SMART BUSINESS NETWORKS
a new Business Paradigm
SBN: 2006 Discovery: The Collected Papers

These proceedings represent the many and interesting papers that have been submitted and reviewed during the three days meeting in 2006. Authors were able to amend their papers based on these reviews and discussions. Where applicable the rapporteur for each session has included the comments and discussion points. The proceedings report separately on the various group sessions and theme discussions.

PETER VERVEST
ERIC VAN HECK
KENNETH PREISS

SMART BUSINESS NETWORKS
a new Business Paradigm

PETER VERVEST
ERIC VAN HECK
KENNETH PREISS

ISBN 978-90-5892-159-8
Internet www.sbniweb.org
Smart Business Networks

A new Business Paradigm
Smart Business Networks

A new Business Paradigm

Sbni 2006 Discovery: The Collected Papers

Editors:
Peter Vervest
Eric van Heck
Kenneth Preiss
Table of Contents

1. Introduction 5
2. The Actors 10
3. Smart Business Networks: How the Network Wins 15
4. New Challenges 36
5. How Delta Lloyd uses the Business Networking Game 45

Section “Plenary”

6. Adaptability in Smart Business Networks 52
7. Electronic Intermediaries in Smart Business Networks 78
8. Business Services as a Modeling Approach for Smart Business Networks 90
9. Achieving Quick Connect with the Support of Semantic Web 108
 Report on Plenary Session 126

Section “A”

10. Orchestrated Business Networks in the Mobile Services Industry 129
11. Creating a Smart Business Network to enable on-line Hostel reservations 149
12. Business Agility Implications for Smart Business Networks 157
 Report Parallel Session A 181
Section “B”

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Semantically-enabled Service-oriented Architectures:</td>
<td>186</td>
</tr>
<tr>
<td>An Enabler for Smart Business Networks</td>
<td></td>
</tr>
<tr>
<td>a step-wise analysis of challenges and solutions</td>
<td></td>
</tr>
<tr>
<td>15. Smart Business Networks Design and Business Genetics with a High</td>
<td>218</td>
</tr>
<tr>
<td>Tech Industry Case</td>
<td></td>
</tr>
<tr>
<td>Report Parallel Session B</td>
<td>241</td>
</tr>
</tbody>
</table>

Section “C”

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Strategic Sales Management Guided by Economic Regimes</td>
<td>245</td>
</tr>
<tr>
<td>17. Smart Business Networks and their IT Infrastructure:</td>
<td>265</td>
</tr>
<tr>
<td>A Framework to Evaluate IT Investments</td>
<td></td>
</tr>
<tr>
<td>18. Performance Evaluation within a Networked Enterprise:</td>
<td>279</td>
</tr>
<tr>
<td>Balancing Local Objectives and Network Relations</td>
<td></td>
</tr>
<tr>
<td>An Empirical Taxonomy</td>
<td></td>
</tr>
<tr>
<td>Report Parallel Session C</td>
<td>318</td>
</tr>
</tbody>
</table>

Section “D”

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Designing and Implementing Contracts for Smart Business Networks</td>
<td>320</td>
</tr>
<tr>
<td>21. Towards Control Patterns for Business Networks</td>
<td>336</td>
</tr>
</tbody>
</table>
2 The Actors

Jan Baan
Founder and Chief Executive Officer
Cordys Group (NL)

Amit Basu
Charles Wyly Professor of Information Systems
SMU Cox School of Business (TX, USA)

Paul Brackel
Consultant (NL)

Javier Busquets
Senior Lecturer and Director
Department of Management of Information Systems
ESADE (Spain)

Albert Douma
Ph.D. candidate
University of Twente (NL)

Al Dunn
Partner
D-Age Management
(United Kingdom)

Frank Elion
CEO
Ohra part of Delta Lloyd

Paul van Fenema
Associate Professor in Business Administration
Netherlands Defense Academy (NL)
Matthias Fischer
Technology Manager Web&Media Ecosystems, Vodafone Group R&D Germany

Juppa Heikkilä
Professor of Electronic Commerce, University of Jyväskylä (Finland)

Willie Golden
Research Director Centre for Innovation and Structural Change, NUI Galway (Ireland)

Marikka Heikkilä
Project Manager University of Jyväskylä (Finland)

Lorike Hagdorn
Associate Professor RSM – Erasmus University Rotterdam (NL) Partner, Boer & Croon (NL)

Winfried van Holland
Manager Product Marketing Cordys Group (NL)

Eric van Heck
Professor of Electronic Markets RSM – Erasmus University Rotterdam (NL)

Thomas Hess
Director Institute for Information Systems and New Media – University of Munich (Germany)
Joris Hulstijn
Assistant Professor
Postgraduate School
IT audit – Free University Amsterdam (NL)

Stefan Klein
Professor of Information Systems,
University of Munster

Christopher Janneck
Scientist
Information Analytics Group, Battelle - Pacific Northwest Division

Otto Koppius
Assistant Professor of Business Telecommunications,
RSM – Erasmus University Rotterdam (NL)

Harry Jarn
Senior Manager
Strategy & Business Development, Middle East & Africa,
Nokia Siemens Networks

Ting Li
PhD student
RSM – Erasmus University Rotterdam (NL)

Wolfgang Ketter
Assistant Professor of Business Networks and Markets,
RSM – Erasmus University Rotterdam (NL)

Diederik van Liere
Scientific Researcher,
RSM – Erasmus University Rotterdam (NL)
Geleyn Meijer
University of Amsterdam & LogicaCMG (NL)

Hans Moonen
Researcher, RSM – Erasmus University Rotterdam (NL)

Steve Muylle
Associate Professor – Partner
Vlerick Leuven Gent Management School (Belgium)

Marcel van Oosterhout
Research manager
RSM – Erasmus University Rotterdam (NL)

Louis-François Pau
Professor of Mobile Business
RSM – Erasmus University Rotterdam (NL)

Samuli Pekkola
Professor
Institute of Business Information Management, Tampere University of Technology (Finland)

Katerina Pramatari
Researcher
Athens University of Economics and Business (Greece)

Kenneth Preiss
The Sir Leon Bagrit Professor: Technology and Global Competitiveness
Ben Gurion University (Israel)
Ulad Radkevitch
PhD student
RSM – Erasmus University Rotterdam (NL)

Peter Vervest
Professor of Business Telecommunications
RSM – Erasmus University Rotterdam (NL)

Peter Rittgen
Senior Lecturer
School of Business and Informatics, University College of Borås (Sweden)

Jarkko Vesa
Research Fellow, School of Economics, Helsinki Business School (Finland)

Jorge Sanz
Manager
Services Modelling Group, IBM Almaden Research Center, San Jose, California (USA)

Hannes Werthner
Professor
Vienna University of Technology (Austria)

Jordan Srour
PhD Decision and Information Sciences, RSM – Erasmus University Rotterdam (NL)

Li Zheng
Professor at the Industrial Engineering Department, University of Tsinghua, Beijing (China)
13. Semantically-enabled Service-oriented Architectures: An Enabler for Smart Business Networks

Hannes Werthner1, Martin Hepp2, Dieter Fensel2,3 and Jürgen Dorn1

1 Institute for Software Technology and Interactive Systems, Technical University Vienna, Austria
2 DERI Innsbruck, Leopold-Franzens Universität Innsbruck, Austria
3 DERI Galway, National University of Ireland, Galway, Ireland

Abstract

The term Smart Business Networks refers to two things: Firstly, an emerging concept for the agile composition of e-business value chains, and secondly a new stream of research, combining Management and Computer Science. While there exists a coherent vision of Smart Business Networks and the associated functionality, there is insufficient understanding of why creating and maintaining such infrastructure and networks is as difficult as being experienced in real-world scenarios. In this paper, we (1) trace back the complexity of issues such as partner selection, process composition, or execution monitoring to the lack of semantics in the description of system “elements”, (2) propose a semantically-enabled service-oriented architecture (SESA) as the foundational layer – or “Operating System” – for Smart Business Networks, and (3) show how our approach may significantly reduce the complexity of the core network management tasks by lifting them to a higher level of abstraction.

Keywords Service-oriented Architecture, Semantics, Layered architecture
Introduction

We are observing the move from e-commerce to e-business, to the Internet-based integration of business processes. This comes along with an “informatization” of entire value chains – in several industries – from the initial supplier to the final consumer. Electronic services become commodities, leading to selective outsourcing and, in consequence, to a further deconstruction of value chains. Outsourcing is based on the ad-hoc integration of services, blurring the borders of enterprises. As a consequence, the focus is not only on process reengineering, but increasingly on network engineering, with a quick connect and disconnect on a business level. These phenomena may eventually lead to Smart Business Networks (SBN) [1].

It is interesting to note the parallel emergence of two innovative but currently rather unconnected developments: Firstly, SBN research, having its roots in Management Science and Information Systems, and secondly Semantic Web Services frameworks, currently driven mainly by research communities in Computer Science. For an overview of the impact of semantics on Computer Science in general, see [2]. Following the SBN research manifesto and the related research questions, we concentrate on “What is the role and impact of new technologies on the creation and operation of value chains?”

In this organizational and technical context one can expect future systems with features supporting (see also [3])

- autonomous networked “nodes” with dynamic network configurations in heterogeneous and distributed environments,
- fixed and mobile communication – enabling access everywhere anytime,
- entire consumer life cycles and all business phases, across different businesses,
- users and businesses in selecting and (dynamically) bundling products,
- trust, scalability, and openness with respect to participants and services.

Given the above trends in e-business, the emerging concept of SBNs, the “required” features of such future systems, and the increasing application of Web Services, one may ask why the establishment of SBNs is still more burdensome, and not as agile as initially expected. Composing and managing value chains is still widely dependent on human labor for the discovery
of partners, the resolution of heterogeneity conflicts between systems, the monitoring of process performance and compliant partner behavior, etc. The amount of human involvement in the process lifecycle is in sharp contrast to the initial expectations of “on-the-fly” composition of new value chains, and it leads to high costs, conceptual inconsistencies, and the inability to exploit small or volatile business opportunities.

In this paper we argue that the major bottleneck is an insufficient conceptual model for the various layers that make up a value chain. In particular, the lack of formal semantics on the various layers prevents automated partner discovery, systems integration, and process monitoring, even for known patterns of problems; on top of that, the insufficient level of abstraction limits the reuse of existing process models in new contexts. We propose to use the layering described by the Semantic Web services community under the term “SESA” (semantically-enabled service-oriented architectures) as the conceptual foundation for SBNs. In section 2 we use a motivating example from the tourism domain for identifying requirements for a conceptual model, which we present in section 3. Section 4 shows how our approach can reduce the complexity of network management tasks. The final section gives a summary and highlights that SESA represents both a vision as well as a major challenge for Computer Science research.

Application Scenario

Tourism, which is one of the liveliest domains in e-commerce, may serve as an example of how SBN will be influenced by our approach ([3], [4]). Structurally, the tourism demand and supply side form a worldwide network, where both production and distribution are based on cooperation. Tourism is an industry where the diffusion of e-commerce led to the mentioned “informatization” of the entire value chain, in the sense that the flow of information determines the value chains. In addition, consumer behavior has changed regarding information needs, booking and travel patterns, which in combination have increased the importance of process agility for all market participants.

The following real world case may describe the needs for flexible cooperation between market participants, and a quick connect and disconnect: A middleman like a tour operator looks for 100 hotel rooms, with ski-lifts nearby in the region of Tyrol within 50 km. The aim is to bundle them with flights, in order to be able to offer a package with a max price of 450 €; dates are 05/07/06 – 15/07/06, service should be half board. And the package should have “interfaces” to flights from several cities, depending
on consumer requests. In this case the middleman may have contracts with some of the providers, but not all them. He starts communication sessions with some of them. In the course of his search, specific business rules are applied, e.g., that suppliers may require minimal occupancies or prices, whereas the middleman may have specific contract rules, or preferred partners, and he has his utility / business function. Obviously, this utility function depends on the type of middleman. In this case, networked business operations should allow for an n:m organization and communication between participating enterprises. This transfers the level from composing individual instances of services to composing sets of services; and from ad-hoc integration between two participants to an arbitrary number of cooperating enterprises. The orchestration of a large set of Web services – in the “automatic” bundling of products – requires possibilities for business planning with more refined means. Techniques of constraint reasoning, multi-value optimization and relaxation might be used to aggregate Web services at the set level and to achieve specific business goals, e.g., profit optimization or the equal distribution of income within a destination.

Such flexible network configurations, where processes go beyond company borders and thus lead to distributed “b2b2c” applications, will require cooperation between enterprises at an unprecedented level of complexity, specificity, and agility, and also the integration of interaction with the consumer based on mobile devices. Besides scalability and flexibility the following requirements can be identified:

- Support of autonomy and decentralization, with local “meanings” and business rules,
- Dynamism with the need for dynamic configuration and service discovery,
- Coordination and mappings of meanings,
- Robustness with a predefined quality of service,
- Modeling not only of functional, but also non-functional requirements,
- Security and privacy of information,
- Trust management,
- Access to legacy systems, enabling especially the participation of SMEs.

SESA: A Layered Conceptual Model for SBNs

In the domain of Web services, there is now a growing consensus on the fact that Services-oriented Architectures (SOA) have not yet delivered
their promise of “on-the-fly” services discovery, substitution, and composition because a semantic level, i.e., one that formalizes the meaning of services and their pre- and post-conditions as well as non-functional properties, was missing. As a consequence, Semantic Web Services frameworks, namely the Web Service Modeling Ontology (WSMO), OWL-S, and WSDL-S are gaining ground. We argue that the lack of a semantic layer is a similar bottleneck on the road to Smart Business Networks. Our vision implies the separation of business / process logics (expressed as a workflow or other form of process description) from the Web Services used (as well as the respective mappings), and where the created set of Web Services correspond to the implemented (business) solution. This is similar to the Open EDI Reference Model [5], with its separation of business and process logic from the implementation.

Figure 1 Open EDI Reference Model

The business operational view (BOV) addresses the semantics of electronic business – semantics of business collaborations and related business information exchanges – in a technology independent way. The functional service view (FSV) addresses technical and implementation aspects to support collaborations expressed in BOV related specifications. In such a way different FSV implementations for a specific BOV may be derived.

One should note that this approach also implies a transformation of meanings, from services as they are understood in management science to web services as defined in computer science. In management science a service is defined as a business economic activity (mostly intangible in nature), offered by one party to another to achieve a certain benefit ([6], [7]), and “generated” by (internal) business processes. In IS a service is a com-
plex (or simple) task executed (within) an organization on behalf of a customer ([8]).

And one should also note that service bundling – using a business term – differs from service composition ([9]): composition assumes a process description, whereas bundling do not make explicit assumptions about time order, but about service connectivity or it puts constraints on service configuration, e.g., bundle of services with overall minimum price. This highlights the non-functional aspects of service descriptions.

A Service-Oriented Architecture (SOA) is essentially a collection of services. These services communicate with each other. Such collections can be large - a service-oriented world will likely have millions or even billions of services. Computation will involve services searching for services based on functional and non-functional requirements and interoperating with those that they select. However, services will not be able to interact automatically and SOAs will not scale without significant mechanization of service discovery, negotiation, adaptation, composition, invocation, and monitoring as well as service interaction which will require further data, protocol, and process mediation. Hence, machine-processable semantics are critical for the next generation of computing - SOAs - to reach its full potential. The goal of Semantically Enabled Service-Oriented Architectures (SESA) is to place semantics at the core of computer science. In the following, we describe the layers of such architectures as

1. the problem-solving layer,
2. the common service layer, and
3. the resource layer,
and propose to use a similar layering for SBNs.

![Diagram of Three Layers of Semantically-enabled Service-oriented Architecture (SESA)](Figure 3)

Problem Solving Layer

The objective of the **problem-solving layer** is to turn a service-oriented architecture into a domain specific business environment. Following the “layered” approach of our vision the problem solving layer represents the business operational view, covering both business model and business process models. In such a way it is the transparent interface to the business user(s), where we assume that all computing resources are turned into or expressed as services. The described flexibility (meeting the changing needs of a business / set of businesses) can be achieved by providing this clear separation between the business / process logic and the Web Services used. In order to provide solutions for distinct business problems – from an Information Systems point of view – the problem solving layer has to support the entire e-commerce framework – information, negotiation and settlement phases [10]. The objective is the efficient and effective “resource allocation” for an enterprise or a set of cooperating enterprises.

It has to support transactions, with different negotiation and contracting possibilities. In this sense it also implements a domain specific economic model, where services would be accompanied by specific functional and non-functional “parameters”. The architecture should support the implementation and operation of so-called smart business networks, on the level
of flexible e-business cooperation.

The approach should support the modeling and implementation of a (collaborative) business model. In addition, since no network of businesses operates in an open environment, the vision needs to enable trust domains in which all services are defined in terms of their trust levels and capabilities. This must be based not only on functional requirements but also on non-functional requirements covering business and trust aspects (covering issues such as a price of a service, type of payment, performance, reliability; or also security levels, authorization, and past history).

Common Service Layer

As computer science moves to the next period of abstraction, the practice of developing software applications evolves to the modeling of semantically annotated services that can be composed, i.e., can co-operate, to achieve specific tasks. This leads to a flexible, decoupled world of independent services that can be dynamically discovered, combined, and invoked. The common services layer (CSL) provides an adaptive execution environment and supporting infrastructure that maps the problem descriptions generated at the Problem Solving Layer to the services that can solve the problems.

The Execution Environment at the heart of the CSL requires components to map problem descriptions at the problem-solving layer to available services at the CSL. Existing architectures (e.g. Open Grid Service Architecture (OGSA) in the Grid area) already support such mappings for components and prototypical interactions, however they operate over purely syntactic descriptions, hence domain specific problem solutions must be coded manually. Besides providing the interpretation of semantic description the CSL needs also to be able to execute descriptions and therefore needs to interoperate with standards defined at this lower level. The Web Service Description Language (WSDL) is used to syntactically define the interface of a component using standard web technologies to define means to invoke operations but it does not define notification mechanisms or a standard way of interacting with stateful resources. The Web Service Resource Framework (WSRF) is a standard that extends WSDL in this direction. Initiatives that define syntactic descriptions of resource are orthogonal to the semantically empowered common service layer. The CSL will make use of the former to facilitate the execution of service requests.

The core of our approach is the semantic enrichment of SOAs that implement the Common Service Layer capabilities. This enrichment helps to automate (1) service discovery, service adaptation, negotiation, service composition, service invocation, and service monitoring; as well as (2)
data, protocol, and process mediation. This automation is a prerequisite for SOA scalability. To achieve this, we are developing the W<Triple> technology that combines the following major building blocks.

- The **Web Service Modeling Ontology (WSMO)**: a conceptual model for structuring semantic annotation of services [11],
- The **Web Service Modeling Language (WSML)**: a family of languages providing formal semantics for WSMO models [12],
- The **Web Service Execution Environment (WSMX)**: an execution environment for the dynamic discovery, selection, mediation, invocation and inter-operation of the semantically described Services [13],
- The Web Service Composition Component (WSCC): an component for the automatic composition and optimization of aggregated Web Services [14], and
- **Triple Space**: [15] and [16]: a protocol for the communication of services based on persistent publication of information following the web paradigm.

Resource Layer

Resources are used to solve problems or more conventionally to execute applications. The resource layer [17] deals with resource discovery, selection and negotiation for advanced or “on-the-fly” consumption of resources. The resource layer also covers the deployment and provisioning of physical and logical resources. Resources in the context of an SOA can be subdivided into multiple classes covering, among others, both physical and logical resources. *Physical resources* (e.g. computers, data servers, and networks), which are commonly connected to form a grid of computing and storage platforms; at this level automatic resource management will be facilitated from the perspective of both resource provisioning as well as its lifecycle management. *Logical resources*, such as application components or common services, enabling more advanced composition of applications.

Two of the most prominent and widely discussed areas that deal with distributed resources in the context of Service-Oriented Computing are Ubiquitous Computing and Grid Computing. They can be seen as two endpoints in a continuum where their characteristics are somewhat complementary. Grids rely on a relatively large number of hardware devices ranging from small computers to very powerful devices interconnected with mostly conventional networks (Internet). Ubiquitous Computing environments, on the other hand, are suffering from weak and unreliable connections (due to partial autonomy) in very dynamic constellations of a high
number of mobile devices with limited memory and processing power.

We assume that using the three layers presented as the conceptual model for SBNs and representing aspects of actual SBN elements using formal semantics (e.g., in WSML) will dramatically increase the degree of automation in the lifecycle of value chains. This is in particular a library of problem solving methods, i.e., the problem solving layer, which can be automatically matched against actual tasks in the SBN environment. For instance, known conflicts between two data representations or process choreographies can be bridged using a reusable mediation component for this particular task. Also, even if resolving all conflicts in a given scenario cannot be fully automated, it will be still beneficial to deduce conflicts by machine reasoning.

Preliminary Evaluation of SESA-based Smart Business Networks

In this section, we show how our approach – using all three layers – could reduce the complexity of the aforementioned core network management tasks by lifting them to a higher level of abstraction.

Technical Integration

The SESA idea includes, as a core design element, mediation [18]. Mediation means computational functionality that can bridge heterogeneities between systems, e.g. data representation mismatches or process incompatibilities. The layered approach of SESA allows for establishing a library of mediation components for various purposes, thus lowering the amount of proprietary software engineering in systems integration. Since the capabilities of mediators in a SESA framework are again described using machine-processable semantics, the discovery of needed mediation components can also be supported by machine reasoning.

Partner Selection

Partner selection, often also referred to as “Matchmaking” (cf. e.g., [19]) or “Discovery” with blurring borders between these terms, involves all tasks of finding, ranking, and selecting suitable business partners for a given task. This process is extremely complex in real-world business scenarios, for several reasons (as shown in section 2). Firstly, most available resources are not described using a common conceptual framework, and in particular not described using a single ontology. This makes it hard to impossible to include all suitable matches; in other words, precision and re-
call remain unsatisfying due to the inability to include implicit knowledge about available resources. A typical example is that “This service provides data mediation between X12 and proprietary formats” may mean at least two different things: It can mean that the service can mediate between any X12 variant to any from a finite, consensual set of formats. It may also mean that the service can only mediate between some of them. Also, resource description on such low levels of expressivity often completely ignores actual availability of resources. However, it is a triviality that e.g. the actual pricing will be substantially affected by the amount of available resources.

Secondly, the utility (in the economical sense) of a resource is usually affected by multiple characteristics of a service, and there is a multi-dimensional trade-off between various properties. Thus, the strict separation of discovery into coarse search (“discovery”) and negotiation is flawed in many practical scenarios. The description of resources at a semantic level using ontology languages allows the use of machine reasoning and the use of implicit information in the process of partner selection. The description of services on the Common Service Layer and the Problem Solving Layer allows the reuse of existing functionality in the process of partner selection and will thus expand the search space.

Contracting

The actual contracting about a service is currently subject to the prior establishment of a framework contract. E.g., a travel service provider may enter into an agreement with either a network of travel resource providers or individual providers, and may then trigger contracting on an instance basis automatically. This works well as long as the amount of transactions per framework contract is high. However, as soon as the number of potential partners increases and the number of transactions per each business partner decreases, the overhead caused by establishing framework contracts prior to contracting individual business transactions may become prohibitively high. The representation of pre-conditions in a SESA architecture and business policies using rule languages will allow for making the contractual dimension accessible to machine reasoning. Even if framework contracts did not become obsolete, their establishment would consume less resources and cause less delay. In a SESA environment, legal ontologies could also be imported that allow matching the bilateral agreements to the general legal environment.
Process Composition

At a business level, process composition is often regarded as the mere ordering of activities by causal or temporal dependencies. However, at a higher level of abstraction, it becomes obvious that process compositions created this way may be inconsistent, since they may violate constraints in the form of pre- or post-conditions. The SESA approach includes expressive formalisms for encoding the pre- and post-conditions of any service. This allows for validating such complex processes that were composed manually, and it will also support the development of tools for the semi-automatic composition of processes. Note that the SESA idea separates the representation from the automation of a task in the lifecycle. Even if fully automated process composition is computationally too expensive, SESA still allows capturing all relevant aspects of the system. In other words, the SESA conceptual model is guided by the idea of providing a comprehensive capture of all relevant aspects, not by the question whether the respective representation can be used in a fully automated manner.

Conclusion

In this paper we argue that current SBNs – falling short in terms of the agility of value chain composition since they lack a comprehensive conceptual framework – may benefit from our approach. We trace back the complexity of partner selection, process composition, and execution monitoring to the lack of semantics in the description of system elements in SBN environments. We show how our approach may reduce the complexity of the aforementioned core network management tasks by lifting them to a higher level of abstraction. As a consequence, we propose to adopt the layered conceptual model of semantically-enabled service-oriented architectures (SESA) as the foundational layer for Smart Business Networks.

But the proposed SESA framework also represents a vision and a challenge in Computer Science, which itself is on the edge towards an important new period of abstraction. A generation ago computer science learned to abstract from hardware and currently learns to abstract from software in terms of service-oriented architectures (SOA). SESA brings now machine processable semantics to SOAs in order to leverage its full potential. In the long term, the objective is to provide a new operating system – supporting SBNs – that provides a smooth and transparent integration of millions of resources and services on a worldwide scale.
Acknowledgements: The work presented in this paper was partly funded by the European Commission under the projects DIP (FP6-507483), Harmonise (IST–2000-29329), Harmo-Ten (eTen C510828), SUPER (FP6-026850), and MUSING (FP6-027097), by Science Foundation Ireland under the DERI-Lion Grant No.SFI/02/CE1/I13, and by the Trans IT Entwicklungs- und Transfercenter at the University of Innsbruck.

References

These proceedings represent the many and interesting papers that have been submitted and reviewed during the three days meeting in 2006. Authors were able to amend their papers based on these reviews and discussions. Where applicable, the rapporteur for each session has included the comments and discussion points. The proceedings report separately on the various group sessions and theme discussions.