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Abstract

We discuss the Kaluza–Klein reduction of spaces with (anti-)self-dual Weyl tensor and point out the emergence of the Einstein–Weyl equations
for the reduction from four to three dimensions. As a byproduct we get a simple expression for the gravitational instanton density in terms of the
Kaluza–Klein functions.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

Recently we carried out a Kaluza–Klein reduction from n to
n − 1 dimensions of conformal tensors (Weyl for n � 4, Cot-
ton for n � 3) [1]. We obtained the descendant expressions in
terms of the Kaluza–Klein functions (metric tensor and gauge
potential in the lower dimensionality). Further we imposed the
condition of conformal flatness, i.e., the vanishing of the higher
dimensional conformal tensor, thereby obtaining equations sat-
isfied by the Kaluza–Klein functions. Solutions to these equa-
tions describe the immersion of a lower dimensional structure
into a conformally flat space.

When reporting our calculations at a conference [2], we were
apprised that our 4 → 3 dimensional story is closely related to
the theory of Einstein–Weyl spaces in three dimensions, widely
studied in mathematics, though apparently of no relevance to
physics [3]. We were informed that our final equations and re-
sults are known to mathematicians [4–9], provided some adjust-
ments are made. (We studied spaces with Lorentzian signature,
which is not common practice in the mathematical setting.)
Nevertheless, it appears that our analysis, if not our results,
is somewhat different from what is found in the mathematical
literature. Also the interest in Einstein–Weyl theory is mostly
non-existent in physics. Therefore, in this Letter we describe
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the material, with the hope that it will appeal both to physicists
and to mathematicians.

In Section 2 the Einstein–Weyl theory is reviewed. In Sec-
tion 3, dimensional reduction of the 4-dimensional Weyl ten-
sor is accomplished by the Kaluza–Klein method. Self-duality
conditions in Euclidean four dimensions then lead to equa-
tions that are closely related to the Einstein–Weyl equations in
three dimensions. Conformal flatness is then reconsidered as a
more restrictive condition. With Lorentzian signature, confor-
mal self-duality is not possible with real fields; only conformal
flatness can be imposed. We exhibit the differences that arise
when Lorentzian signature is employed. In Section 4 we present
a simple result that follows from our Kaluza–Klein reduction of
the Weyl tensor and its dual: the gravitational instanton density
(also known as Chern–Pontryagin term) is expressed in terms of
the Kaluza–Klein functions. Finally, we discuss an application
thereof in physics, to Chern–Simons modified gravity.

2. Précis of Einstein–Weyl theory

Einstein–Weyl theory (in any dimension) is equipped with
a metric tensor gμν and an additional vector wμ—the “Weyl
potential”—which arises when the covariant “Weyl derivative”
∇W

μ , involving the torsion-less “Weyl connection” wλ
μν , acts

on gμν and preserves its conformal class, cf., e.g., [6].

(1)∇W
λ gμν := ∂λgμν − wσ

λμgσν − wσ
λνgμσ = 2wλgμν.
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The Weyl connection, which leads to (1), can be constructed
from the conventional Christoffel connection Γ λ

μν , supple-
mented by a wμ-dependent expression.

(2)wλ
μν := Γ λ

μν + wλgμν − wμδλ
ν − wνδ

λ
μ.

A curvature tensor is determined as usual by

(3)
[∇W

μ ,∇W
ν

]
Vα = −Wrβ

αμνVβ,

whose traces define “Ricci” quantities.

(4)Wrμν := Wrα
μαν,

(5)Wr := Wrμ
μ.

The Einstein–Weyl equation then requires that Wr(μν), the
symmetric part of the “Ricci” tensor,1 be in the same conformal
class as the metric tensor,

(6)Wr(μν) = λgμν

or equivalently in three dimensions

(7)Wr(μν) − 1

3
gμν

Wr = 0.

From (2) and (3) Wr(μν) can be expressed in terms of the usual
Ricci tensor rμν , supplemented by wμ-dependent terms.

(8)Wr(μν) = rμν + d(μwν) + wμwν + gμν

(
dλw

λ − wλw
λ
)
.

Here d is the covariant derivative constructed with the 3-
dimensional Christoffel connection. Thus the Einstein–Weyl
equation (7) requires the vanishing of a tracefree quantity.

rμν − 1

3
gμνr + d(μwν) − 1

3
gμν dλw

λ

(9)+ wμwν − 1

3
gμνwλw

λ = 0.

Eqs. (1) and (8) are preserved under conformal transfor-
mations: the metric tensor is rescaled and the Weyl potential
undergoes a gauge transformation.

(10)gμν → e2σ gμν, wμ → wμ + ∂μσ.

This gauge freedom is fixed by choosing the “Gauduchon
gauge” dμwμ = 0. Within the Gauduchon gauge, a further cal-
culation shows that (9) may be simplified. First present (9) as

(11)rμν + d(μwν) + wμwν = Λgμν.

Multiply this by dμwν to form

d(μwν) d(μwν) = Λdμwμ − rμν dμwν − wμwν dμwν

= Λdμwμ − dμ
(
rμνw

ν
) − 1

2
wμ dμw2

(12a)+ wν dμrμν.

Since dμrμν = 1
2∂νr , the above is rewritten as

1 We define symmetrization by r(μν) := 1
2 (rμν + rνμ), anti-symmetrization

by r[μν] := 1
2 (rμν − rνμ) and note that generically Wrμν is not symmetric.
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d(μwν)d(μwν) =
(

Λ − 1

2
r + 1

2
w2

)
dμwμ

(12b)− dμ

(
rμνw

ν − 1

2
wμr − 1

2
wμw2

)
.

In the Gauduchon gauge, the first term on the right-hand side
vanishes. The second term vanishes when integrated over the
relevant manifold, provided it is compact. Alternatively, if the
manifold is open, with a boundary at infinity, sufficiently rapid
drop-off conditions on the relevant quantities still ensure a van-
ishing integral. In either case, the integral of the left-hand side
vanishes. If the metric on the space is positive, the vanishing
of the integral ensures the vanishing of the integrand and fi-
nally of d(μwν). In this situation the Einstein–Weyl equations,
gauge-fixed to the Gauduchon gauge, reduce to

(13)rμν − 1

3
gμνr + wμwν − 1

3
gμνwλw

λ = 0,

(14)d(μwν) = 0.

Eq. (14) shows that in the Gauduchon gauge the Weyl vector wμ

is a Killing vector for the 3-dimensional Einstein–Weyl geome-
try, with the above delineated further properties of the 3-space.

3. Kaluza–Klein reduction of the 4-dimensional Weyl
tensor and its dual

We are concerned with the 4-dimensional Weyl tensor,

(15)CKLMN := RKLMN − gK[MSN ]L + gL[MSN ]K,

which is constructed from the Riemann tensor

RK
LMN := ∂MΓ K

NL − ∂NΓ K
ML

(16)+ Γ K
MP Γ P

NL − Γ K
NP Γ P

ML

and the Schouten tensor

(17)SMN := RMN − 1

6
gMNR,

where

(18)RMN := RK
MKN, R := gMNRMN.

We use capital letters to denote 4-dimensional quantities, as
above, and lower case letters for 3-dimensional entities, as in
Section 2.

We choose the 4-dimensional metric tensor gMN to be of the
Kaluza–Klein form

(19)gMN = e2σ

(
gμν + aμaν aμ

aν 1

)

corresponding to the line element

(20)ds2
(4) = gMN dxM dxN = e2σ

[
ds2

(3) + (
aμ dxμ + dx4)2]

,

with

(21)ds2
(3) = gμν dxμ dxν.

Since we are interested in the conformal tensor the overall con-
formal factor e2σ has no significant role, so henceforth we omit
luza–Klein, Physics Letters A (2007), doi:10.1016/j.physleta.2007.12.014
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it. Furthermore we take the Kaluza–Klein mode functions (gμν ,
aμ) to be independent of the “fourth” coordinate denoted by x4.

The Riemann tensor, evaluated on the metric (19) is given
by a variant of the Gauss–Codazzi equations. These then lead
to the corresponding formulas for the Weyl tensor

(22)Cμνλτ = 2
(
gμ[λcτ ]ν − gν[λcτ ]μ) = −εμναελτβcαβ,

(23)cμν := 1

2

(
rμν − 1

3
gμνr + f μf ν − 1

3
gμνf 2

)
,

(24)Cμνλ4 + Cμνλτ aτ = −εμντ kλ
τ ,

(25)kλτ := d(λfτ),

with

(26)f λ := ελμν∂μaν.

The quantity εμντ denotes the ε-tensor, which is related to
the antisymmetric ε-symbol ε̃μντ by εμντ = ε̃μντ /

√
g, and

dμ is the 3-dimensional covariant derivative involving the 3-
dimensional Christoffel connection. Note that both cμν and kμν

are traceless.
Now we define the dual Weyl tensor (εMNRS again is the

tensor).

(27)∗CABMN := 1

2
εMNRSCAB

RS.

The Weyl tensor and its dual share all the symmetries of the
Riemann tensor. Also they are traceless in every pair of indices.
Moreover, in four dimensions not only CA

BCD is conformally
invariant and thus independent from σ in (20), but also its dual
(with the same index positions).

The relations between the 3-dimensional components of
∗CABMN and CABMN are

(28)∗Cστμν = εμναgαβ

(
Cστβ4 + Cστβλaλ

)
,

(29)∗Cστμ4 + ∗Cστμνaν = 1

2
εμαβgαγ gβδC

στγ δ.

The remaining components of ∗CABMN are determined by the
symmetries and trace properties of that tensor.

We now equate (28) and (29) to (±) the corresponding
Weyl tensor components thereby requiring the 4-dimensional
Weyl tensor be (anti-)self-dual. This produces equations that
are solved by

(30)cμν = ±kμν.

Comparison with the Einstein–Weyl equations (9) shows
that we have regained them, provided f μ is identified with
±wμ. Moreover, we are already in the Gauduchon gauge, by
virtue of the transversality of f μ, see (26). We may appeal
to asymptotic conditions to argue that kμν vanishes, as above.
Alternatively, the demand that the 4-dimensional space be con-
formally flat, i.e., that its Weyl tensor vanishes so that it is both
self-dual and anti-self-dual, implies that cμν and kμν vanish
separately. Therefore, the asymptotic conditions which estab-
lish kμν = 0 are strong enough to render conformally flat any
(anti-)self-dual spacetime with a Killing vector [given by ∂x4 in
the adapted coordinate system (20)].
Please cite this article in press as: D. Grumiller, R. Jackiw, Einstein–Weyl from Ka
Once (30) is replaced by the vanishing of each side, it is
a straightforward matter to derive further equations that also
appear in the mathematics literature [4,5,7–9]

(31)r = 5f 2 + c,

(32)d(μFν) = 0,

where c is a constant and

(33)Fμ := εμνλ dνfλ.

Eq. (32) shows that there exists in the 3-dimensional geometry
a further Killing vector, Fμ, which is constructed from the curl
of fμ, when the latter is non-vanishing.

When the spacetime possesses Lorentzian signature, the
Gauduchon argument cannot be carried to the conclusion that
d(μwν) vanishes. However our dimensional reduction proce-
dure arrives at that result directly. With Lorentzian signa-
ture (19) is replaced by

(34)gMN = e2σ

(
gμν − aμaν −aμ

−aν −1

)
.

Formulas (22), (24), (25) and (26) continue to hold but (23)
changes in that the terms quadratic in f μ acquire the oppo-
site sign. With Lorentzian signature (anti-)self-duality cannot
be imposed on real fields, so the only possible requirement is
vanishing of the (3 + 1)-dimensional Weyl tensor. This leads to
the vanishing of cμν (with the appropriate sign change) and to
the Killing equation for f μ.

Finally we observe that it is not known whether the Einstein–
Weyl equations derive from an action/Lagrangian. Our ap-
proach does not shed any new light on this. However, when a
further Ansatz is posited for our equations, viz. that the Kaluza–
Klein functions be circularly symmetric, 2-dimensional actions
that lead to these equations have been constructed [1]. These
actions are related to each other by a specific duality that exists
for generic 2-dimensional dilaton gravity [10].

4. Chern–Pontryagin term

The Chern–Pontryagin term

P := 1

2
∗RABCDRABCD,

(35)∗RABCD := 1

2
εCDMNRAB

MN

can be represented by the alternative formula

(36)P = 1

2
∗CABCDCABCD.

Its properly normalized volume integral yields the gravitational
instanton number.

With the results from Section 3 it is now straightforward to
calculate the dimensional reduction of P . Using the Kaluza–
Klein split (19) [or (34)] it proliferates into

(37)P = 1

2
∗Cαβγ δCαβγ δ + 2∗Cαβγ 4Cαβγ 4 + 2∗Cα4β4Cα4β4.
luza–Klein, Physics Letters A (2007), doi:10.1016/j.physleta.2007.12.014
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By virtue of the symmetry- and trace-properties of CABCD and
its dual, we obtain from (22)–(26), (28) and (29) the simple
result

(38)P = 8cμνkμν

for the Chern–Pontryagin term. This formula is useful for
Chern–Simons modified gravity [11]. Namely, in that theory P
has to vanish on classical solutions. In practice it turns out to
be difficult to implement this constraint effectively [12]. How-
ever, if 4-dimensional space–time admits one Killing vector our
reduction scheme applies and (38) can be exploited.

The constraint

(39)P = 0 = cμνkμν

has three different classes of solutions. Either cμν vanishes or
kμν vanishes or they are orthogonal, in the sense that (39) holds.
This parallels the situation in gauge theory, where ∗FF ∝ E ·B
vanishes either for electric (E �= 0, B = 0), magnetic (B �= 0,
E = 0) or wave configurations (E · B = 0, E �= 0 �= B).2

The “electric” case, cμν �= 0 and kμν = 0 is equivalent to the
Killing equation

(40)d(μfν) = 0,

which means that for non-vanishing fμ the 4-dimensional space
must exhibit at least two Killing vectors: one of them, ∂x4 , is as-
sumed for the Kaluza–Klein reduction, while the other emerges
from lifting f μ to a 4-dimensional Killing vector. However,
with non-vanishing cμν the vector Fμ from (33) in general
does not fulfill the Killing equation (32). If f μ is geodesic,
f νdνf

μ = 0, then the Killing equation (40) establishes a con-
servation equation

(41)dμj = 0,

for the scalar current

(42)j = f 2.

This conservation is neither necessary nor sufficient for (40).
The “magnetic” case, kμν �= 0 and cμν = 0, yields a condi-

tion resembling the Einstein equations,

(43)rμν − 1

3
gμνr ± f μf ν ∓ 1

3
gμνf 2 = 0.

The upper (lower) sign is valid for Euclidean (Lorentzian) sig-
nature. Instead of (31), which no longer needs to hold, the
Bianchi identities establish a covariant conservation equation

(44)dμjμν = 0,

for the symmetric tensor current

(45)jμν = gμν
(
r ∓ 2f 2) ± 6f μf ν.

This conservation is necessary but not sufficient for (43).

2 The analogy with gauge theory also applies to the square of the Weyl tensor

and its dual, CABCDCABCD = ∗CABCD∗CABCD = 8(cμνcμν ± kμνkμν),
which matches with the gauge theoretic F 2 ∝ (E2 ± B2), where the upper
(lower) sign refers to Euclidean (Lorentzian) signature.
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The general case, cμνkμν = 0 and cμν �= 0 �= kμν , allows
further analysis. Inserting (23) and (25) into (39) yields

(46)

(
rμν − 1

3
gμνr ± f μf ν ∓ 1

3
gμνf 2

)
dμfν = 0.

Again the upper (lower) sign is valid for Euclidean (Lorentzian)
signature. Now we use dμf μ = 0 and get

(47)rμν dμfν ± 1

2
dμ

(
f 2f μ

) = 0.

The Bianchi identities establish a covariant conservation equa-
tion

(48)dμjμ = 0,

for the vector current

(49)jμ = rμνfν − 1

2
rf μ ± 1

2
f 2f μ.

This conservation is necessary and sufficient for (47). The 3-
dimensional conservation (48) of the current (49) is recognized
as the dimensionally reduced, 4-dimensional conservation

(50)DAJA = 0

of the Chern–Simons current

JA = εABCD

(
Γ E

BF ∂CΓ F
DE

(51)+ 2

3
Γ E

BF Γ F
CGΓ G

DE

)
,

when P vanishes. The structure of the current (49) resembles
the dimensionally reduced gravitational Chern–Simons term
[13]: it has a term cubic in f and terms linear in f which are
coupled linearly to curvature.

We can now rephrase the constraint (39) as the statement that
the current (49) must be covariantly conserved. A special case
emerges if f μ vanishes, i.e., aμ is pure gauge. Then the current
vector (49) vanishes and (48) holds trivially. This happens, e.g.,
for stationary spacetimes which are also static.
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