The Future of e-Tourism Research

From Computer Science to Web Science and Services Science

Hannes Werthner
hannes.werthner@ec.tuwien.ac.at

Electronic Commerce Group

Institute for Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstraße 9-11/188-3 . 1040 Vienna . Austria/Europe
Tel.: +43 (1) 58801 - 18801, Fax: +43 (1) 58801 - 18896
http://www.ec.tuwien.ac.at
Outline

- Information Society (Introduction)
- From Computer Science to Web Science
- Services Science
- E-Tourism and Conclusions
Information Society

- In 2006 160 exabytes (10^{18}) of information was created or replicated worldwide – more than in the previous 5,000 years
- Technical information doubles every 2 years
- Acceleration: 3 major technologies of mankind (hunting, agriculture, industry) grew 100 times faster than resp. predecessor
- Virtualization: „value “ of companies like Google, ebay, or Skype based on information and user network (not infrastructure)
- Changes in society (e.g., Wiener 48, Drucker 69 or Bell 76):
 - Move to service industry and importance of information work
 - New technologies and sectors – and their convergence (of both)
 - „Informatisation“ of work, services, products and value chains
 - Increasing differentiation of society with complex interdependencies and interactions, in parallel to ongoing globalization
Basis: From Numbers to Media

- Miniaturization and digitalization
- Global infrastructure and transparent access – Internet / Web
- Mobile computing
- *From calculator to media machine*

Evolution:

- **Automaton**: Manipulation of well formalized and mathematical models
- **Tool**: Modeling of data and work processes
- **Medium**: Representation and processing of unstructured information
Computer Science

- Computer Science: Science of processing of information, especially automatic processing using computers – (German Duden)
- Computer Science / Informatics is the science that has as its domain information processes and related phenomena in artifacts, society and nature – Nygaard (already in the 60s)

- From pure “programming“ and a set of tools to discovering information structures and algorithmic processes in different (scientific) fields
Computer Science (2)

- Computer Science (and computer as general purpose „self-referencing programmable“ automaton): all-encompassing and pervasive
- Tackles all areas of economy, society and life
- Thus, it is not only „technology“

Examples
- Web Science
- Services Science
Web

- The Web has ...
 - 109 million distinct web sites
 - 29.7 billion web pages
- The Internet has ...
 - 0.5 billion hosts (IP addresses)
 - 1.17 billion users (or 17.8% of the world’s population)

- Some fundamental basic and simple principles
 - Naming service, protocol and mark up
 - Decentralized, no central directory, no central power instance
 - Web 2.0: web as platform and user contribution (*read write web* – Ted Nelson) – social networks / collective intelligence
 - 3D virtual worlds
 - Evolution of order and un-order
Web Science

- Web documents more and more aspects of human activity and knowledge – *Web as a mirror of world*
- Web Science: research agenda for understanding the scientific, technical and social challenges of the Web and its growth
- Web needs to be analyzed and understood, and it needs to be engineered as well as governed
- Levels to be distinguished:
 - Web technology (infrastructure, software, tools)
 - Content
 - Users
Web Science - Disciplines and Issues

- Sociology
 - Trust, reputation, privacy, study of human behavior (e.g., also in Second Life)
- Topology
- Content and its aggregation
Topology

- Based on network analysis (Erdös & Rény, 1959, 1960; Barabási & Albert 1999)

- Permanently varying size
 - An experiment crawled 150 mio. webpages for 11 weeks, by the 9th week experimenters lost access to over 10% of those pages (and 4% disappeared within the first week)

- Issues regarding completeness and correctness (e.g., query results)
Bowtie Structure
Topology – 3

- Bowtie structure prevalent at a variety of scales
- Each TUC (thematically-unified cluster) has its own SCC (strongly connected cluster), IN and OUT; contained within a wider SCC
- More outgoing than incoming links
- Fractal nature of the Web: compromise between stability and diversity:
 - A reasonably number of connections at various levels of scale means more effective communication
 - Too many connections produce a high overhead for communication
 - Too few mean that communications may fail to happen.
- The structure is “hypothesized” as a small world graph: the shortest paths between nodes are small
- Links between nodes are not purely random: several studies showed the phenomena of “Winners take it all”
 - Many nodes have few links, and a small but significant number have very many - Scale free networks
Content

- Issues: identity – needed for query and / or aggregating content
- But structure of content:
 - 25% original; 75% replicated
 - 95% unstructured and growing
- Questions:
 - When are two objects / pages the same: content gap
 - How often do I exist in the Web: people gap
- Possible answers: global object model and portable social environment
- One approach: semantic web based on formal ontologies (joint and agreed unified understanding – enables formal representation and reasoning) combined with social web (folksonomies)
Another View: Smart Business Networks

Level 1
WWW Presence

Characteristics
- Information
- Brochures

Web site

1995 - 1998

Level 2
E-Commerce

Characteristics
- Transactions
- Self Service
- Number of clicks

Transactions with consumers

1999 - 2002

Level 3
E-Business Partnerships

Characteristics
- Focus
- Critical Mass
- Market Makers
- Market Processes

Platform for buyers and sellers

2003 - 2006

Level 4
Smart Business Networks

Characteristics
- Agile Operations
- Integration among firms
- Loosely coupled
- Competition among networks
- Network Processes
- Pick, Plug and Play

Network configurations

2007 -

van Heck, 2005
Smart Business Networks

- Flexibly cooperating companies as nodes in an ICT based network
- Quick Connect und Disconnect – “Pick, Plug, and Play”, depending on concrete task to be fulfilled by network participants
- Compatible business objectives
- Important: trust, risk and award management

Logic of value – combine three dimensions:

- “Techno logic”
- “Business logic”
- “Market logic”
Vision: From Business Networks to Web Services

1. Business Model
2. Business Processes
3. Life Cycle Management
 - discover, select, modify, orchestrate, execute, control
4. Services
5. Resources
6. BN

Objective function
Functional requirements
Non-functional requirements
Services Science

- Services as “value exchange” are key / starting point (refers also to importance of service industry)
- Focus is on flexible design, implementation and operations of services, putting the customer at the center
- Technically based on SOA (service oriented architecture) and semantics
- Alignment of strategy with implementation and flexibility
- Link **strategy, business models, business processes** and implementation (utilizing SOA)
- **From strategy to implementation**
- Also here a set / mix of disciplines
Services Science - 2

- Service:
 - Close interaction of consumer and supplier
 - Based on information / knowledge created and exchanged
 - Simultaneity of production and consumption
 - Combination of knowledge into useful systems
 - Exploitation of ICT
MS: service is defined as a business economic activity, offered by one party to another to achieve a certain benefit (Zeithaml & Bitner, 1996), or (Kotler, 98)

IS: a service is a complex (or simple) task executed within an organization on behalf of a customer (O’Sullivan et al., 2002)

CS/Web services: programmable, self-describing, encapsulated, and loosely coupled functions accessed & invoked over the Internet
Separation of business / process logic and implementation

The *business operational view (BOV)* addresses business collaborations and related business information exchanges – (technology independent)

The *functional service view (FSV)* addresses technical and implementation aspects to support collaborations expressed in BOV related specifications

Different FSV implementations for BOV may be derived
Back to e-tourism

- Tourism
 - Worldwide networked industry
 - Product is complex (bundle), confidence good and emotional
 - Tourism is a Service Industry / an Information Business
 - Leading in Web / e-commerce

- E-commerce
 - e-commerce favors, in tendency, buyers
 - Network engineering
 - Importance of services (commodities – deconstruction of value chain)

- Services Science: system design
 - Heterogeneous & cooperative systems with autonomous participants
 - Intelligence (network, supply, customer) – cooperation / harmonisation
 - Set of services
 - Scalability and openness

- Web Science: structure, content, behavior
 - Behavior analysis (including “prediction”)
 - Market research (including prediction of structure)
 - Content generation and annotation – awarding, ranking, trust
Conclusions

- Metamorphosis of Computer Science – pervasiveness
- Computer Science, Web and e-commerce transforms economy and society (travel & tourism industry)
- It is not just technology, but we will see further technology waves
- Importance of “services”
- Two developments: specialization together with empowered consumer (freedom of choice and outsourcing to user) vs. total customer care (integrate for the consumer)
- From business engineering to “well-being” engineering
- Increasing complexity (behavior, processes, structures and technology)
- Importance of knowledge
 - Multidisciplinarity: scholarship and research methods: explorative, analytic, constructive
Some References

- Peter Denning: General Principles CACM 50/7, 2007 and http://cs.gmu.edu/cne/pjd/GP
- Services Science CACM 49/7, 2006
- Pink, A Whole New Mind. Moving from the Information Age to the Conceptual Age. 2005

- Based on work of Brodie, Lassila, Decker, Greaves, van Heck, Zapletal, Huemer, Dorn....