Still productive: the “gold mine” of basic nuclear parameters

M. Bichler¹, C. Vockenhuber², I. Dillmann³, F. Käppeler⁴, A. Wallner⁵, W. Kutschera⁵
¹Vienna University of Technology, Atominstitut der österr. Universitäten, 1020 Vienna, Austria
²TRIUMF, Vancouver, British Columbia, V6T 2A3 Canada
³Technische Universität München, Beschleunigerlaboratorium, 85748 Garching, Germany
⁴Institut für Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
⁵Vienna Environmental Research Accelerator (VERA), Fakultät für Physik, Universität Wien, 1090 Vienna, Austria

Abstract – The use of the Hf-W chronometer for cosmological studies made it necessary to improve the knowledge about production and decay properties of the radioactive parent nuclides 182Hf and 183Hf. Both nuclides decay via 182Ta and 183Ta to stable W isotopes and their ratios can be used to date the formation of the solar system, the moon and the earth’s core [1, 2]. The relevant physical parameters such as half-lives and cross-sections for neutron capture had to be determined with suitable precision. In a first step in 2004, radiochemical separation techniques, isotope dilution and neutron activation analysis had been carried out to highly improve the precision of the half-life of 182Hf (8.90 ± 0.09 Ma)[3]. For a quantification of 182Hf during the stellar production process it is obvious that the formation of 183Hf by neutron capture has to be taken into account. Consequently, cross sections for neutron capture at suitable energies had to be determined. An inevitable prerequisite for these determinations was to improve the precision for the half-life value of 183Hf.

For this research project we used 182Hf material produced more than 30 years ago in the Materials Testing Reactor in Idaho Falls by long-time neutron irradiation of Hf with natural isotopic composition. After the first step concerning the half-life of 183Hf [3], the samples were re-used for the determination of the half-life of 183Hf and the cross section investigation. After having separated 182Ta quantitatively by ion exchange for background reducing reasons, the dissolved sample contained 2.861x10¹⁶ atoms or 70.6 Bq 182Hf. The neutron irradiations were performed at the Van de Graaff accelerator at the Institut für Kernphysik in Karlsruhe for stellar temperatures (25 keV) and at the TRIGA MKII reactor of the Atominstitut in Vienna for the thermal and epithermal neutron energy range. The half-life of 183Hf was measured to be 1.018 ± 0.002 h which is 4.6 % shorter and 8 times more precise than the recommended literature value [4]. The first cross section measurement at stellar temperatures gave 144 ± 8 mbarn for 25 keV neutrons [5]. The last step in this research sequence was the determination of the cross sections for thermal and epithermal neutron capture and yielded 133 ± 10 barn (compared to 14.11 barn from JEFF-3.0/A library) and a resonance integral of 5850 ± 660 barn [6].

Keywords – cosmochemistry, hafnium, tantalum, tungsten, Hf-W chronometer, half-life

REFERENCES