Analysis Tools for Iterative Source-Channel Decoding

Andrew Schaefer, Norbert Görtz, Joachim Hagenauer
Institute for Communications Engineering (LNT)
Munich University of Technology (TUM)
E-mail: {andrew, norbert, hag}@lnse.tum.de

Abstract: We consider the problem of transmitting a correlated Gaussian source over an AWGN channel. This paper contains two main contributions which aid in the design of such a system. We determine the characteristic curves of the source decoder for use in the extrinsic information transfer charts (EXIT charts) and show how the characteristic curves vary with the amount of correlation in the source. Further, we determine contour lines in the EXIT charts showing the signal to noise ratio of the de-quantized signal given that a particular point in the EXIT chart is reached.

Keywords: Joint source-channel decoding, EXIT charts

1. Introduction

It is often stated that residual source redundancy can be used for improved decoding, but, due to complexity, optimal joint source-channel decoding is often infeasible. Thus, suboptimal algorithms with lower complexity are usually required. One promising approach is iterative source-channel decoding for which some foundations were laid in [1].

We provide tools to produce characteristic curves which show how the source decoder interacts with other components in an iterative source-channel decoding scheme and introduce a method based on EXIT charts to evaluate the performance in terms of source signal-to-noise ratio.

2. System Model

The source produces a Gaussian distributed, correlated values $X_i = \{X_1, X_2, ..., X_L\}$. Each value X_i of the sequence X_i is quantized by a Q bit scalar quantizer thus producing a sequence of indices $I_i = \{I_1, I_2, ..., I_L\}$. According to a time-invariant bit mapping, each index I_i is assigned a unique binary sequence B_i, where $B_i = \{B_{i,1}, B_{i,2}, ..., B_{i,Q}\}$, thus producing a bit sequence $B = \{B_1, B_2, ..., B_L\}$ of length $K = L \cdot Q$. This bit sequence is bitwise interleaved, producing $U_k = \Pi(B_k)$ where Π defines the interleaving, before being inserted into a channel encoder to produce the bit sequence V_k, again where each $v_n \in \{0, 1\}$ and $n = 1, ..., N$. The channel code rate is $R_c = K/N$. The sequence V_k is transmitted over an AWGN channel using BPSK modulation. The received sequence is called $Y_k \in \mathbb{R}^N$.

![Figure 1: System Model.](image)

Since correlation exists within the source, it contains redundancy and thus may be thought of as having (implicit) channel code. Hence, the entire system may be viewed as a serially concatenated code, the decoder for which is shown in Figure 1.

The channel encoder may be either a simple convolutional code for example, in which case the decoder would be an APP (A Posteriori Probability, BCJR [2]) decoder for the channel code or the channel encoder may itself be a concatenated code, in which case the output is no longer necessarily APP. Thus we label the channel decoder as being Soft-In/Soft-Out (SISO).

The source and the channel decoder will now be described in more detail.

3. The Source and Source Decoder

3.1. Source Generation

We artificially generate a correlated Gaussian sequence by passing a white Gaussian sequence through a recursive filter. As a matter of interest we also generate a correlated sequence by oversampling the white sequence and using interpolation. These possibilities are depicted in Figure 2. We use an oversampling factor of $f_s = 2$ and $H(z) = \frac{z}{z-a}$ with $a = 0.5$ or $a = 0.9$.

3.2. Source Model

Due to correlation in the source, correlations will also exist between the quantized indices. Assuming a Q bit
quantizer, we approximate the correlations using a first order Markov chain where states correspond to quantizer indices. It is possible to determine, either by simulation or by calculation, the transition probabilities of the Markov chain.

If we include all the elements not relevant to the source in a composite channel described by the probability density function \(p(Y_t^I, I_t^I) \), then we have an equivalent model from the source perspective which is shown in Figure 3. The composite channel includes the shaded blocks in Figure 1. We make the assumption of the channel being memoryless (which is approximately true due to the bit interleaver) which means that we may write,

\[
p(Y_t^I | I_t^I) = \prod_{i=1}^{L} R(Y_i | I_i).
\]

(1)

Our composite channel is relatively complicated. However \(R(Y_i | I_i) \) simply indicates the probability density of receiving \(Y_i \) given that a particular index was sent.

3.3. Source Decoder

After transmission through the noisy composite channel, the problem is to determine probabilities of the states in the Markov source observed through this noisy channel. This problem is solved by the BCJR algorithm [2] and we now repeat the most important points in our context.

We have a discrete time, finite state Markov source where the states (quantizer indices in our case) are labeled as \(i \), with

\[
i \in \mathcal{I} = \{1, ..., 2^Q\}.
\]

(2)

The state at time \(t \) is labeled \(I_t \) and in our case, the output of the Markov source \(Z_t = I_t \). A sequence is denoted by \(I_t^L = \{I_t, I_{t+1}, ..., I_{t+L}\} \). Further, we have the state transition probabilities,

\[
p_t(i | i') = \Pr\{I_t = i | I_{t-1} = i'\},
\]

(3)

(see Figure 4) and the output probabilities,

\[
g_t(z | i', i) = \Pr\{Z_t = z | I_{t-1} = i', I_t = i\}.
\]

(4)

Since in our case \(Z_t = I_t \),

\[
g_t(z | i', i) = \begin{cases}
 1, & z = i \\
 0, & \text{otherwise}
\end{cases}
\]

(5)

We input the sequence \(Z_t^L = I_t^L \) into a discrete, memoryless channel which produces the sequence \(Y_t^L \). Thus as stated above, we have (1). Our aim is to determine the conditional probabilities

\[
\Pr\{I_t = i | Y_t^L\} = \frac{\Pr\{I_t = i, Y_t^L\}}{\sum_{i \in \mathcal{I}} \Pr\{I_t = i, Y_t^L\}}.
\]

(6)

According to [2], they can be computed by

\[
\Pr\{I_t = i, Y_t^L\} = \alpha_t(i) \cdot \beta_t(i)
\]

(7)

with the standard forward recursion

\[
\alpha_t(i) = \sum_{i' \in \mathcal{I}} \gamma_t(i, i') \cdot \alpha_{t-1}(i')
\]

(8)

and the backward recursion

\[
\beta_t(i) = \sum_{i' \in \mathcal{I}} \gamma_{t+1}(i, i') \cdot \beta_{t+1}(i'),
\]

(9)

where the \(\gamma \) values are defined as

\[
\gamma_t(i, i') = \sum_{z \in \mathcal{Z}} p_t(i | i') \cdot g_t(z | i', i) \cdot R(Y_i | Z_i = z)
\]

(10)

\[
= p_t(i | i') \cdot R(Y_i | Z_i = i);
\]

(11)

(11) follows from (5). Note that in a convolutional code of rate \(R_c = K/N \), the probabilities \(p_t(i | i') \) may only take on values of \(2^{-K} \). Ours is a more general case, and as an example, we plot the values in Figure 4 for a correlated source with \(a = 0.9 \).

![State transition probabilities of Markov source with correlation coefficient \(a = 0.9 \).](image)

3rd International Symposium on Turbo Codes and Related Topics – Brest – France – 2003
3.4. Bit Mapping

We considered three types of mapping: natural binary coding, Gray mapping and an optimized mapping according to [3] (the mapping is optimized in the sense of obtaining the most extrinsic output given perfect a priori input). The mapping has an important influence on the characteristic curves of the source decoder.

The time-invariant mapping associates a unique binary label \(B = \{B_1, ..., B_Q\} \) where \(B_q \in \{0, 1\} \), \(q \in \{1, ..., Q\} \), to each index \(i \). We write \(B = \text{map}(i) \) and for bit \(q \) of the bit label we write \(B_q = \text{map}_q(i) \).

3.5. From Bit to Index Probabilities and Back Again

Put in words, index probabilities are approximated by the product of the corresponding bit probabilities. Similarly in the other direction, bit probabilities are obtained by summing over index probabilities with that bit as a label.

Formally, if we write the probabilities for each bit input to the "\(B \rightarrow P \)" block as \(p_A^{(S)}(B_{t,q} = c) \), where \(c \in \{0, 1\} \) then we can write

\[
p(I_t = i) = \prod_{q=1}^{Q} p_A^{(S)}(B_{t,q} = \text{map}_q(i)).
\]

Note that these probabilities define \(R_t(Y_t|I_t) \), i.e., \((12) \) enables us to calculate the probabilities of the received values given that each of the indices was sent.

Similarly, if the output of the source decoder is \(p(I_t = i) \) (equivalent to \(\text{Pr}\{I_t = i|Y_t\} \) in the BCJR notation), for each time \(t \) and each state \(i \), then we can write,

\[
p(B_{t,q} = c) = \sum_{i \in X: \text{map}_q(i) = c} p(I_t = i).
\]

The source decoder receives and sends its messages in terms of log-likelihood ratios or L-values [4] such that

\[
L_A^{(S)}(B_{t,q}) = \ln \frac{p_A^{(S)}(B_{t,q} = 0)}{p_A^{(S)}(B_{t,q} = 1)}
\]

and

\[
L_S^{(S)}(B_{t,q}) = \ln \frac{p_S^{(S)}(B_{t,q} = 0)}{p_S^{(S)}(B_{t,q} = 1)}
\]

are the input and output messages of the source decoder respectively.

3.6. The Iterative Source-Channel Decoder

L-values are passed around the iterative decoder according to Figure 1 where L-values for each of the quantities are defined similarly to above. In Figure 1, "E" and "A" indicate extrinsic and a priori respectively whilst "(C)" and "(S)" indicate channel decoder and source decoder respectively.

4. Characteristic Curves of Source Decoder

Following [5], we simulate the source decoder alone, for various amounts of a priori information \(I_A = I(B_t^I; L_A^{(S)}(B_t^I)) \) and measure thereby the mutual information \(I_B = I(L_B^{(S)}(B_t^I); B_t^I) \) between the extrinsic outputs and the transmitted bits (note that \(I(A;B) \) indicates the mutual information between random variables \(A \) and \(B \)). In all simulations, \(Q = 5 \) was used.

We used the BCJR algorithm as described above for source decoding, and we tested correlated sources with \(a = 0.5 \) and \(a = 0.9 \); Figure 5 shows the results. Figure 6 shows results for a source with an oversampling factor of \(f_o = 2 \).

![Figure 5: Characteristic curves for filtered source (\(a = 0.9 \) and \(a = 0.5 \)), \(Q = 5 \), several mappings.](image)

![Figure 6: Characteristic curves for oversampled source (\(f_o = 2 \), \(Q = 5 \), several mappings.](image)

In both Figures, the Gray-mapping produces an extrinsic output \(I_B > 0 \), even if the a-priori information is zero \(I_A = 0 \). This is due to the non-uniform, symmetric probability distribution of the reproduction levels of the Lloyd-Max quantizer that is used. For the Gray mapping, the average entropy of the individual bits is significantly different from one, i.e., the bits contain redundancies which cause the non-zero starting point of the characteristic curves in Figures 5 and 6. For the natural binary...
mapping the average entropy of the bits is exactly one and it is very close to one for the optimized mapping. Thus, the characteristic curves both start at \(I_R \approx 0 \) for \(I_A = 0 \).

We note that the optimal mapping enables the highest extrinsic output for an a priori mutual information of 1 as it is designed to do.

5. Source-SNR Contour Lines

We first define the signal-to-noise ratio of the whole system as \(SNR_{PCM} = \sigma_2^2/\sigma_2^2 \) where \(\sigma_2^2 \) is the signal variance and \(\sigma_2^2 \) is the variance of some distorting signal.

In [5], it was shown how to determine the BER from the EXIT chart thus producing BER contour lines. In our case it is possible to go a step further and produce \(SNR_{PCM} \) contour lines.

The contour lines were obtained by simulation. At each point in the EXIT chart, we determined an equivalent channel noise variance (using the assumption that our extrinsic L-values are Gaussian distributed). We then transmitted bit mapped symbols over this channel and determined the corresponding \(SNR_{PCM} \) after using a minimum mean square estimator as presented in [1].

![Figure 7: SNR_{PCM} contour lines on the EXIT chart for Q = 5.](image)

Figure 7 indicates that is necessary for the EXIT chart trajectory to come close to the outer edge of the EXIT chart. Thus from results in Section 4, we can say that to achieve a reasonable \(SNR_{PCM} \), either a strongly correlated source is required or the channel code of the system should itself be a concatenated code.

6. Results for Iterative Decoders

We simulated a system with \(\alpha = 0.9 \) and \(m = 2 \) recursive convolutional code as the channel encoder. There were 10000 samples transmitted as one ‘turbo-block’. The systematic bits of the channel code were punctured such that only a small portion of them (10%) were transmitted (this is similar to ‘doping’ as presented by the author of [5]). The simulation was performed at \(E_s/N_0 = -0.1\text{dB} \). Results are shown in Figure 8.

![Figure 8: EXIT chart decoding trajectory for transmission of 10000 samples of the correlated Gaussian source with \(\alpha = 0.9 \) at \(E_s/N_0 = -0.1\text{dB} \).](image)

7. Conclusions

We have shown that the sequence of source indices from a correlated Gaussian source can be described by a first order Markov model. Thus it can be thought of as a type of soft convolutional code. After transmitting the indices through a noisy channel we can apply the BCJR algorithm to again estimate these states.

Further, we have shown to what extent the correlations still existing in a Gaussian source may be exploited in an iterative source-channel decoder. We have shown contour lines on the EXIT chart which show the resulting signal to noise ratio at the system output given that a certain point on the EXIT chart is reached. Results were presented for a 5 bit quantizer. Finally we have verified the EXIT tool by plotting the decoding trajectory on the EXIT chart for a transmission of 10000 samples.

REFERENCES

