to a certain class mapping. Note, that
we do not categorize the mappings according to the types they reference. The task to inter-
pret and act properly according to the types the mappings reference, is carried out by the
HOT in a subsequent step.

Furthermore, the metamodel for metamodel mappings is quite different in its structure
compared to the model mapping metamodel shown in Figure 5.1. The metamodel mapping
language needs not to incorporate any usability and user-friendliness issues and can there-
fore contain any relevant information concerning the transformation model generation. For
example, complex OCL conditions are also contained in the metamodel mapping model, cf.
attribute condition in Figure 5.5.

In fact, one has to make sure that no information reasoned during the pattern matching
process is lost. The metamodel in Figure 5.5 is to be seen as a core mapping language
specification open for extension if necessary. This can be simply achieved by introducing
additional subclasses of the abstract class EquivalenceMapping.

82

5.4 Advanced Reasoning Algorithms

ProfessorProfessor

M
1

 (A
S)

M
2

ER UML

RoleRole PropertyProperty

EntityTypeEntityType ClassClass

*

1 1

RelationshipRelationship
1

2..*

Professor Studentexamineeexaminer
1 * Studentexamineeexaminer

1 *

M
1

 (C
S)

AssociationAssociation

2..*

0..1

Professor:EntityType Student:EntityType

examines:Relationship

examiner:Role examinee:Role

Professor:Class Student:Class

examiner:Propertyexaminee:Property

examines:Association

1a1b

1c 12

2a 2b

2c

examines
examines

*

Figure 5.6: Reasoning about derived associations.

5.4 Advanced Reasoning Algorithms

There exist rudimentary reasoning mechanism for deriving simple object, attribute, and as-
sociation equivalences from the abstract syntax of the models, the user defined mappings on
the concrete syntax, and the mappings between the abstract and concrete syntax definitions.
However, in the meantime we discovered, that these basic mechanisms are not applicable
for all abstract syntax hetereogenities. Especially for association equivalences further rea-
soning mechanisms are required - also for models which have nearly the same metamodel
structures. This topic has only be touched in Section 5.2 very briefly by the Pathway Pat-
tern. Hence, in this section we discuss one instance of the additional reasoning algorithms,
namely for finding equivalent queries for describing derived associations based on the ex-
ample depicted in Figure 5.6.

The upper part of Figure 5.6 (M2 layer) illustrates simple metamodels for ER and UML,
respectively. As one can see, the metamodel structures are nearly identical. The lower part
of Figure 5.6 (M1 layer) shows possible ER and UML models in abstract (M1(AS)) and con-
crete syntax (M1(CS)). In addition, in the concrete syntax layer the user defined mappings
(grey dashed lines in Figure 5.6), which are shown to explain how the reasoning algorithm
works. Again, the structures of the models are nearly identical, but one important difference
in the abstract syntax can be identified, which is not directly visible in the metamodel layer.
In ER an EntityType is linked to its adjacent Role in contrast to UML where a Class is linked to

83

Chapter 5 Advanced MTBE Concepts

its opposite Property, e.g, examinee:Role is linked to Student:EntityType in the ER model, but in
the UML model the corresponding element examinee:Property is linked to Professor:Class and
not directly to Student:Class which is the corresponding element for Student:EntityType. This
linking convention is not accurately defined in both metamodel structures, however, some
hint may be given by association end names such as owningClass in the UML metamodel or
type in the ER metamodel. However, in order to explicitly define such linking conventions
some informal natural languages description are necessary, for example as is done in the
UML 2 specification [67]. To tackle the automatical recognition of such linking conventions,
which have an impact on finding equivalent associations in our MTBE approach, we have
to introduce an advanced reasoning mechanism for finding derived associations. In the
following we describe this mechanism based on the introduced example.

Assume we move from ER to UML and the user mapped examinee:Role to exami-
nee:Property in the concrete syntax. This mapping is directly transferable to the correspond-
ing abstract syntax elements, because no constraint is defined in the abstract to concrete
syntax mapping of the modeling language. When transforming examinee:Role to exami-
nee:Property we have to set the link to Professor:Class (cf. arrow 1 in Figure 5.6). But in
the ER model there is no direct link between examine:Role and Professor:EntityType. At this
point we have to start a search in the ER model to find out if it is possible to indirectly nav-
igate from examinee:Role to Professer:EntityType. As it is illustrated in Figure 5.6 there is a
path 1a→ 1b→ 1c which can be used to derive the required information for generating the
desired UML model. The same procedure is applicable to produce the link between exam-
iner:Property and Student:Class in the UML model. Furthermore, when moving from UML
to ER we also need to find derived associations, e.g., when generating the link between ex-
amine:Role and Student:EntityType (cf. arrow 2 in Figure 5.6). This link is derivable from the
path 2a→ 2b→ 2c in the UML model.

The above mentioned example shows the potential of an example based approach for de-
riving model transformations. The reasoning on the abstract syntax of models (M1) allows
to detect syntactic heterogeneities which are not explicitly visible on the metamodel level
and furthermore provides the requisite information for a solution (mechanism). Another
benefit of this procedure is that the reasoning is totally transparent for the user who has to
map domain models in concrete syntax only. However, we believe that it is important to
search for other reasoning mechanisms and to provide a set of reasoning mechanisms from
which the user may choose.

5.5 A Two Step Transformation Process

As we have already discussed in the previous chapter the refinement of model transforma-
tion code is part of the MTBE process. This refinement step is necessary in transformation
scenarios where fully automatic generation of transformation code is not possible. There-

84

5.5 A Two Step Transformation Process

module UML2ER
rule UML!Attribute2ER!Attriubte{

from p : UML!Property (
p.association.oclIsUndefined()
…

)
to a : ER!Attribute(
….

}

ProfProf ProfProf

name:Stringname:String

M
2

M
1

ownedAttribute

owingClass

ownedEnd

memberEnd
association

owning
Association *

2..*

0..1

0..1 0..1

*

ClassClass

AssociationAssociation
PropertyProperty

name

ownedAttribute

owingClass

ownedEnd

memberEndassociation

owning
Association

*

2..*

0..1

0..1 0..1

*AssociationAssociation

PropertyProperty

UML ERMappings/Transformations

Prof:name ~ Prof:name

AttributeAttribute

AttributeAttribute

module UML2ER
rule UML!Attribute2ER!Attriubte{

from uA : UML!Attribute
to eA : ER!Attribute

…
}

MM (basic)

MM (extended with notation concepts)

as_2_cs

AttributeAttribute

EntityEntity

EntityEntity

1

0 0

ClassClass

<Property, Label,
Property.assoc == null >

*

*

1

1

«refines»

«refines»
«refines»

Figure 5.7: 2-step transformation generation.

fore the user-friendly adaption of generated model transformation code is a requirement for
a more advanced MTBE approach. The MTBE framework in its current state has one major
drawback concerning the one-step model transformation generation based on the abstract
syntax when the user needs to adapt the generated transformation by hand. This draw-
back is due to hidden concepts in the metamodel, that are explicit in the concrete syntax.
Hence, the user has to deal with the used constraints from the notation when adapting ATL
rules. We are to tackle this problem by applying higher-order transformations as introduced
in [85] in combination with using models of models whereas each particular model has a
particular purpose as introduced in [10].

In particular, we combine these two techniques in a two-step model transformation gen-
eration process with an intermediate layer as illustrated in Figure 5.7.

Step 1: Starting from the mappings between concrete domain model elements, in a first
step, a model transformation is generated in which the concepts available in the notation
are explicitly represented to hide complexities of the original metamodel from the user.
For this intermediate step, a metamodel has to be generated from the original metamodel
which in addition to concepts from the original metamodel covers concepts introduced by
the notation. Hence, the purpose of this generated metamodel is explicit knowledge repre-
sentation allowing easier development of model generation code. The generation of the ex-

85

Chapter 5 Advanced MTBE Concepts

tended metamodel is realized by automatically transforming the original metamodel com-
bined with mapping conditions of the package as2cs into a new metamodel which explicitly
represents the concepts.

Step 2: In a second step, the transformation code adapted with additional user extensions
is transformed into a model transformation which operates on the abstract syntax. For this
step we adopt the fact that also a transformation is a model, which allows the transfor-
mation, of a transformation to reduce to model transformation. In the transformation of
the transformation, the sub-concepts introduced by the notation are reduced to their super-
concepts and expressed in the transformation rules with complex conditions in the query
parts.

86

Chapter 6

Implementation

Contents
6.1 Overview of the Graphical Modeling Framework 87
6.2 An Eclipse Based Implementation for MTBE 91

6.2.1 MTBE Workbench . 93
6.2.2 Integration of GMF . 93

6.3 Critical Discussion . 96
6.3.1 Implementation Status . 96
6.3.2 Discussing the GMF Approach . 96
6.3.3 Alternative Implementation Approaches 96

6.4 Summary . 97

So far, the MTBE approach has been introduced on the conceptual level, only. Its practical
relevance may only be explored with proper tool support. The contribution of this chapter is
to explain how MTBE concepts have been integrated into existing state-of-the-art graphical
modeling and model transformation frameworks. We conclude with a critical discussion on
our implementation approach.

6.1 Overview of the Graphical Modeling Framework

How GMF Works

With the existence of the EMF the need for constructing visual editors used to be met with
the Graphical Editing Framework (GEF). The effort it takes to build a visual editor for one’s
own from scratch is remarkable and the learning curve coming along with the GEF API is
quite steep. This is why the Graphical Modeling Framework (GMF) project was set up. It
aims at automatically generating basically GEF code from certain modeling artifacts. This
generation functionality is encapsulated into the GMF Tooling components. Besides GMF
Tooling there exist runtime components, that provide common editor properties and a gen-
eral look and feel. Related to MTBE primarily the tooling components are of interest to us,

Chapter 6 Implementation

MMEcore

«instanceOf» EMFGEF

**

GraphMGraphMM

**
instanceOf

«binds»

ToolingMToolingMM

**

MapM GenM

«instanceOf» «instanceOf» GMF
Runtime

«use»

**

MapMM

«instanceOf» «instanceOf»

links transforms transforms

Editor
Code

MapMM

**
«instanceOf» «instanceOf»

Custom
Extension

«use»

GenMM

**
«instanceOf» «instanceOf»

*
M3 M2 M1 Code/Runtime

Figure 6.1: Overview of the Graphical Modeling Framework.

as they are enabling the MTBE visual frontend as will be explained later in this section. In
Figure 6.1 we give a brief outline of the modeling artifacts defined and used by GMF.

For a better understanding of how smoothly GMF fits into model engineering paradigm
we have categorized each modeling artifact according to its position in the 4-layer archi-
tecture proposed by the OMG’s MDA approach. On the meta-metamodeling layer M3 we
have the ECORE meta-metamodel introduced by EMF and based on a subset of MOF, i.e.
EMOF. On M2 we find five metamodels, which the first one (MM) can be any user specified
language based on ECORE and the other four metamodels are specified by GMF as they
are needed in the process of editor code generation. The GraphMM defines any view ele-
ments and how they can be related to while the ToolingMM sets possible language constructs
for toolbar specification. Similarly, MapMM and GenMM define mapping and generation
model constructs. In order to generate an GMF based visual editor the user has to create
three separate models, i.e. the GraphM, the ToolingM and the MapM located on M1. Most
interesting however is the MapM, whose intention is to link the graphical definition, the
tooling definition and the existing user metamodel elements together. The mapping model
simply states what tool creates which domain element and how it looks like on the canvas.
After the definition of these model element correspondences a transformation takes care of
the generation of a so called GenModel (Generation Model). The GenModel then serves as
input for the code generator templates (model-to-code transformation), that produce fully
functional editor code. The GMF runtime is however designed such that the generated code

88

6.1 Overview of the Graphical Modeling Framework

Root Root:EClass Domain Element
Notation Element

Legend

SimpleER metamodel

SimpleER represented

Entity

*
containment=true
lowerBound=0
UpperBound=-1

:EReference

Enitiy:EClass
eType

* weak
containment=true
lowerBound=0
UpperBound=-1

weak:EReference

eType

Notation Element
(GMF Map)

Visual Element
(GMF Graph)

SimpleER represented
In AS

Attribute

*
containment=true
lowerBound=0
UpperBound=-1

:EReference

Attribute:EClass
eType

Tool Element
(GMF Tool)

NB: different line shading
to increase readability

M1:Mapping

UpperBound 1yp

TNR1:TopNodeReference TNR2:TopNodeReference
self.entityContainer
->size() = 1

C1:Constraint
self.weakEntityContainer
->size() = 1

C2:Constraint

NM2:NodeMappingNM1:NodeMapping
EntityFigure:Node WeakEntityFigure:Node

() ()

CR1:ChildReference CR2:ChildReference
Entity:CreationTool WeakEntity:CreationTool

NM3:NodeMapping
Label:Diagramlabel

Attribute:CreationTool

Figure 6.2: How GMF deals with notation and concrete syntax.

can be customized by various extension mechanisms.

MTBE Related Notation Issues

In Section 3.5 we have already discussed the difference between notation and CS and how
the notation can be formally defined. GMF has chosen a very similar approach to capture
the notation and thus keep AS and CS elements separated from each other to maintain flex-
ibility. As mentioned above GMF maintains a mapping model called GMFMap referred
to as MapMM in the formal specification in the previous subsection. This metamodel de-
fines proper concepts to align domain elements, graphical view elements and tooling ele-
ments. Basically there exist 5 major mapping elements, i.e., LabelMapping, CanvasMapping,
NodeMapping, CompartmentMapping and LinkMapping. Furthermore, there exist two concrete
meta classes called TopNodeReference and ChildReference for the task of mapping references
from the metamodel to the view.

Figure 6.2 gives an example of how the notation is implemented in GMF. In the left up-
per corner we show a very simple SimpleER metamodel with only three concepts and a
standard EMF root element. These concepts are Entity, Attribute and weak entity, which is
implemented through a containment reference called weak. The way this latter concept is
implemented here can be regarded as concept hiding or metamodel heterogeneity.

89

Chapter 6 Implementation

To the left we depict the same metamodel in AS using the UML object diagram notation.
The reason for this shift in presentation of the SimpleEr language is that we have now all
meta concepts explicitly represented as UML instance specifications, which we can refer to
from the GMFMap model. This means that our EReferences in the metamodel are now explic-
itly expressed as instances maintaining links to other instances, which they are connecting.
Links to other objects may also reflect the role names of the corresponding EReferences in
the metametamodel, i.e., Ecore. In most cases role names are negligible but to distinguish
between source and target objects of an EReference we labeled one link with eType. If we had
some EAttributes specified in our SimpleER metamodel their instance specifications would
then also be easy to link with our example GMFMap model.

At the bottom of Figure 6.2 all GMF related elements are drawn as colored instances of
their corresponding GMF tooling models explained in the previous subsubsection. For the
sake of clarity we omit some details like the compartment mapping for Attributes and some
graphical definitions. The point we want to emphasis in this object diagram is the way GMF
deals with ambiguities in the AS and hence in the CS. The concept of weak entity is only
reflected by an additional containment reference from Root to Entity and shares the same
metaclass with the concept Entity. GMF defines NodeMapping as the view relevant concept.
Both instances NM1 and NM2 are linked to the same EClass making it for the GMF runtime
impossible to distinguish between these two distinct view elements. To solve this problem
GMF provides for the definition of OCL constraints to handle ambiguities on the CS level.
In our example we therefore specify Constraint instances C1 and C2 containing the proper
OCL constraints, which make the differences in the AS visible, i.e., the different EReferences
to the container metaclass Root.

Model Operators

The automatic MTBE editor code generation needs to have the following modeling artifacts
available: {MM1,MM2, GraphM1, GraphM2, T oolingM1, T oolingM2,MapM1,

MapM2}. Afterwards four distinct model operations have to be carried out.

1. JointMM = MM1 ∪MM2 ∪MMML = merge(MM1,MM2,MMML) .

2. JointMapM = MapM1 ∪MapM2 = merge(MapM1,MapM2) having
JointMM,GraphM1, GraphM2, T oolingM1, T oolingM2 available for reference.

3. JointGenM = transform(JointMapM).

4. Code = transform(JointGenM).

This is of course seen from a high level perspective and shall only briefly give an overview
how modeling artifacts of GMF are handled to foster the aim of having tool support for the
visual, concrete syntax part of MTBE. The transform operations in step 3 and 4 are a model

90

6.2 An Eclipse Based Implementation for MTBE

transformation using Java and model to code transformation using templates respectively.
These two steps are basically determined by GMF itself. Steps 1 and 2 have been imple-
mented by us using simply Java as transformation language. We could have also decided to
use ATL instead and define model transformation rules in a declarative way. The next two
paragraphs describe how we implemented steps 1 and 2 in detail.

6.2 An Eclipse Based Implementation for MTBE

Our MTBE framework comprises several components. As can be seen in Figure 6.3(1), our
implementation heavily relies on major Eclipse projects, providing essential functionalities
our components are based upon. These components are the Eclipse Modeling Framework
(EMF) [12], the Graphical Modeling Framework (GMF) and Eclipse serving as IDE. The
components within Figure 6.3(2) comprise the user front-end and match with conceptual
Step 2 of the MTBE process. In Figure 6.3(3) all components facilitating the task of meta-
model mapping modeled in Step 3 are depicted. Figure 6.3(4) components correspond to
Step 4, i.e., the code generation. Note that we omitted dependencies and interfaces among
non-MTBE components to preserve readability. In what follows we will give a short descrip-
tion on each of the modules and will focus on the user front-end in subsequent sections.

Model Mapping Language. The MappingLanguage component provides a specification of
several alignment operators in terms of an Ecore based metamodel, cf. ML MM in Figure
6.3. The implementation of this component allows the user to map different kinds of visual
model elements as described in Subsection 5.1. The definition of this mapping language is
central to the MTBE framework as it is directly or indirectly used by other components.

Merge Components. To be able to define mappings between model elements in a graph-
ical way certain artifacts have to be available a priori in one or the other way. Therefore,
it is assumed that at least a language definition in terms of a metamodel, a graphical def-
inition of the concrete syntax, and a mapping between these two exist for every modeling
language. To allow for mapping two metamodels within the Eclipse environment we de-
cided to merge existing artifacts and build a single editor for both languages. This merging
procedure is described in Subsection 6.2.2. The MapMerger component also takes care of the
MTBE Mapping Editor component generation with the help of GMF Tooling.

MTBE Mapping Editor. Our graphical editor prototype uses the GMF Runtime and is
built solely from GMF Tooling at the moment.

Analyzer Component. The Analyzer takes the output model of the GMF editor, i.e.,
the user defined model mappings, as well as the corresponding metamodels and tries to
match various kinds of patterns as presented in Section 5.2. The user can decide which of
the available patterns shall be applied in order to translate the manual mappings into an
AMW [26] weaving model conforming to the MTBE weaving metamodel, which basically
captures the concepts presented in Subsection 5.3. This module will be designed in such a

91

Chapter 6 Implementation

«component»
EMF

«component»
GMF Tooling

«component»
Eclipse Platform

«component»
GMF Runtime

«component»
ATL

«component»
EcoreMerger

«component»
MapMerger

«component»
AMW

«component»
Mapping Editor

«component»
Mapping

Language
«file»

ML MM

structural
Behavioural
(open for extension)

«use» «use»mergedModel
«use»

«use»
«create»useML

«use»

«component»
MTBE HOT

«file»
MTBE ATL

«component»
Analyzer

«file»
MTBE Weaving MM

«use»

generateWeaving
useWeavingModel

provideMappingModel

(1)

(2)

(3)(4)

Figure 6.3: Framework architecture, (1) Underlying frameworks, (2) User front-end, (3) Pat-
tern matching and creation of weavings, (4) Transformation model generation.

92

6.2 An Eclipse Based Implementation for MTBE

way to allow for several pattern extensions.

MTBE HOT Component. On top of our framework lies the MTBE HOT component.
This component takes the generated weaving model as input and produces an ATL model
conforming to the ATL 2006 metamodel [39]. The built in ATL transformation model can be
used to generate transformations in both directions. After generation of the transformation
models the AM3 extractor can be run to get the user readable ATL code. The advantage of
this approach stems from the fact that all artifacts used in the code generation are models.
No hand-coded templates or Java programs are involved to produce the ATL code. The
output of the Analyzer module shall serve as input for several kinds of transformation code
generators, depending on the use case, so we are not limited to ATL.

6.2.1 MTBE Workbench

The MTBE prototype is implemented as Eclipse plug-in. The workbench is to consists of
four different views. The first view is composed with our MTBE Mapping Editor, that op-
erates on the notation and lets the user define mappings. In the second view, the bridging
between the two metamodels is presented to the user with the help of the Atlas Model
Weaver, which is extended by our MTBE weaving metamodel. The third view presents an
editor, that shows all so far generated ATL code as textual representation. It’s left to the user
whether to refine the code or not. The last view can then be utilized to test the transforma-
tion code and see its results immediately.

6.2.2 Integration of GMF

Our MTBE approach poses a novel idea as it moves the task of developing model trans-
formation away from the complex structures of abstract syntax to the well known notation
elements of modeling languages. To achieve this increased usability for model engineers
we decided to integrate the Graphical Modeling Framework (GMF) to be able to generate
a graphical editor. The advantage of this decision is that we can use the capabilities of an
emerging framework, supported by a rather big community. In order to apply GMF to cre-
ate an editor out of a simple generation model we have to provide for some model merging
components in our MTBE framework. In the following we describe the merging process in
more detail and explain how the generated editor can be used to define (appropriate) map-
pings between notation elements. In the context of MTBE we assume that a graphical editor
for some modeling language can be fully generated from GMF (and EMF models). We do
not cope with any editor specific changes made to the generated code. Therefore we rely on
the declarative power of GMF models and their limitations.

93

Chapter 6 Implementation

Figure 6.4: MTBE Prototype, (a) Mapping editor, (b) Merged Ecore model and merged map-
ping definition model, (c) Automatically produced weaving model.

94

6.2 An Eclipse Based Implementation for MTBE

Ecore File Sharing

The GMF mapping definition model, that constitutes the mapping from AS to CS, relies on
an Ecore based metamodel besides a graphical as well as a tooling definition model. The
latter two we do not have to cope with in our merging process as they represent highly
reusable elements. But for the Ecore model our MTBE framework needs a merging compo-
nent which we call EcoreMerger, as shown in Figure 6.3. This component takes two Ecore
models, representing different modeling languages, as input and generates a single Ecore
file (cf. Figure 6.4b on the left). Each language is represented by its own package, which is
a child of a common root package. The root package itself has to contain a single class that
owns all required containment references to classes from the original metamodels. These re-
quired references can easily be extracted from the two Ecore files, as these also have to con-
sist of a single class acting as a container, which is a specialty of EMF. We introduced another
type of class in the root package, because of GMF limitations, the GMFElement{language
name}. This class serves as supertype from which all classes of a modeling language have to
inherit. Our EcoreMerger therefore has to modify all classes in these language packages ac-
cordingly. However, this design decision then allows us to have mappings defined between
every two classes in the two modeling languages. To define these mappings in our graphi-
cal editor we also have to add mapping meta classes to our merged Ecore metamodel. This
is done in the mapping package, that includes the SimpleMapping class with source and target
references of type of the superclass GMFElement{name}. After the work of the EcoreMerger
is completed, the created Ecore file can be used to generate the EMF generation model as
well as the EMF model and edit code, that are prerequisites for the GMF diagram code.

Mapping Definitions Merging

Similar to the joint Ecore file we have to provide a component that merges the two mapping
definition models (GMFMap models) to a single model, the GMF generation part can handle
to create diagram code, see Figure 6.4(b) on the right. The algorithm for solving this task
simply copies the different kinds of mapping elements from both mapping models into a
single one and adjusts the XPath expressions for domain model elements to point to the
newly created Ecore file. XPath expressions for tooling and graphics can be reused. After
execution of our MapMerger (cf. Figure 6.3) tool the GMF generation model is produced
from the merged mapping model to facilitate diagram code generation.

95

Chapter 6 Implementation

6.3 Critical Discussion

6.3.1 Implementation Status

Currently the development of our first experimental prototype is completed. So far we
have implemented a mapping language for general mapping scenarios only. Based on our
Mapping Language we fully implemented the EcoreMerger as well as the MapMerger. After the
user finishes the merging processes a wizard guides through the generation of all required
Mapping Editor plug-ins. The plug-ins are placed directly into the plug-ins folder of eclipse
and are ready to use after a workbench restart. The generated Mapping Editor possesses all
modeling features of the two input editors as long as the latter have been solely created with
GMF Tooling. A detailed description and a user manual can be found in [57]. The prototype
can be found and downloaded at www.modelcvs.org.

6.3.2 Discussing the GMF Approach

For every two modeling languages a user wants to define model transformations, a unique
editor with its own domain, graphics, tooling and mapping models has to be generated.
There is no possibility to reuse already generated code. Before one can begin to define
mappings on the concrete syntax, the merging and generation components of the MTBE
framework have to be executed. In order to reduce the cost of time we have provided for an
implementation that can do things nearly without user interaction. Another drawback of
the current approach is that we are not able to cope with custom code in an available editor,
which limits our design possibilities. For example UML roles are contained in a Class and
not directly shown at an Association in our simple UML GMF editor.

In order to fully support our MTBE approach we would like to be able to map labels, such
as role names of associations explicitly. GMF does not support such a mapping scenario.
In most cases such mappings are given implicitly and can be deduced by simple string
comparison algorithms or available matching tools. But there might be situations in which
the user wants to explicitly define mappings.

Also GMF suffers from minor bugs at the moment, which primarily have an impact on
the editor view and how elements are rendered or not. But these are well known bugs that
will most likely be removed in future versions of this very promising framework.

6.3.3 Alternative Implementation Approaches

MTBE in its described implementation lacks to take custom GMF editor code into account.
It is in most cases however not satisfactory to have only GMF tooling and its declarative
models available. It is also not the aim of GMF to provide modeling artifacts that are pow-
erful enough to replace programming languages completely. The aim of GMF is to reduce

96

6.4 Summary

the cost of time to build a comprehensive modeling editor. Consequently, we have been
thinking of alternatives capable of handling custom code refinements and still use the GMF
framework as well as the proposed MTBE framework design for model alignment and code
generation.
Separation of Editors. Basically there is no need to have only one editor allowing to draw
correspondences between CS elements between two different modeling languages. We
could also have two separate editors active at a time and only put those CS elements on
the canvas, which are equivalent and therefore should be mapped. This mapping of ele-
ments can then however be done implicitly by just storing the elements on the canvas in
some XMI serialization and establishing the mapping automatically. We do lose the visual-
ization of mappings this way and have to cope with some other problems, e.g., we cannot
draw connections without corresponding nodes on the canvas, but we could use editors
having defined custom code sections.
The Aspect Way. Another way to reuse already implemented GMF modeling editors is to
use aspects and the OSGI component model to relate various plug-ins among each other
as described by [35, 58]. Their work is based on an aspect-oriented programming language
called Object Teams/Java and the Eclipse implementation of the OSGI standard Equinox.
The basic idea is to have an arbitrary number of plug-ins that can be handled as aspects
for other plug-ins through proper binding methods. Following this approach we could
implement one central GMF editor that handles only the user mapping language. The two
other editors enabling the model creation can then be simply bound as aspects to the base
plug-in, i.e., our GMF mapping language editor. This would be done dynamically by the
user and because of this simple binding custom code would not get lost. There are some
difficulties concerning the binding of different GMF editors because there are some classes,
which have to be handled with care. According to [58] these issues will be overcome in the
near future.

6.4 Summary

In this chapter we have introduced our prototype for MTBE, which has been implemented
as Eclipse plug-in. This prototype allows for defining semantic correspondences between
domain models (M1) shown in their concrete notation, from which model transformation
code can be generated. Our framework is based on emerging technologies, such as the
Graphical Modeling Framework, which are based on Eclipse and the Eclipse Modeling
Framework. Our early prototype has shown that it possible to realize our framework based
on the current versions of the underlying technologies. However, one important drawback
of the proposed framework must be mentioned, namely the strong dependency on the suc-
cess and the usability of the underlying technologies.

97

Chapter 6 Implementation

98

Chapter 7

Applications of MTBE

Contents
7.1 Application to Structural Modeling Languages 99

7.1.1 Integration Problem: ER2UML . 100
7.1.2 User defined Model Mappings . 101
7.1.3 Reasoning and Metamodel Mappings 103
7.1.4 ATL Code Generation . 103

7.2 Application to Behavioral Modeling Languages 106
7.2.1 Models for Business Processes . 106
7.2.2 Dealing with Heterogeneities in Business Procss Models 108
7.2.3 Integration Problem: UML AD and EPC 110
7.2.4 Model Mappings and Metamodel Mappings 110

7.3 Critical Discussion . 117

The aim of this chapter is to prove the practical relevance of MBTE with the help of our
prototypical implementation presented above. For this reason we have conducted two dif-
ferent case studies in the domains of structural and behavioral modeling. The results of
the two case studies are critically reflected and directions to improve the implementation of
MTBE in future work are presented.

7.1 Application to Structural Modeling Languages

In this section, the functionality of our prototype is demonstrated by a small case study. The
aim is to be able to transform UML models into Entity Relationship (ER) diagrams and vice
versa. Note, that these two modeling languages have already been used in [89] to exem-
plify our MTBE approach. However, we had no implementation at hand to underpin our
conceptual findings. With our prototype we are now in the position to demonstrate general
MTBE concepts in practice. The MTBE plug-in as well as various artifacts and examples can
be downloaded from our ModelCVS project site1.

1http://modelcvs.org/prototypes/mtbe.html

Chapter 7 Applications of MTBE

DiagramRoot

Class Property
upper
lower

Association

NamedElement
name

classes 0..*
associations 0..*

ownedAttributes

0..*
memberEnd

2..2
navigableEnd
0..2

association

0..1

Entity
name

Relationship

Attribute
name

Diagram

Role
name

Multiplicity
upper

ownedAttributes0..*

sourceEntity
0..1
targetEntity
0..1

entities 0..* relationships0..*

roles

0..*

ownedRoles2..2

type0..1

multiplicity1..1

1..1

ER Metamodel UML Metamodel

class

Figure 7.1: Simplified ER and UML metamodels.

7.1.1 Integration Problem: ER2UML

Figure 7.1 illustrates two simplified metamodels of the ER diagram and UML class dia-
gram, respectively. Generally speaking, both languages are semantically nearly equivalent
and thus the corresponding metamodels cover the same modeling concepts. Note that the
metamodels for the two languages are designed such that their concrete syntax can be fully
specified by declarative GMF components. Most important to us is that we can define the
notation by means of the GMFMap model.

ER. The ER metamodel covers the basic concepts of Entity, Relationship, Attribute, Role,
and Multiplicity. Diagram acts as the basic root element and is an implementation-specific
of EMF. Entities are connected via Relationships through their sourceEntity and targetEntity
references. Entities can further contain an arbitrary number of Attributes. Relationships can
be assigned two distinct Roles through their ownedRoles reference. Roles are not contained
in their corresponding Relationship but in the root element itself. Furthermore, a Role must
be assigned to a certain Entity, which is done through the type reference. Roles are further
enforced to contain a Multiplicity that consists of a single attribute called upper specifying
the upper bound multiplicity of a role.

UML. The UML metamodel in turn consists of Classes, Properties and Associations. The
abstract class NamedElement is for convenience only. The root element DiagramRoot is equiv-
alent to Diagram in the ER metamodel. We introduced concept hiding in the UML meta-
model by representing attributes and roles by the same class, namely by the class Property.
One can only distinguish between these two concepts by the optional reference association,
whose inverse reference is memberEnd. More specifically, an instance of class Property rep-
resents a role when the reference association is set. In case the reference association is not set

100

7.1 Application to Structural Modeling Languages

Solarsystem

name

location

planets 0 -1

Planet

name

size

solarsystem 0 1

Solarsystem

name

location

Planet

name

size

solarstystem

1

planets

-1

Value Mapping

solarsystem2
planets

solarsystem

planets

{0}2{1}

solarsystem2planets

1 2

3

4 ER

ER
UML

UML

Figure 7.2: Model mappings between ER and UML example models.

by an instance of class Property, it represents an attribute. The class Property also comprises
the attributes lower and upper in order to cover the concept multiplicity. Relationships be-
tween classes are achieved via roles and the memberEnd feature of Association. The feature
navigableEnd of Association indicates whether a role is navigable or not.

Mostly all concepts presented in the ER metamodel are also covered in the UML meta-
model. Although, the two metamodels can be considered semantically equivalent, there
exist structural heterogeneities between them, that would complicate the manual creation
of model transformations. These structural heterogeneities entail further reasoning upon
the model mappings in order to generate a semantically richer mapping model, which is
the basis for the model transformation generation.

7.1.2 User defined Model Mappings

Figure 7.2 depicts the mappings between the ER example model and the UML example
model established by the user. Each GMF tool provided in the palette, see right side of
Figure 7.2, has been used and therefore all concepts are covered by the models. Table 1
summarizes the mappings specified by the user. In particular, we have mostly used simple
mappings, however, for mapping roles in combination with multiplicities of ER models
to properties of UML models, we employ a compound mapping. Furthermore, we need
to attach a value mapping to the simple mapping between relationship and association in
order to set the name of an association (note that in our ER metamodel the relationship itself
does not have a name).

101

Chapter 7 Applications of MTBE

Table 7.1: Summary of model mappings.
Mappings UML Model Elements Mapping Kind ER Model Elements

(1) Solarsystem: Class Simple Mapping Solarsystem: Entity
(2) name: Property Simple Mapping name: Attribute

(3) solarsystem2planets: Association Simple Mapping
(+Value Mapping) : Relationship

solarsystem: Role
1: Multiplicity

Compound Mappingsolarsystem: Property(4)

Table 7.2: Summary of metamodel mappings.
MAP UML MM Elements ER MM Elements Mapping Comment Pattern Model MAP

C1 DiagramRoot Diagram Full Equiv. Reasoned via GMF
properties X X

C2 Class Entity Full Equiv. Pattern 1 (1)
C3 Association Relationship Full Equiv. Pattern 1 (3)
C4 Property Role ⋈ Multiplicity Cond. Equiv. Property.association

== null
Pattern 3 +
Pattern 6

(4)

C5 Property Attribute Cond. Equiv. Property.association
!= null

Pattern 6 (2)

A1 Class.name Entity.name Full Equiv.
A2 Property.name Attribute.name Full Equiv.
A3 Property.name Role.name Full Equiv.
A4 Association.name Function Full Equiv. Exp Annotation (3)
A5 Property.upper Role.multiplicty.upper Full Equiv.
A6 Property.lower X X Default Value: 0

R1 Class.ownedAttributes Entity.ownedAttributes +
User Interaction

Cond. Equiv. Roles have to be
collected (cf. C4, C5)

R2 Association.navigableEnd Relationship.ownedRoles Full Equiv. Convention
R3 Association.memberEnd Relationship.ownedRoles Full Equiv.
R4 DiagramRoot.associations Diagram.relationships Full Equiv.
R5 DiagramRoot.classes Diagram.entities Full Equiv.

102

7.1 Application to Structural Modeling Languages

7.1.3 Reasoning and Metamodel Mappings

Based on the model mappings, the Analyzer generates a mapping model capturing as many
metamodel mappings as possible. Concerning our core patterns presented in Section 5.2,
the Analyzer component can apply pattern 1, 3, and 6 shown in Figure 5.4 for finding equiv-
alent classes as is summarized in Table 2. Pattern 1 generates the mappings C2 and C3, while
mapping C1 has been additionally reasoned from GMF configurations to find the equiva-
lent root classes which represent the modeling canvas. Pattern 3 is used to reason about the
compound mapping (cf. model mapping (4)) which results in mapping C4 from Property to
the join of Role and Multiplicity. Furthermore, pattern 6 is able to generate the conditions
for splitting properties into attributes and roles. From these class mappings, most of the at-
tribute and reference mappings can be derived which are necessary for the model transfor-
mation. Due to brevity reasons, we only show the reference mappings necessary for trans-
forming ER models into UML models. As one can see in Table 2, only one user interaction
is necessary for completing the model transformations, namely the Class.ownedAttributes
reference must be split in two subsets, one can be reasoned, however, the other has to be
defined by the user.

7.1.4 ATL Code Generation

Based on the metamodel mappings, we show how our HOT produces valid ATL model
transformations. The ATL code for transforming ER models into UML models depicted in
Listing 7.1 comprises both, the automatically generated code by our HOT implementation
and some user refined code fragments.

Listing 7.1: ER2UML transformation including user refined code.
1 −− @atlcompiler a t l 2 0 0 6
2 module ER2UML; −− Module Template
3 c r e a t e OUT : UML from IN : ER ;
4

5 rule diagram2diagramRoot {
6 from d : ER ! Diagram
7 to dr : UML! DiagramRoot (
8 c l a s s e s <− d . e n t i t i e s ,
9 a s s o c i a t i o n s <− d . r e l a t i o n s h i p s

10)
11 }
12

13 rule e n t i t y 2 c l a s s {
14 from e : ER ! E n t i t y
15 to c : UML! Class (
16 name <− e . name ,
17 ownedAttributes <− e . ownedAttributes
18)
19 }
20

21 rule a t t r i b u t e 2 p r o p e r t y {
22 from a : ER ! A t t r i b u t e
23 to p : UML! Property (

103

Chapter 7 Applications of MTBE

24 name <− a . name
25)
26 }
27

28 rule r e l a t i o n s h i p 2 a s s o c i a t i o n {
29 from r e l : ER ! Re la t ionsh ip
30 to a : UML! Assoc ia t ion (
31 name <− r e l . ownedRoles . f i r s t () . name+ ’ _2_ ’+ r e l . ownedRoles . l a s t () . name ,
32 memberEnd <− r e l . ownedRoles −> c o l l e c t (t |
33 thisModule . resolveTemp (Tuple { r = t , m = t . m u l t i p l i c i t y } , ’p ’)
34) ,
35 navigableEnd <− r e l . ownedRoles
36)
37 }
38

39 rule r o l e _ m u l t i p l i c i t y 2 p r o p e r t y {
40 from
41 r : ER ! Role ,
42 m : ER ! M u l t i p l i c i t y (
43 r . m u l t i p l i c i t y = m
44)
45 to p : UML! Property (
46 name <− r . name ,
47 c l a s s <− ER ! Re la t ionsh ip . a l l I n s t a n c e s ()
48 −> s e l e c t (x|x . ownedRoles −> c o l l e c t (y|y . type)−> inc ludes (r . type))
49 −> c o l l e c t (y|y . ownedRoles) . f l a t t e n ()
50 −> s e l e c t (y|y . type <> r . type) . f i r s t () . type ,
51 upper <− m. upper
52)
53 }

Listing 7.2: UML2ER transformation including user refined code.
1 −− @atlcompiler a t l 2 0 0 6
2 module UML2ER; −− Module Template
3 c r e a t e OUT : ER from IN : UML;
4

5 −−−−−−−−−−−−−−−−−−−−HELPER BEGIN−−−
6

7 helper def : g e t R e l a t i o n s h i p (r o l e : ER ! Role) : ER ! Re la t ionsh ip =
8 ER ! Re la t ionsh ip . a l l I n s t a n c e s ()−> s e l e c t (e|e . ownedRoles
9 −> inc ludes (r o l e)) . f i r s t () ;

10

11 −−−−−−−−−−−−−−−−−−−−HELPER END−−−
12

13 rule diagramRoot2diagram {
14 from dr : UML! diagramRoot
15 to d : ER ! Diagram (
16 e n t i t i e s <− dr . c l a s s e s ,
17 r e l a t i o n s <− dr . a s s o c i a t i o n s ,
18 r o l e s <− dr . c l a s s e s −> c o l l e c t (x|x . ownedAttributes) . f l a t t e n ()
19 −> s e l e c t (x| not x . a s s o c i a t i o n . ocl IsUndefined ())
20)
21 }
22

23 rule c l a s s 2 e n t i t y {
24 from c : UML! Class
25 to e : ER ! E n t i t y (
26 name <− c . name ,
27 ownedAttribute <− c . ownedAttributes
28 −> s e l e c t (x|x . a s s o c i a t i o n . ocl IsUndefined ())
29)
30 }

104

7.1 Application to Structural Modeling Languages

31

32 rule p r o p e r t y 2 a t t r i b u t e {
33 from p : UML! Property (p . a s s o c i a t i o n . ocl IsUndefined ())
34 to a : ER ! A t t r i b u t e (
35 name <− p . name
36)
37 }
38

39 rule a s s o c i a t i o n 2 r e l a t i o n s h i p {
40 from a : UML! Assoc ia t ion
41 to r : ER ! Re la t ionsh ip (
42 ownedRoles <− a . memberEnd ,
43 sourceEnt i ty <− a . memberEnd . l a s t () . c l a s s ,
44 t a r g e t E n t i t y <− a . memberEnd . f i r s t () . c l a s s
45

46)
47 }
48

49 rule proper ty2ro le {
50 from p : UML! Property (not p . a s s o c i a t i o n . ocl IsUndefined ())
51 to r : ER ! Role (
52 name <− p . name ,
53 m u l t i p l i c i t y <− m,
54 type <− p . a s s o c i a t i o n . memberEnd −> c o l l e c t (x|x . c l a s s)
55 −> s e l e c t (x|x <> p . c l a s s) . f i r s t ()
56) ,
57 m : ER ! M u l t i p l i c i t y (
58 upper <− p . upper
59)
60 }

In general, the generation of transformation code dealing with object and value creation is
rather simple. What complicates our automatic transformation model generation are links
between the objects, especially when the metamodels have different structures due to struc-
tural heterogeneities. The first three ATL rules shown in Listing 7.1 can be derived fully
automatically. Rule relationship2association comprises a tricky part in lines 32 to 34. Because
we deal with multiple source pattern matching in rule role_multiplicity2property, we have to
use the resolveTemp construct to query produced properties. Therefore, this reference assign-
ment looks complicated in ATL, but may be generated out of the metamodel mappings. An
issue we have to deal with manually is depicted in lines 47 to 50 of the last rule. As for roles
in ER, we also have to set the container for the corresponding properties in UML. However,
the concept of a role is mirrored among ER and UML and therefore it was not possible to
automatically produce a metamodel mapping which is also depicted in Table 2 mapping R1.
Therefore, a rather complicated query has to be defined by the user, which assigns properties
to classes.

For the sake of completeness we provide the ATL code for the other transformation di-
rection in Listing 7.2 where similar user adjustments have been made to obtain a complete
and correct transformation output.

105

Chapter 7 Applications of MTBE

7.2 Application to Behavioral Modeling Languages

Instead of focusing on the domain of structural modeling languages, what has been done in
previous investigations [89], [84], in this section we concentrate on behavioral modeling lan-
guages. More specifically, we apply MTBE on the domain of business process modeling
(BPM), which, up to our best knowledge, has not yet been subject to the MTBE approach.
The definition of requirements for MTBE in the context of business process modeling and
how they can be met in terms of proper generation of transformation rules comprise the
main contribution of this section. Therefore, we present main challenges encountered in busi-
ness process (BP) model transformations, and how these challenges can be tackled by using
our extended MTBE mapping operators and reasoning algorithms in order to allow a more so-
phisticated model transformation code generation. Furthermore, we present a case study in
which two prominent BP modeling languages are used, namely the UML Activity Diagram
and Event Driven Process Chains.

7.2.1 Models for Business Processes

Business process models are in use for quite a long time and continue to gain importance as
support from the software engineering field is improving significantly. Particularly model
engineering fosters research in the area of BPM. There exist several metamodels for existing
languages in order to raise there acceptance and tool interoperability. Due to this grow-
ing interest in BPM and proper tool support, we believe MTBE can be advantageous for
specifying model transformations between BP models. Usually BP models cover various
perspectives as e.g. described in [19]. The following two BP modeling languages we choose
to use in our case study presented in Section 7.2.3, however, cover only the behavioral per-
spectives of BPM.

UML 2.1 Activity Diagram

The UML 2.1 Activity Diagram (UML AD) [69] is a specification of the Object Management
Group. The metamodel of Figure 7.3 depicts an excerpt of the UML AD language, namely
the basic control flow elements which are used for modeling BP models, as well as the
concrete syntax.

The central element is the Opaque Action, which is used to model the activities within a
process. The Call Behavior Action represents the concept of a sub process call. Control Nodes
are used to structure the process. More specifically, a Fork Node and a Join Node express a
concurrent flow as well as a Decision Node and a Merge Node to express an alternative flow.
The Initial Node marks the begin of a process model. The UML AD differs between two final
nodes, the Flow Final Node (FFN) and the Activity Final Node (AFN). The FFN is used to mark
the final of a distinct flow, that means if it is reached the remaining tokens in the process

106

7.2 Application to Behavioral Modeling Languages

C
S

A
S

Activity Node Activity Edge

Activity

name:string
version:string

incoming

outgoing

target

source

1 0..*

1 0..*

Call Behaviour Action

0..*0..*

11

1references

Opaque Action Control Node

OpaqueAction Activity Final Initial Node Flow FinalDecision/Merge NodeJoin/Fork NodeCallBehaviourAction

Control Flow

guard:string

Merge NodeFork Node Join Node Initial Node Decision NodeFinal Node

Activity Final Node Flow Final Node

Figure 7.3: Parts of the UML 2.1 AD metamodel and its concrete syntax.

proceed. Whereas the AFN marks the end of the whole process which means if it is reached
the remaining tokens in the process are killed immediately. The only kind of Activity Edge
we consider in this work is the Control Flow, which is used to connect the Activity Nodes to
form the flow of control of a process.

Event-driven Process Chains

Event-driven Process Chains (EPCs) [43] have been introduced by Keller et al in 1992 as a
formalism to model processes. We focus on the main elements, which are used to model
the control flow aspect of a BP model. The metamodel and concrete syntax of EPCs are
illustrated in Figure 7.4.

The Function represents an activity. It creates and changes information objects within a
certain time. The Event represents a BP state and is related to a point in time, it could be
seen as passive element compared to the Function as an active element [52]. To model a
sub process call the Complex Function is used. The Logical Operators elements are used to
structure the proceed of the BP model.

When dealing with EPCs some special modeling restrictions must be considered which
are not directly represented in the metamodel. EPCs do not provide a specific element to
indicate the begin and the end of a BP model, instead the Event is used. Event elements are
not allowed to be in front of an OR and XOR element. Function and Event elements must
alternate in the proceed of the BP model and are connected via the Control Flow. This feature

107

Chapter 7 Applications of MTBE

C
S

A
S Process Flow Objects Control Flow

EPC Business Process

name:string
version:string

incoming

outgoing

target

source

1 0..*

1 0..*

Function Logical OperatorEvent

0..*0..*
11

1

Basic FunctionComplex Function XOR OR AND

references

Basic FunctionEvent AND OR

XORAND

XOR

OR

Complex Function

Figure 7.4: Parts of the EPC metamodel and its concrete syntax.

of the EPC language is in fact a static semantic constraint, which is not specified in the
metamodel illustrated in Figure 7.4. Another restriction in EPCs is that parallel branches as
well as alternative branches must be split and merged with the same kind of Logial Operator.
Again we have to face a static semantic constraint in the context of Logical Operators, when
it comes to specifying model transformations.

7.2.2 Dealing with Heterogeneities in Business Procss Models

During our investigation of BP models we discovered, that there are considerable differ-
ences compared to structural models concerning the requirements for MTBE. To transform
structural models, one has to be familiar with the notation and hidden concepts in the meta-
models, especially when dealing with UML diagrams. Resulting ambiguities on the meta-
model layer have to be solved either by reasoning algorithms or user input, as we described
in detail in our previous work. Now, with the task of transforming BP models we have to
deal with quite different issues, in order to apply our MTBE approach. A lot of interesting
aspects concerning the heterogeneity of BP models have been identified in [59].

One of the special requirements coming along with BP models has its root in the mapping
from concrete to abstract syntax layer (notation) and the number of modeling elements in-
volved on each layer.

108

7.2 Application to Behavioral Modeling Languages

U M L A ctiv ity D iag ram

C S

M erge
E lem ent m iss ing

A S

M erge N ode
Jo in N ode

Fork N ode

C S

A S

U M L A ctiv ity D iag ram

C S

A S

B
C

U M L A ctiv ity D iag ram

C ontro l F low

D ecis ion N ode

M erge N ode

... E qu iva len t E lem ent… S im ple M app ing

C S C oncept
O verload ing

E P C

AND AND

A nd

A S

C S

C S C oncept
O verload ing

C S A lte rnative
R epresenta tions

C S Im plic it
E lem ents

(a) (b) (c) (d)

Legend:

Figure 7.5: Overview of BP model heterogeneities.

In UML AD we have for example the notation:

< {MergeNode, ControlF low,DecisionNode} , {DecisionMergeF igure} , {} >

as is illustrated in Figure 7.5(c) for the CS modeling element on the very top. Note, that
the used modeling construct is here just an abbreviation on the CS layer and could be
equivalently expressed by the following pattern of notation triples:

< {DecisionNode} , {DecisionFigure} , {} >

< {ControlF low} , {ConnectionF igure} , {} >

< {MergeNode} , {MergeF igure} , {} >

We also observed several heterogeneities between modeling languages, which pose fur-
ther requirements for MTBE. Figure 7.5 gives four examples for the peculiarities we found
in the two BP modeling languages we introduced in Section 7.2.1. Examples (a) and (b) in
Figure 7.5 depict the case of so called CS overloading in UML AD and EPC. In example (a)
we encounter no problems because with the help of the notation we can distinguish between
the two concepts join and fork despite the CS overloading. In example (b) CS overloading
represents a real challenge for MTBE as two equal CS elements, but in fact featuring two
different meanings, are mapped to the same AS element.

When we have to deal with alternative representations in the CS, see Figure 7.5(c), we
can use the notation in MTBE to find them. The challenge arises not until we have to map
two languages, where one consists of such variation points in the CS. Example (d) in Fig-
ure 7.5 shows the possibility in UML AD to merge parallel flows implicitly by omitting a
merge/join node, i.e., we have no mapping from the AS to the CS.

In the following we apply our advanced mapping operators, which have indeed been
influenced and inspired by BP models, and transformation heuristics which resolve het-

109

Chapter 7 Applications of MTBE

erogeneities, as expressed in the examples (a),(b), and (c), in Figure 7.5 are faced. Unfor-
tunately, up to now we are not able to cope in MTBE with implicit elements as shown in
example (d). The problem here is twofold. First we have to address the question how to
map these implicit elements on the concrete syntax layer. And second we have to adjust the
code generation process accordingly.

7.2.3 Integration Problem: UML AD and EPC

Our MTBE approach for the domain of Business Process modeling can be best explained in a
by-example manner. Therefore, we use the two BP languages EPC and UML AD described
in Section 7.2.1. For demonstration purposes we show what the generated code would look
like in ATL. Although the example given in Figure 7.6 is rather simple, it still covers a lot of
interesting aspects for MTBE.

For the case study we assume that on the concrete syntax layer in EPC’s Events and Basic
Functions to always occur pairwise connected through a Control Flow edge. Furthermore,
in UML AD modeling it could be possible to omit a Join node and therefore model joins
implicitly. However, in our first MTBE approach for BPM we do not jet cope with implicit
joins or merges.

7.2.4 Model Mappings and Metamodel Mappings

As a first step one has to define manual mappings between two languages, which the trans-
formation model shall be derived from. In the example in Figure 7.6 we specified six map-
pings that capture all concepts being used in the two sample models. Mappings a,b,c,d,f,
and g are of type simple mapping.

Mapping e is of type compound mapping with multiplicity 1:3. Consequently, when-
ever the pattern Event, Control Flow, Basic Function is matched this corresponds to a single
Opaque Action. We also marked the Basic Function C in our compound mapping as anchor
element, which has implications specific to transformation code generation. In our case
the ATL code generator would use this Basic Functions metamodel element as single source
pattern element instead of using multiple source pattern elements. During our implemen-
tation attempts we realized, that an anchor feature can be desirable in some transformation
scenarios.

Mapping h in our example takes care of the labels used in Events, Basic Functions and
Opaque Actions. To maintain usability this string manipulation operator is used in a sep-
arate modeling element and references the involved labels. To define string equivalences
one can use only unidirectional mappings, which are applied transforming from one set of
labels to another. An optional expression allows us for example in mapping h to apply a
toLowerCase() operation on the first mapping of the right hand side set of labels.

110

7.2 Application to Behavioral Modeling Languages

Start End

b

c

ANDANDA
B

C

A

B

C

C
S

A
S

U
M

L_
A

D
E
P

C

Control Flow Event Basic Function AND

Opaque ActionControl Flow

guard:string

Fork NodeJoin NodeInitial Node Activity Final Node

U
M

L_
A

D
E
P

C

XOR

AND

XOR
XOR

a dcb fe g
b

B
B

Exp Exp

XOR

XOR

h

Figure 7.6: Mapping EPC and UML activity diagram - CS + AS perspectives.

111

Chapter 7 Applications of MTBE

Table 7.3: Summary of model mappings for BP models.
Mappings UML AD Mapping Kind EPC

(a) : InitialNode Simple Mapping Start: Event
(b) : ControlFlow Simple Mapping : ControlFlow
(c) A: OpaqueAction Simple Mapping A: BasicFunction

(d) : ForkNode Simple Mapping : AND

(e) B: OpaqueAction Compound Mapping
c: Event
: ControlFlow
C: BasicFunction

(f) : JoinNode Simple Mapping : AND

(g) : ActivityFinalNode Simple Mapping End: Event

b: name
B: name
+[0][0].toLowerCase

Value MappingB: name(h)

In EPC’s there are no distinct metamodel elements nor distinct concrete syntax elements
for start and end nodes, although these concepts are used in the modeling language implic-
itly. In UML AD we do have explicit concepts for start and end nodes both, in the model
and the metamodel. If a transformation from EPC2UML_AD has to be performed the trans-
formation model must know how to distinguish between start and end nodes even without
having these concepts specified in EPC. We will elaborate on this issue in 7.2.4. Table 7.2.4
summarizes the above described user mappings in a compact and clear manner.

To keep our illustration in Figure 7.6 transparent and clear we omitted the mappings
between CS and AS. Also these mappings are quite straightforward to define, as there are
no constraints specified in the notation.

At last the mappings between the two metamodels can be derived from the user map-
pings and the notation. To highlight the existence of a compound mapping in the meta-
model we marked the three involved mappings with an and operator. On the metamodel
mapping level we now make use of our new XOR operator we introduced in Section 7.2.2.
To keep the mapping task user-friendly the XOR between mappings can be reasoned auto-
matically based on information in the metamodels. Whenever a meta class contains at least
two outgoing mapping edges, an XOR relation can be set in an implicit way. A complete list
of metamodel mappings including EAttribute and EReference mappings is shown in Table
7.2.4. Note, that XOR mappings are expressed in our weaving model by means of condi-
tional equivalence mappings with proper OCL conditions, which will be explained later in
this section.

How to Make Mappings Executable

As the automatic generation of transformation rules is a difficult task, we do not claim to
support fully automatic rule generation. Instead we believe in a semi-automatic approach.
To face the new domain of business process models we implemented a methodology, which

112

7.2 Application to Behavioral Modeling Languages

Table 7.4: Summary of metamodel mappings for BP models.

MAP UML AD MM Elements EPC MM Elements Mapping Comment Pattern Model MAP
C1 Activity EPCBusinessProcess Full Equiv. Reasoned via GMF properties X X
C2 InitialNode Event Cond. Equiv. Event.incoming -> size() = 0 Pattern 6 (a)
C3 ActivityFinalNode Event Cond. Equiv. Event.outgoing -> size() = 0 Pattern 6 (g)
C4 ControlFlow ControlFlow Cond. Equiv. Property.association == null Pattern 1+6 (b)

C5 OpaqueAction BasicFunction Cond. Equiv. BasicFunction that succeeds a
"StartEvent" or OpaqueAction
that succeeds InitialNode

Pattern 6 (c)

C6 ForkNode AND Cond. Equiv. AND.incoming -> size() = 1 and
AND.outgoing -> size() > 1

Pattern 6 (d)

C7 JoinNode AND Cond. Equiv. AND.incoming -> size() > 1 and
AND.outgoing -> size() = 1

Pattern 6 (f)

C8 OpaqueAction Event ControlFlow
BasicFuncition

Cond. Equiv. Event.incoming -> size() <> 0
and Event.outgoing
-> size() <> 0

Pattern 5 (e)

A1 Activity.name EPCBusinessProcess.name Full Equiv.
A2 Activity.version EPCBusinessProcess.version Full Equiv.
A3 InitialNode.name Event.name Full Equiv.
A4 ActivityFlowFinal.name Event.name Full Equiv.
A5 OpaqueAction.name BasicFunction.name Full Equiv.
A6 OpaqueAction.name Event.name

BasicFuncition.name
Full Equiv. Exp Annotation (h)

R1 ControlFlow.outgoing ControlFlow.outgoing Full Equiv.
R2 ControlFlow.incoming ControlFlow.incoming Full Equiv.
R2 ActivityNode.source ProcessFlowObjects.source Full Equiv.
R4 ActivityNode.target ProcessFlowObjects.target Full Equiv.

113

Chapter 7 Applications of MTBE

can be best compared to Architecture-Centric MDSD [80]. First of all we have implemented
correct ATL transformation code, which acts as reference implementation. Thereby we have
avoided imperative code sections and concentrate on coding in a declarative fashion.

In the next step we have developed the mapping operators described in Section 7.2.2.
During this step we have turned our attention to the user-friendliness.

Next we have looked at the example models, the user mappings and the metamodels and
tried to deduce the reference implementation. Code segments that could not be deduced
automatically then lead to further refinement of the underlying heuristics. After refinement
we tried again to deduce the reference implementation. This process can be seen as an
iterative way to deduce heuristics on how to generate ATL transformation rules from a
given set of models, metamodels and user mappings. The aim of this process is to optimize
the relation between user-friendly mapping operators and the ability to generate executable
transformation rules.

ATL Code Generation

Due to space limitations we will not expand on every aspect of the ATL code generation
for the example in Figure 7.6. Instead we focus on the most interesting and challenging
parts, only. The three ATL code snippets presented in the following paragraphs transform
from EPC models to UML ADs. However, the example mappings provided by the user, also
allow for UML AD 2 EPC transformation code generation.

Event2InitialNode and Event2FlowFinal. We already mentioned that we somehow have
to distinguish between Events, that can be either normal Events, Start Events or End
Events, to properly generate elements in UML Activity models. In our previous work
we tried to overcome mapping and thus generation problems by means of reasoning
on the metamodel layer. For business process models it seams to be more appropriate
to do reasoning on the model layer.

Listing 7.3: ATL rule for Event2InitialNode and Event2FlowFinal.
1 rule S t a r t E v e n t 2 I n i t i a l N o d e {
2 from
3 s : EPC ! Event (s . incoming−>s i z e () = 0)
4 to
5 i : A c t i v i t y ! I n i t i a l N o d e (. . .)
6 }
7

8 rule EndEvent2FlowFinal {
9 from

10 e : EPC ! Event (e . outgoing−>s i z e () = 0)
11 to
12 f : A c t i v i t y ! FlowFinalNode (. . .)
13 }

When the user maps two elements that are completely identical in the metamodel in
one language, but correspond to two different elements in the other language, rea-

114

7.2 Application to Behavioral Modeling Languages

soning algorithms have to examine the graph structure in the example model. In our
Event example the algorithm would have to determine, that Start Events do not have
any incoming Control Flows and that End Events do not have any further outgoing Con-
trol Flows. Listing 7.3 shows the corresponding ATL rules with proper conditions in
the source pattern. This addresses mappings a and g in Figure 7.6.

In ATL it is not possible to match an element more than once, i.e., to have more than
one rule applied. Therefore, whenever a metamodel element occurs in at least two
source patterns, we have to make sure that only one rule is matched. In the exam-
ple above this would only be possible, if the user would model an Event without any
Control Flow connected to it. Of course this would already violate some validity con-
straint. However, the OCL constraint to check for multiple matching would look like
in ATL as follows:

EPC!Event.allInstances()− > select(e|e.incoming− > size() = 0)− > asSet()

− > intersection(EPC!Event.allInstances()− > select(e|e.outgoing− > size() = 0))

− > size() = 0

(7.1)

EventControlFlowFunction2OpaqueAction. Now we want to cope with the user mapping
e of Figure 7.6. From the model itself and especially the metamodel we know, that in
EPC there are three distinct concepts involved whereas in UML Activity diagrams
only one concept is affected. For this reason we use a new feature coming along with
ATL 2006, i.e., the matching of multiple source pattern elements, see Listing 7.4. Note
that the returned set of elements from matched multiple source pattern elements cor-
responds to the cartesian product.

Listing 7.4: ATL rule for EventControlFlowFunction2OpaqueAction.
1 rule EventControlFlowFunction2OpaqueAction {
2 from
3 ev : EPC ! Event ,
4 c : EPC ! ControlFlow ,
5 f : EPC ! Bas icFunct ion (
6 c . t a r g e t = f and c . source = ev and
7 ev . incoming−>s i z e () <> 0 and
8 ev . outgoing−>s i z e () <> 0
9)

10 to
11 o : A c t i v i t y ! OpaqueAction (
12 name <− f . name ,
13 parent <− f . parent ,
14 incomming <− ev . incoming
15)
16 }

This is why we have to give a guard clause (c.target = f and c.source = ev) to select
only those elements we are interested in. This is similar to a join in SQL. To generate

115

Chapter 7 Applications of MTBE

this "join" condition automatically we have to assume that elements in a compound
mapping are always connected through proper link elements. A reasoning algorithm
can check for the existence of links and build conditions that must hold for the pattern
to match.

There are two more conditions given in Listing 7.4 that must evaluate to true if this
rule shall be executed. This condition originates from the XOR constraint we face
in the metamodel between the mappings Event_InitialNode, Event_ActivityFinalNode
and Event_OpaqueAction, which is actually part of a compound mapping indicated
by an and. To avoid matching a rule twice we can just take the conditions we have
deduced in the previous two ATL rules and insert their negation, i.e. ev.incoming− >
size() <> 0 and ev.outgoing− > size() <> 0. The idea of inserting the negation of
already existing conditions in other rules can be seen as general heuristic.

And2Fork and And2Join. In Figure 7.5 b we referred to the problem of concept overloading
in the CS, which we face in the transformation from an EPC to a UML AD model. We
know, that the simple mappings d and f are actually in an XOR relationship, which
is determined from the deduced mappings between the metamodel elements. This
transformation difficulty was also the reason why we introduced the XOR operator.
The user mappings together with the derived XOR constraint are not yet sufficient
to provide for a heuristic capable of generating valid transformation code. What we
need in this special case of concept overloading is an algorithm performing "local
reasoning" on a specific node and compare the results with the ones from another
one. The differences in the properties found between these nodes are then used to
distinguish between them. In our example we determined for the class And mapped
to class Fork Node there has to be only one incoming Control Flow and at least two
outgoing Control Flows on the CS layer if the rule And2Fork shall be applied. For the
class And mapped to class Join Node the opposite has to be true if the rule And2Join is
supposed to match. Both rules are given in Listing 7.5

Listing 7.5: ATL rule for And2Fork and And2Join.
1 rule And2Fork {
2 from
3 an : EPC !AND (
4 an . incoming−>s i z e () = 1 and
5 an . outgoing−>s i z e () > 1
6)
7 to
8 fn : A c t i v i t y ! ForkNode (. . .)
9 }

10

11 rule And2Join {
12 from
13 an : EPC !AND (
14 an . incoming−>s i z e () > 1 and
15 an . outgoing−>s i z e () = 1
16)

116

7.3 Critical Discussion

17 to
18 j n : A c t i v i t y ! JoinNode (. . .)
19 }

7.3 Critical Discussion

ER2UML

During our case study and experimenting with our prototype we discovered some limita-
tions of our implementation.

HOT. Our basic Higher Order Transformation works well and produces model transfor-
mations in both directions. There are however some metamodel weavings that we do not
fully support in our HOT, i.e., weavings that contain an OCL expression originating either
from the notation or from some analyzer pattern. The problem is that OCL conditions are
stored in weaving models as strings. But in the HOT we have to compute the equivalent
abstract syntax trees for producing the ATL transformation model. As an alternative we
consider a template based approach producing ATL code out of weaving models, where we
could use plain OCL strings and need not handle abstract syntax trees.

UML_AD2EPC

The code for the examples above is generated in a heuristic way and we believe that in many
cases and languages there is no great effort for code refinement necessary. However, there
are limitations of MTBE we want to briefly discuss. In our language definition of EPC we
assumed, that every Basic Function is directly preceded by an Event. But it may be possible
in our example to place the Events b and c as one Event in front of the And split. This is
another static semantic constraint one can only capture in a natural language description of
EPC. As an example we refer to Figure 7.7(a).

Due this alternative way of positioning concrete syntax elements our rule defined in List-
ing 4.2 would no longer match any of the elements in such small models. To solve this
problem MTBE could again be applied on this new EPC example model and map the con-
cepts of interest again. For the example given in Figure 7.7(a) we would have to map the
Basic Function located between the two And elements to an Opaque Action in our EPC 2 UML
AD mapping scenario. Because of the XOR constraints later derived in the metamodels a
heuristic could be applied to prevent multiple rule matching and select the rules properly.
The mapping of the Event a remains however an open issue.

In Section 7.2.2 we presented the heterogeneity of alternative representations in CS. In
UML AD we could model a join followed by a fork the way shown in Figure 7.7(b1). This
representation is just an abbreviation, which we want to map in our example to EPC, where
this form of abbreviation is not possible. From the users point of view it is sufficient to

117

Chapter 7 Applications of MTBE

Start Enda ANDANDA
B

C

AND AND

Control Flow

guard:string
Fork NodeJoin Node

AND Control Flow

:C on tro l F low

:Jo in N ode:Fork N ode

incomingoutgoing

targetsource

:C on tro l F low :C ontro l F low :C ontro l F low :C ontro l F low

target target source source

outgoing outgoingincoming incoming

C
S

(E
P

C
)

A
S

A
S

C
S

Model in AS

(a)

(b1) (b2)

a

UML AD

EPC

UML AD

Figure 7.7: Challenges for MTBE in business process models.

simply draw the compound mapping a. For both modeling constructs we have again drawn
the corresponding metamodel elements and also their mapping to the CS (notation). As
one can easily see it is not possible to determine from these notations and the compound
mapping a how the elements in the metamodel shall be mapped from one language to the
other. Again we can apply local reasoning algorithms operating on the model expressed in
AS to find out what elements possibly go together. The UML AD example model given in
Figure 7.7(b1) is also illustrated in AS (see Figure 7.7b2) , modeled in UML object diagram
concrete syntax. We can now reason on this representation of the model and try to find out
how the single metamodel elements have to be mapped to the elements in EPC. For example
we learn from this graph that Fork and Join Nodes have a single outgoing and incoming edge,
respectively. The heuristic is similar to the one that copes with mappings d and f in the first
example, cf. Figure 7.6.

118

Chapter 8

Open Issues and Future Work

In this thesis we have described our MTBE approach, including basic as well as advanced
concepts. Additionally, MTBE has been implemented within the Eclipse platform. How-
ever, our evaluation by means of two case studies in two different modeling domains has
revealed open issues we need to tackle in future work. In the following we emphasize major
directions of future work.

1) Extension of the mapping language: The mapping language developed so far is able to
solve the basic transformation problems in the domains of structural and behavioral mod-
eling. Usually each specific modeling domain raises a set of additional transformation prob-
lems. This requires a customization of the mapping language by further mapping operators.
For example, in the domains considered we recognized the need for conditional equivalence
mapping, and nested mapping. Therefore, we have to look at further domains to derive an
extensive requirements catalog for a more powerful MTBE mapping language.

2) Web modeling languages: So far we have only studied the domains of structural and
behavioral modeling languages. However, we believe applying MTBE to the domain of
web modeling languages would provide further interesting results for the MTBE approach.
Therefore, we apply our current MTBE approach to hypertext models, such as WebML [16],
which represent the navigation and the data flow between hypertext nodes via links and
link parameters. We hope that the area of web modeling languages reveals new mapping
problems and allows the evaluation of MTBE in more detail.

3) Development of reference models in specific modeling domains: Having also participated in
the ModelCVS project we recognized the power of building reference models. In Model-
CVS, the reference models support the integration task by delivering solutions for transfor-
mation problems of a specific domain. These reference models may serve as domain models
in our by-example approach. This means the user is able to specify the mappings between
two reference models in different modeling languages. Hence, she does not need conceive
domain models from scratch. Instead the reference models are used as starting point for
the most prominent modeling languages and modeling domains. Reference models are de-
signed to designed all or at least most of the concepts of a certain domain.

4) Proving MTBE: Usually, models evolve in the course of time. For example, a model

Chapter 8 Open Issues and Future Work

A at time t0 progresses to A’ at time t1. A transformation between two models is always
specified in a given point in time. For example, the transformation T specifies the mapping
between A and B at time t0. In future work we experiment on the consequences on the
existing transformation T when models progress to new versions A’ and B’. We classify
different characteristics in the delta between A and A’ (as well as B and B’) to derive further
requirements for the automatic model transformation code generation.

5) Model Heterogeneities: In this thesis we have mainly focused on heterogeneities that
have their origin in the metamodels of different modeling languages. We have given a rather
comprehensive categorization of metamodel heterogeneities, which has been underpinned
with real world examples. However, our case study of business process modeling languages
has revealed challenges in the area of model heterogeneities. These model heterogeneities
appear in cas of underspecified metamodels or of hidden concepts in the metamodels. For
example the implicit merge of OpaqueActions in UML activity diagrams is not specified by
means of metamodeling concepts. To handle such model heterogeneities special reasoning
algorithms and patterns as well as proper example models have to be provided. The topic of
model heterogeneities is therefore closely related to the requirements for example models,
see Section 3.7. Also the automatic generation of valid models from metamodels would be
helpful for finding heterogeneities on the instance level.

6) Metrics Implementation: We have demonstrated on a conceptual level how model met-
rics can support the MTBE approach by helping to measure the explicitness of metamodels.
Thereby, the metric assists in finding metamodel heterogeneities. Our metamodel metric
however has not been integrated yet within our MTBE framework. It is beneficial, though,
to have a measure at hand supporting the software engineer to make complex notation
related issues visible. By using GMF, we build on a framework that features the same no-
tation concepts as the ones we incorporate in measuring hidden concepts in metamodels.
The graphical model of GMF holds all CS elements, the GMF mapping model denotes the
concepts, i.e., the notation, and the Ecore-model captures all AS elements. A special view
for visualizing hidden concepts and guiding the user should be developed in order to better
cope with metamodel heterogeneities.

120

Bibliography

[1] Aditya Agrawal, Attila Vizhanyo, Zsolt Kalmar, Feng Shi, Anantha Narayanan, and
Gabor Karsai. Reusable Idioms and Patterns in Graph Transformation Languages. In
Proceedings of the International Workshop on Graph-Based Tools (GraBaTs 2004). Satellite
workshop of ICGT 2004, Rome, Italy, 2004.

[2] Freddy Allilaire and Tarik Idrissi. ADT: Eclipse Development Tools for ATL. In Pro-
ceedings of the Second European Workshop on Model Driven Architecture (MDA) with an
emphasis on Methodologies and Transformations (EWMDA-2). Canterbury, UK, 2004.

[3] Robert St. Amant, Henry Lieberman, Richard Potter, and Luke Zettlemoyer. Program-
ming By Example: Visual Generalization in Programming By Example. Communica-
tions of the ACM, 43(3):107–114, 2000.

[4] ATLAS Group. ATL (ATLAS Transformation Language).
http://www.eclipse.org/m2m/atl/, Last Visit: May 2008.

[5] ATLAS Group, INRIA, and LINA. ATL User Manual.
http://www.eclipse.org/m2m/atl/doc/, Last Visit: May 2008.

[6] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and
Ontology Matching with COMA++. In SIGMOD ’05: Proceedings of the 2005 ACM SIG-
MOD International Conference on Management of Data, pages 906–908, New York, NY,
USA, 2005.

[7] Thomas Baar. Correctly Defined Concrete Syntax for Visual Modeling Languages. In
Proceedings of 9th International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2006), Springer LNCS 4199, pages 111–125, Genova, Italy, 2006.

[8] Jean Bézivin. On the Unification Power of Models. Software and System Modeling,
4(2):171–188, 2005.

[9] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev, and Arne
Lindow. Model Transformations? Transformation Models! In Proceedings of 9th Inter-
national Conference on Model Driven Engineering Languages and Systems (MoDELS 2006),
Springer LNCS 4199, pages 440–453, Genova, Italy, October 2006.

Bibliography

[10] Alexander Borgida and John Mylopoulos. Data Semantics Revisited. In Proceedings
of the Second International Workshop on Semantic Web and Databases (SWDB 2004), pages
9–26, Toronto, Canada, 2004.

[11] Peter Braun and Frank Marschall. Transforming Object Oriented Models with BOTL.
Electronic Notes in Theoretical Computer Science, 72(3), 2003.

[12] Frank Budinsky, David Steinberg, Ed Merks Raymond, Ellersick Timothy, and J. Grose.
Eclipse Modeling Framework. Addison Wesley, August 2003.

[13] Jean Bézivin. In search of a Basic Principle for Model Driven Engineering. UPGRADE,
5(2):21–24, 2004.

[14] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine Rougui.
First Experiments with the ATL Model Transformation Language: Transforming XSLT
into XQuery. In Proceedings of the OOPSLA Workshop on Generative Techniques in the
context of MDA, Anaheim, California, 2003.

[15] S. Ceri, P. Fraternalia, A. Bongio, M. Bramilla, S. Comai, and M. Matera. Designing
Data-Intensive Web Applications. Morgan-Kaufmann, 2003.

[16] Stefano Ceri, Piero Fraternali, and Maristella Matera. Conceptual Modeling of Data-
Intensive Web Applications. IEEE Internet Computing, 6(4):20–30, 2002.

[17] Tony Clark, Andy Evans, Stuart Kent, and Paul Sammut. The MMF Approach to Engi-
neering Object-Oriented Design Languages. In Proceedings of the Workshop on Language
Descriptions, Tools and Applications (LDTA2001), 2001.

[18] Valerie Cross and Anindita Pal. Metrics for Ontologies. In Proceedings of the Annual
Meeting of the North American Fuzzy Information Processing Society, pages 448–453, June
2005.

[19] Bill Curtis, Marc I. Kellner, and Jim Over. Process Modeling. Communications of the
ACM, 35(9):75–90, 1992.

[20] Allen Cypher. Watch What I Do: Programming by Demonstration. The MIT Press, Cam-
bridge, Massachusetts, USA, 1993.

[21] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Syst. J., 45(3):621–645, 2006.

[22] Eclipse Foundation. Eclipse Modeling Framework (EMF) - Ecore.
http://www.eclipse.org/modeling/emf/javadoc/, Last Visit: May 2008.

[23] Eclipse Foundation. Graphical Modeling Framework (GMF).
http://www.eclipse.org/modeling/gmf/, Last Visit: May 2008.

122

Bibliography

[24] Jonathan Edwards. Example Centric Programming. SIGPLAN Not., 39(12):84–91, 2004.

[25] Hartmut Ehring, Gregor Engels, Hans-Jörg Kreowsky, and Grzegorz Rozenberg. Hand-
book on Graph Grammars and Computing by Graph Transformation, volume 2. World Sci-
entific, 1999.

[26] Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, Erwan Breton, and Guil-
laume Gueltas. AMW: A Generic Model Weaver. In Proceedings of the 1ère Journée sur
l’Ingénierie Dirigée par les Modèles (IDM05), 2005.

[27] Marcos Didonet Del Fabro and Patrick Valduriez. Semi-automatic Model Integration
using Matching Transformations and Weaving Models. In Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC), pages 963–970, Seoul, Korea, 2007.

[28] Richard Felder and Linda Silverman. Learning and Teaching Styles in Engineering Ed-
ucation. Electronic Notes in Theoretical Computer Science, 78(7):674–681, February 1988.

[29] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. Qualifying
Input Test Data for Model Transformations. Software and Systems Modeling, 2007.

[30] Frédéric Fondement. Concrete Syntax Definition For Modeling Languages. PhD thesis,
EPFL, Lausanne, France, 2007.

[31] Frédéric Fondement and Thomas Baar. Making Metamodels Aware of Concrete Syn-
tax. In European Conference on Model Driven Architecture (ECMDA), Springer LNCS 3748,
pages 190 – 204, Nuremberg, Germany, 2005.

[32] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann. A The-
oretical Framework for Ontology Evaluation and Validation. In Proceedings of the 2nd
Italian Semantic Web Workshop on Semantic Web Applications and Perspectives (SWAP),
Trento, Italy, 2005.

[33] Jan Hendrik Hausmann and Stuart Kent. Visualizing Model Mappings in UML. In
Proceedings of the ACM 2003 Symposium on Software Visualization, pages 169–178, San
Diego, California, USA, 2003.

[34] Reiko Heckel. Graph Transformation in a Nutshell. Electronic Notes in Theoretical Com-
puter Science, 148(1):187–198, February 2006.

[35] Stephan Herrmann and Marco Mosconi. Integrating Object Teams and OSGi: Joint
Efforts for Superior Modularity. Journal of Object Technology, 6(9):105–125, October 2007.

[36] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Science: Modelling and Rea-
soning about Systems. Cambridge University Press, Cambridge, England, 2000.

123

Bibliography

[37] IBM. Model Transformation Framework. http://www.alphaworks.ibm.com/tech/mtf,
Last Visit: May 2008.

[38] Yanbing Jiang, Weizhong Shao, Lu Zhang, Zhiyi Ma, Xiangwen Meng, and Haohai Ma.
On the Classification of UML’s Meta Model Extension Mechanism. In Proceedings of the
7th International Conference on the Unified Modelling Language: Modelling Languages and
Applications (UML 2004), Springer LNCS 3273, pages 54–68, Lisbon, Portugal, 2004.

[39] Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT.
In Proceedings of ACM Symposium on Applied Computing (SAC 06), Model Transformation
Track, Dijon, Bourgogne, France, 2006.

[40] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Satellite Events
at the MoDELS 2005 Conference, MoDELS 2005 International Workshops, Doctoral Sympo-
sium, Educators Symposium, pages 128–138, Montego Bay, Jamaica, 2005.

[41] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter,
Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting Metamodels
to Ontologies - A Step to the Semantic Integration of Modeling Languages. In Proceed-
ings of 9th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2006), Springer LNCS 4199, pages 528–542, Genova, Italy, 2006.

[42] Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Gerti Kappel, Thomas Reiter,
Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. On Models and
Ontologies - A Semantic Infrastructure Supporting Model Integration. In Proceedings
of Modellierung 2006, GI LNI 82, pages 11–27, Innsbruck, Tirol, Austria, March 2006.

[43] Gerhard Keller, Markus Nüttgens, and August-Wilhelm Scheer. Semantische Prozeß-
modellierung auf der Grundlage “Ereignisgesteuerter Prozeßketten (EPK)”. Technical
Report Heft 89, Institut für Wirtschaftsinformatik Universität Saarbrücken, January
1992.

[44] David Kolb. Experiential Learning: Experience as the Source of Learning and Development.
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[45] Jochen Küster. Definition and Validation of Model Transformations. Software and Sys-
tems Modeling, 5(3):233–259, September 2006.

[46] Ivan Kurtev, Mehmet Aksit, and Jean Bézivin. Technical Spaces: An Initial Ap-
praisal. Proceedings of the 10th International Conference on Cooperative Information Systems
(CoopIS), 2002.

[47] Stephan Lechner and Michael Schrefl. Defining Web Schema Transformers by Exam-
ple. In Proceedings of the 14th International Conference on Database and Expert Systems
Applications (DEXA 2003), pages 46–56, Prague, Czech Republic, 2003.

124

Bibliography

[48] Ulf Leser and Felix Naumann. Informationsintegration. Dpunkt Verlag, Heidelberg,
Deutschland, 2007.

[49] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma, and Yanbing Jiang. Applying OO
Metrics to Assess UML Meta-models. In Proceedings of the 7th International Conference
on the Unified Modelling Language: Modelling Languages and Applications (UML 2004),
Springer LNCS 3273, pages 12–26, Lisbon, Portugal, October 2004.

[50] Esperanza Manso, Marcela Genero, and Mario Piattini. No-redundant Metrics for UML
Class Diagram Structural Complexity. In Proceedings of the 15th International Conference
on Advanced Information Systems Engineering (CAiSE 2003), Springer LNCS 2681, pages
127–142, Klagenfurt, Austria, June 2003.

[51] Coral Calero Marcela Genero, Mario Piattini. A Survey of Metrics for UML Class Dia-
grams. Journal of Object Technology, 4(9):59–92, November-December 2005.

[52] Jan Mendling and Markus Nüttgens. EPC Modelling based on Implicit Arc Types. In
Proceedings of the 2nd International Conference on Information Systems Technology and its
Applications (ISTA 2003), GI LNI 30, pages 131–142, Kharkiv, Ukraine, 2003.

[53] Tom Mens. On the Use of Graph Transformations for Model Refactoring. In Proceed-
ings of Generative and Transformational Techniques in Software Engineering (GTTSE 2005),
Springer LNCS 4143, pages 67–96, Braga, Portugal, July 2005.

[54] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, 152:125–142, 2006.

[55] Tom Mens and Michele Lanza. A Graph-Based Metamodel for Object-Oriented Soft-
ware Metrics. Electronic Notes in Theoretical Computer Science, 72(2), 2002.

[56] Dragan Milicev. On the Semantics of Associations and Association Ends in UML. IEEE
Transactions on Software Engineering, 33(4):238–251, 2007.

[57] Abraham Müller and Gerald Müller. Model Transformation By-Example: An Eclipse
based Framework. Master’s thesis, Vienna University of Technology, Austria, 2008
(forthcoming).

[58] Marco Mosconi. Durchgängige Modularität in der modellgetriebenen Entwicklung
domänenspezifischer Modellierungssprachen mit Hilfe aspektorientierter Program-
mierung. In Proceedings of Modellierung 2008, Berlin, Deutschland, March 2008.

[59] Marion Murzek and Gerhard Kramler. Business Process Model Transformation Is-
sues. In Proceedings of the 9th International Conference on Enterprise Information Systems,
Madeira, Portugal, 2007.

125

Bibliography

[60] Isabel Briggs Myers. Manual: The Myers-Briggs Type Indicator. Consulting Psychologists
Press, Palo Alto, CA, 1962.

[61] Jörg Niere and Albert Zündorf. Testing and Simulating Production Control Systems
Using the Fujaba Environment. In Proceedings of Applications of Graph Transforma-
tions with Industrial Relevance (AGTIVE’99), pages 449–456, Kerkrade, The Netherlands,
1999.

[62] Jörg Niere and Albert Zündorf. Using FUJABA for the Development of Production
Control Systems. In Proceedings of Applications of Graph Transformations with Industrial
Relevance (AGTIVE’99), Springer LNCS 1779, pages 181–191, Kerkrade, The Nether-
lands, 1999.

[63] Jürg Nievergelt and André Behr. Die Aussagekraft von Beispielen. Informatik Spektrum,
29(4):281–286, 2006.

[64] Object Management Group (OMG). MDA Guide Version 1.0.1 .
http://www.omg.org/docs/omg/03-06-01.pd, Last Visit: May 2008, June 2003.

[65] Object Management Group (OMG). UML 2.0 Infrastructure Specification.
http://www.omg.org/docs/ptc/03-09-15.pdf, Last Visit: May 2008, September
2003.

[66] Object Management Group (OMG). Unified Modeling Language Specification Version
1.4.2. http://www.omg.org/cgi-bin/doc?formal/04-07-02, Last Visit: May 2008, July
2004.

[67] Object Management Group (OMG). UML Superstructure Specification 2.0.
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf, Last Visit: May
2008, August 2005.

[68] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core Specification.
http://www.omg.org/docs/formal/06-01-01.pdf, Last Visit: May 2008, January 2006.

[69] Object Management Group (OMG). UML Superstructure Specification 2.1.
http://www.omg.org/docs/ptc/06-04-02.pdf, Last Visit: May 2008, April 2006.

[70] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification. http://www.omg.org/docs/ptc/07-07-07.pdf, final adopted spec-
ification 1.1 edition, Last Visit: May 2008, July 2007.

[71] Kouichi Ono, Teruo Koyanagi, Mari Abe, and Masahiro Hori. XSLT Stylesheet Gen-
eration by Example with WYSIWYG Editing. In Proceedings of the 2002 Symposium on
Applications and the Internet (SAINT 2002), pages 150–161, Washington, DC, USA, 2002.

126

Bibliography

[72] Alexander Repenning and Corrina Perrone. Programming By Example: Programming
by Analogous Examples. Communications of the ACM, 43(3):90–97, 2000.

[73] Daniel A. Sadilek and Stephan Weißleder. Towards Automated Testing of Abstract
Syntax Specifications of Domain-Specific Modeling Languages. In Proceedings of the
Workshop on Domain-Specific Modeling Languages (DSML-2008), Berlin, Germany, March
2008.

[74] Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. Bridging Existing
Web Modeling Languages to Model-Driven Engineering: A Metamodel for WebML. In
Proceedings of the 2nd International Workshop on Model-Driven Web Engineering (MDWE
2006), Palo Alto, California, July 2006.

[75] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter, 39(2):25–31, 2006.

[76] Andy Schürr and Alexander Königs. Tool Integration with Triple Graph Grammars -
A Survey. Electronic Notes in Theoretical Computer Science, 148(1):113–150, 2006.

[77] David Canfield Smith. Building Personal Tools by Programming. Communications of
the ACM, 43(8):92–95, 2000.

[78] David Canfield Smith, Allen Cypher, and Jim Spohrer. KidSim: Programming Agents
without a Programming Language. Communications of the ACM, 37(7):54–67, 1994.

[79] David Canfield Smith, Allen Cypher, and Larry Tesler. Programming by Example:
Novice Programming comes of Age. Communications of the ACM, 43(3):75–81, 2000.

[80] Thomas Stahl and Markus Völter. Modellgetriebene Softwareentwicklung. Dpunkt Verlag,
March 2005.

[81] Michael Strommer, Marion Murzek, and Manuel Wimmer. Applying Model Trans-
formation By-Example on Business Process Modeling Languages. In Proceedings of Ad-
vances in Conceptual Modeling - Foundations and Applications, ER 2007 Workshops CMLSA,
FP-UML, ONISW, QoIS, RIGiM,SeCoGIS, pages 116–125, Auckland, New Zealand,
November 2007.

[82] Gabriele Taentzer. AGG: A Tool Environment for Algebraic Graph Transformation.
In Proceedings of Applications of Graph Transformations with Industrial Relevance (AG-
TIVE’99), Springer LNCS 1779, pages 481–488, Kerkrade, The Netherlands, 1999.

[83] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In Proceedings of Applications of Graph Transformations with Industrial
Relevance (AGTIVE 2003), pages 446–453, Charlottesville, VA, USA, October 2003.

127

Curriculum Vitae

[84] Dániel Varró. Model Transformation By Example. In Proceedings of 9th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2006), Springer
LNCS 4199, Genova, Italy, October 2006.

[85] Dániel Varró and András Pataricza. Generic and Meta-transformations for Model
Transformation Engineering. In Proceedings of the 7th International Conference on the
Unified Modeling Language: Modeling Languages and Applications (UML 2004), Lisbon,
Portugal, October 2004.

[86] Dániel Varró, Gergely Varró, and András Pataricza. Designing the Automatic Trans-
formation of Visual Languages. Science of Computer Programming, 44(2):205–227, 2002.

[87] Chris Welty, R. Kalra, and Jennifer Chu-Carroll. Evaluating Ontological Analysis. In
Proceedings of the ISWC-03 Workshop on Semantic Integration, Sanibel Island, Florida, Oc-
tober 2003.

[88] Manuel Wimmer and Gerhard Kramler. Bridging Grammarware and Modelware. In
Proceedings of Satellite Events at the MoDELS 2005 Conference, Springer LNCS 3844, pages
159–168, Montego Bay, Jamaica, 2005.

[89] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. Towards
Model Transformation Generation By-Example. In Proceedings of the 40th Hawaii In-
ternational International Conference on Systems Science (HICSS-40 2007), Big Island, HI,
USA, 2007.

[90] Patrick Winston. Learning Structure Descriptions from Examples. The Psychology of
Computer Vision, pages 157 – 209, 1970.

[91] Tong Yi, Fangjun Wu, and Chengzhi Gan. A Comparison of Metrics for UML Class
Diagrams. SIGSOFT Software Engineering Notes, 29(5):1–6, 2004.

[92] Haining Yoa, Anthony Mark Orem, and Letha Etzkorn. Cohesion Metrics for Ontology
Design and Application. Journal of Computer Science, 1(1):107–113, 2005.

[93] Moshé M. Zloof. Query By Example. In Proceedings of National Compute Conference,
pages 431–438. AFIPS Press, 1975.

128

Curriculum Vitae

Michael Strommer
Schliemanngasse 9/6
1210 Wien
Date of Birth: 27.01.1980
Nationality: Austria

Contact Information

Web: http://www.big.tuwien.ac.at/staff/mstrommer.html

E-Mail: strommer@big.tuwien.ac.at

Education

PhD studies in “Business Informatics” (Wirtschaftsinformatik) 10/06–06/08
Vienna University of Technology, Austria
Advisors: Gerti Kappel, Christian Huemer
Degree: Dr. rer. soc. oec.

Degree program, MSc in “Business Informatics” (Wirtschaftsinformatik) 10/00–10/05
University of Vienna and Vienna University of Technology, Austria
Thesis: Ökonomische Aspekte der Entwicklungsproblematik “Dritter Welt
Länder”
Advisor: Bernhard Böhm
Degree: Mag. rer. soc. oec.

Vienna Business School 09/94–06/99

Bundesrealgymnasium, Franklinstraße 21 09/90–06/94

Volksschule, Prießnitzgasse 1 09/86–06/90

Curriculum Vitae

Teaching Experience

Teaching assistant:
• Courses on Model Engineering (Winter Term 2006, Summer Term 2007)
• Course on Introduction of the Semantic Web (Winter Term 2006)

Lecturer at University of Applied Science (FH Campus Wien):
• Course on Programming in C/C++ (Winter Term 2007)
• Course on Algorithms and Data Structures (Summer Term 2008)

Tutor (2002-2005):
• Courses on Programming Basics (Java)
• Courses on Web Engineering

Additional Competence

• Adviser and Referent at the HochschülerInnenschaft an der TU Wien (HTU) (2002 -
2006)

Publications

1. M. Strommer, M. Wimmer: A Framework for Model Transformation By-Example:
Concepts and Tool Support. 46th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS’08), Zurich, Switzerland, July 2008.

2. G. Kappel, H. Kargl, T. Reiter,W. Retschitzegger,W. Schwinger, M. Strommer,
M.Wimmer: A Framework for Building Mapping Operators Resolving Structural Het-
erogeneities. 7th International Conference on Information Systems Technology and its
Applications (ISTA’08), Klagenfurt, Austria, April 2008.

3. M.Wimmer, A. Schauerhuber, M. Strommer, J. Flandorfer, G. Kappel: HowWeb 2.0 can
leverage Model Engineering in Practice. Workshop on Domänenspezifische Model-
lierungssprachen (DSML’08), in conjunction with Modellierung 2008, Berlin, Deutsch-
land, March 2008.

4. M. Wimmer, A. Schauerhuber, M. Strommer, W. Schwinger, G. Kappel: A Semi-
automatic Approach for bridging DSLs with UML. 7th OOPSLA Workshop on
Domain-Specific Modeling, in conjunction with OOPSLA’07, Montreal, Canada, Oc-
tober 2007.

5. M. Wimmer, H. Kargl, M. Seidl, M. Strommer, T. Reiter: Integrating Ontologies with
CAR-Mappings, First International Workshop on Semantic Technology Adoption in
Business (STAB’07), Vienna, Austria, 2007.

130

Curriculum Vitae

6. M. Strommer, M. Murzek, M. Wimmer: Applying Model Transformation By-Example
on Business Process Modeling Languages, 3rd International Workshop on Founda-
tions and Practices of UML (ER 2007), Auckland, New Zealand, November 2007.

7. G. Kappel, H. Kargl , G. Kramler , A. Schauerhuber , M. Seidl, M. Strommer, and
M. Wimmer. Matching Metamodels with Semantic Systems - An Experience Report.
12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web, Aachen,
March 2007.

8. H. Kargl, M. Strommer, M. Wimmer. Measuring the Explicitness of Modeling Con-
cepts in Metamodels. ACM/IEEE 9th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS/UML 2006), Workshop on Model Size
Metrics, Genova, Italy, October 2006.

9. M. Wimmer, M. Strommer, H. Kargl, G. Kramler. Model Transformation Generation
By-Example. HICSS-40 Hawaii International Conference on System Sciences, Hawaii,
USA, January 2007.

10. M. Strommer: Ökonomische Aspekte der Entwicklungsproblematik “Dritter Welt”
Länder, Diploma Thesis, Vienna University of Technology, October 2005.

131

Curriculum Vitae

132

