
Mining of Model Repositories for Decision
Support in Model Versioning?

Petra Brosch??, Martina Seidl, and Manuel Wimmer

Institute of Software Technology and Interactive Systems
Vienna University of Technology, Austria

{lastname}@big.tuwien.ac.at

Abstract. State-of-the-art software repositories support optimistic ver-
sioning and hence the concurrent editing of one artifact by multiple de-
velopers is possible. The drawback of this method is the time-consuming,
manual merge process when conflicting changes occur. This is a bigger
problem when the artifacts are models. Although similar kinds of con-
flicts frequently reoccur, current systems hardly provide any resolution
support. To tackle this problem, this paper introduces enhanced reso-
lution support based on past resolution decisions. In order to keep the
necessary information to learn recommendations to realize improved con-
flict resolution, a generic extension to current repository technology is
proposed.

1 Introduction

Consider the scenario shown in Figure 1: Harry and Sally check out the same
artifact from a central repository and perform different changes. When Sally is
finished, she loads the new version back to the repository. Later Harry also in-
tends to submit his new version to the repository, but unfortunately his changes
are conflicting with the changes of Sally. So he has to resolve these conflicts before
he is allowed to store his new version into the repository. The described situa-
tion typically occurs when optimistic versioning systems, where—in contrast to
pessimistic versioning following the lock-modify-unlock paradigm—the parallel
editing of artifacts is possible, are applied for the coordination and management
of concurrent team work. If the artifacts under version control are linear like
source code, merging parallel changes of multiple developers is a well-developed
task [10]. When common version control systems (VCSs) are used for the textual
representation of non-linear information, such as analysis and design models, the
merge process often becomes time-consuming. The standard line-oriented com-
parison tools are not suited for the rich-structured models. Since the user support
is very limited and consequently most actions are performed by hand, the conflict
resolution is often error-prone and cumbersome as well [3].
? This work has been partly funded by the Austrian Federal Ministry of Transport,

Innovation and Technology (BMVIT) and FFG under grant FIT-IT-819584.
?? Funding for this research was provided by the fFORTE WIT - Women in Technology

Program of the Vienna University of Technology, and the Austrian Federal Ministry
of Science and Research.

2 Brosch et al.

Fig. 1. Check-In Process

To leverage conflict resolution multiple approaches have been proposed [7],
but all of them ignore one important factor: the user decisions of the past. As
the same kind of conflicts frequently reoccur, the same steps for resolving have
to be taken repeatedly. If it would be possible to infer general resolution strate-
gies from accumulated historical data, the time spent for the conflict resolution
could be reduced and errors occurring in human intervention could be mini-
mized. The information available in the repository has been successfully used to
make predictions about software evolution by applying mining techniques [11].
We intend to follow similar approaches for deriving general resolution strategies,
but for this purpose we need data which is not yet kept in standard repositories.
Coming back to our previous example, it is impossible to reconstruct the user
decisions as, except for explicit branching [9], neither the version of the second
check-in of Harry nor the actual conflicts are stored. Therefore we propose an
extension for VCSs in order to collect the local working copy of the second mod-
eler, conflicting parts of the model, and former user decisions in order to resolve
those conflicts. This allows us an in depth analysis and the mining of general
resolution patterns for the realization of a resolution recommender system.

2 Model Versioning By-Example

For further stressing the need for advanced versioning mechanisms, we present
three concrete model versioning examples illustrating different kinds of conflicts
occurring during the check-in phase.

2.1 Example 1: 4 Merge Strategies—4 Problems

In the example illustrated in Figure 2, two modelers check out the actual version
of a UML class diagram (cf. V0 in Figure 2) as their local working copies. Both

Mining of Model Repositories for Decision Support in Model Versioning 3

Person

name

Passport

id
V0

name
dateOfBirth
sex

id
photo
fingerprint

Person

V0‘ V0‘‘

Person

name
dateOfBirth
sex

Passport

id
photo
fingerprint

1 1

name
dateOfBirth
sex
passportID
hphoto

fingerprint

Person

name

Person

name
Passport

Naive Merge Syntax‐aware Merge Semantic‐aware Merge

dateOfBirth
sex
passportID
photo
fingerprint

1 1
dateOfBirth
sex
passportID
photo
fingerprint

1 1

Passport

id
photo
fingerprint

V0‘‘V0‘

V1a

fingerprint fingerprint

Dangling Reference Duplicate Attributes write
optimated

read
optimated

V1b V1c V1d

Fig. 2. Example Scenario 1: 4 Ways to Merge Conflicting Changes

perform changes to their copies in order to relate persons with passports. There-
fore, the first modeler introduces an association between the classes (cf. V0’),
whereas the second modeler shifts all attributes from class Passport into class
Person and afterwards the class Passport is deleted (cf. V0”). Based on the con-
flict detection mechanisms and reasoning power of VCSs [7], the following four
merge results (cf. V1a–V1d in Figure 2) are possible.

Naive merge. Employing a naive merge, changes from both modelers are
integrated in the merged version without taking care of syntactical or semantical
concerns (cf. V1a). The merge incorporates first the added elements into V1a, i.e.,
the association introduced in V0’ and the additional attributes of class Person
from V0”. Subsequently, the deletions are propagated, i.e., the class Passport
is no longer available in V1a. The result is a model which is not conform to
the metamodel, i.e., the syntax definition of the modeling language, due to a
dangling reference problem.

Syntax-aware merge. A more sophisticated merge approach also takes the
syntax of the modeling language into account. In our example, the merge may
detect that the deletion of the class Passport has a dangling reference as conse-
quence. Therefore, the class Passport is kept in the resulting model V1b. Note
that several other strategies are possible for ensuring syntactic correctness. Al-
though the dangling reference problem is avoided, this model version is also not
suitable, because of several redundant attributes.

4 Brosch et al.

Semantic-aware merge. For detecting semantic problems such as the redun-
dant attributes, further information is needed for the merge process. A semantic-
aware merge may employ heuristics or an ID-based conflict detection to make
out that the second modeler has applied a move refactoring for the Passport
attributes, followed by a rename refactoring for the attribute ID, and finally, a
delete operation on the class Passport. With this input, a merge may conclude
that redundant attributes exist when an automatic merge is achieved. Thus,
an interactive merge process is started to let the user decide, which of the two
versions (V1c or V1d) is more appropriate for the further development process.
Unfortunatly, simply using one version completely ignores model refinements of
the second modeler. For more complex examples, also a mix of the two ver-
sions or additional modifications are necessary to establish a correct integrated
version.

Learning Potential. For this example, manual configuration of the VCSs
may be possible by providing dedicated rules for conflict detection and resolution
as is done in [8]. But in general, it is not feasible to provide a complete list of all
possible conflicts and resolutions in advance. Therefore, the VCS should recog-
nize conflicting model structures and switch to an interactive merge approach,
if no automatic conflict resolution is possible. Then the modeler has to inspect
and correct the merge result, and the system tracks the user’s conflict resolution
strategies for self-adaptation.

2.2 Example 2: Refactorings on Models

Changes cause not only local conflicts occurring due to concurrent changes of the
same model element. In fact, the consequences of the modification of one element
may be noticeable over the whole model. Such global conflicts often occur when
for example refactoring operations are performed.

Consider the following example. One modeler changes class A to singleton,
i.e., only one instance of this class is created per runtime which is accessed by
a public and static method named getInstance(). At the same time, a second
modeler performs some changes in another class and adds an instance of class A
by calling the constructor. These changes are conflicting because in the merged
version, the constructor is not visible to this class.

Learning Potential. A VCS which detects the changes of converting a
class to singleton as refactoring pattern, may apply an appropriate conflict reso-
lution pattern: accept both changes, but change calling the constructor to calling
getInstance().

2.3 Example 3: Modeling with Different Intensions

The conflict in our third example (see Figure 3) occurs because of different but
partly overlapping intensions of the modelers.

After checking out the actual version of the origin model V0 consisting of the
classes Car and Engine and the association has, Sally replaces the association

Mining of Model Repositories for Decision Support in Model Versioning 5

Car Engine

V0

Car Engine Car EngineV0' V0''1 1 1*

V1
1 1 1*

Car Engine EngineType
1

Fig. 3. Example Scenario 3: Different Modeling Intensions

with a composition in her working copy V0’. Hence, she defines an Engine in-
stance as part of one Car instance. In parallel, Harry increases the multiplicities
in his working copy in a different way (cf. Figure 3) to unbound in order to de-
clare that more than one car may use the same type of an engine (e.g., an engine
of the type Diesel). Both versions express different understandings of the class
Engine. A naive merge including both variants would result in a semantically
incorrect model as the upper bound for the multiplicity of the composition is
restricted to one. This leads to a merged model covering both aspects by intro-
ducing a third class named EngineType and consequently result in a model of
higher semantics and quality.

Learning Potential. From this specific conflict and its corresponding reso-
lution, a resolution pattern is mined, namely that in cases where an association is
marked as composition and at the same time the multiplicity is set to unbound,
an additional class should be introduced. This pattern may be reused for similar
examples, such as the following. Consider a model consisting of a class Library, a
class Book and an association between those classes, and concurrently the same
modifications as in our running example occur. One modeler defines that the
book is contained in one library, actually meaning with book a concrete book
copy, whereas the other defines that a book is offered in several libraries. By
applying the previously explored resolution pattern, an additional class Book-
Copy—the name has to be inserted by the modelers—is introduced in order to
resolve the contradicting association definition.

To address such problems, we present an extension for current VCSs in order
to provide enhanced versioning support with a focus on how to provide resolution
suggestions.

3 The Conflict Resolution Reasoner

In order to provide decision support for conflict resolution in model versioning,
we extend conventional VCSs like Subversion1 by a learning component, the Con-

1 http://subversion.tigris.org/

6 Brosch et al.

Check Out

Pattern Miner
analyze

VCS

Model
RepositoryConflict

Detector

Check In

WC

Conflict Resolution Reasoner

oo
l customize

VCS

Modeler

adaptDetector

Merger

Resolution
Action

Storage

V0

V1

V2

Conflict
Resolver

Resolution
Pattern
Storage

[]

[else]Mo
de

lin
g

To Editor

VCS
SupervisorConflict Resolution

Pattern Editor customize

Merger

Legend

Conflict

R l ti St t

Action Recorder

Resolution Advisor
Resolution Strategy

V0 Artifact (Model)

Edited Artifact

Fig. 4. Architecture of the Extended Model Repository

flict Resolution Reasoner. Furthermore we describe how conventional VCSs may
be enhanced to collect additional information for the analysis of past resolution
decisions. For the user of the VCS only one thing changes. The system provides
recommendations for the resolution which automatically remove the conflicts, if
selected. The overall architecture of the extended model repository is depicted
in Figure 4.

The main part of the extension is located at the repository server, where
resolution actions of all members of the developing team are collected. At the
client side, only the diff-tool used for manual conflict resolution and merging has
to be replaced.

The workflow is as follows. The client checks out the latest revision of the
repository and starts editing. For this step the developer’s preferred modeling
environment may be used. After editing, the locally modified working copy is
committed into the VCS. When a modeler checks in the changes of the working
copy, the Conflict Detector compares the working copy with the latest version of
the repository—or performs a three-way comparison if the latest version is newer
as the original version of the working copy—and decides whether the user has
to remodel the working copy, or the merge can be performed without conflicts.
In conventional VCSs remodeling is performed completely manually, visualizing
textual representations of the user’s working copy on the left hand side and of the
latest version of the repository on the right hand side. In our approach, the client
side Conflict Resolver is not only used for graphical difference visualization and
remodeling in order to resolve conflicts, but also for the visualization of resolution
recommendations which support the user in deciding a resolution strategy. For
providing this decision support, the Resolution Advisor annotates the conflict
report produced by the Conflict Detector with appropriate resolution strategies
found in the Resolution Pattern Storage.

The Action Recorder collects all user operations performed during the conflict
resolution transaction and persists them in the Resolution Action Storage.

Mining of Model Repositories for Decision Support in Model Versioning 7

The Pattern Miner analyzes the Resolution Action Storage and adapts the
Resolution Pattern Storage. In order to find useful patterns the huge amount of
data in the Resolution Action Storage has to be preprocessed, meaning that the
detailed information about the resolution of concrete conflicts is broken down
to more common facts, like it is done in by-example approaches [4]. These facts
consist of a set of types of conflicting elements, the context within the model,
the type of conflict (e.g., DeleteChange), and a resolution.

The data mining techniques used by the Pattern Miner may be customized
by the VCS Supervisor. Starting with computing association rules based on the
Apriori algorithm [1] for finding resolution strategies with high confidence for
given conflict situations, in future work we plan to use cluster analysis for finding
resolution hints in similar situations as well [5, 6].

Resolution patterns found by the Pattern Miner are stored in the Resolution
Pattern Storage which acts as the knowledge base for the Resolution Advisor.
Already stored patterns may be customized by the VCS Supervisor using the
Conflict Resolution Pattern Editor. For example, this may be necessary if an au-
tomatically derived pattern is too restrictive in defining the conflict situation in
respect of the involved element types.

4 Challenges

We plan to integrate the Conflict Resolution Reasoner in our model versioning
system AMOR [2] for offering advanced support in the conflict resolution phase.
We are aware of the multiple challenges we have to face for the realization of our
vision of building a system which relieves the users of a versioning system from
a heavy burden. In the following we discuss some of these challenges and sketch
our solution strategies.

Applicability. The benefits of applying the Conflict Resolution Reasoner
show up not until the completion of a training phase where user decisions are
collected for further analysis. At the beginning, our model versioning system acts
like a standard VCS, but it will improve over time. For training purposes, the
projects must have a reasonable size. However, for similar projects, i.e., projects
using the same modeling language, it is possible to share the discovered knowl-
edge.

Quality of the Resolution Strategies. The resolution of a conflict is a
highly sophisticated task which demands human intuition, expert knowledge,
and experience. It will probably never be possible to implement a completely
automatic conflict resolution tool. Therefore it is crucial to provide guidance
and support to the user in the form of a recommender system which proposes
multiple resolution strategies from which the user chooses one. The Conflict Res-
olution Reasoner automatically infers those strategies according to user behavior
and user decisions. Naturally, it could happen that useless or even problematic
strategies are learnt. Therefore the system is supervised by the VCS Supervisor
who may intervene if, for example, the Conflict Resolution Reasoner becomes less
reliable by newly learnt strategies. Furthermore the VCS Supervisor may define

8 Brosch et al.

conflict patterns and resolution strategies manually. The Resolution Advisor com-
ponent will rank the strategies considered as suitable according to metrics based
on usage statistics.

Performance. We expect a huge amount of data resulting from logging
the additional information stored in the Resolution Action Storage. As already
explained before, the content of a standard repository does not suffice to recon-
struct the occurred conflicts and the accompanying user decisions for resolutions.
For the sake of flexibility we decided to use an extra repository with a suitable
data structure to store the necessary information for the data mining process.
This physical separation has the further advantage that the performance of the
part of the backend accessed by the user is not impaired if expensive data pro-
cessing and complex analysis are performed.

User Acceptance. Since the Conflict Resolution Reasoner is only an addi-
tional feature to well-established version control systems and directly integrated
in the user’s preferred modeling environment almost no familiarization with the
tool as well as with the versioning workflow is necessary. Furthermore, if the
Conflict Resolution Reasoner does not work—due to whatsoever reason—the user
is not hindered at his work because “traditional versioning” is still possible.

Evaluation. When we have implemented our versioning system, we con-
duct case studies to evaluate the applicability of our approach. Before such a
case study, it is almost impossible to test components like the Pattern Miner as
(1) there exist no model repositories because models are usually versioned pes-
simistically and (2) if there was a repository, it would not contain the necessary
information anyway. In the context of AMOR, we will evaluate the approach
on the one hand with students of a university course and on the other hand
in a real-world testbed supported by Sparx Systems2, the vendor of Enterprise
ArchitectTM.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB’94), pages 487–499, 1994.

2. K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger, M. Seidl, W. Schwinger,
and M. Wimmer. AMOR - Towards Adaptable Model Versioning. In 1st
International Workshop on Model Co-Evolution and Consistency Management
(MCCM’08), Workshop at MODELS’08, 2008.

3. S. Barrett, P. Chalin, and G. Butler. Model Merging Falls Short of Software En-
gineering Needs. In 2nd Workshop on Model-Driven Software Evolution (MoDSE
2008), Workshop at CSMR’08, 2008.

4. P. Brosch, P. Langer, M. Seidl, and M. Wimmer. Towards End-User Adapt-
able Model Versioning: The By-Example Operation Recorder. In Proceedings of
the International Workshop on Comparison and Versioning of Software Models
(CVSM09), Workshop at ICSE’09, 2009.

2 http://www.sparxsystems.at/

Mining of Model Repositories for Decision Support in Model Versioning 9

5. D. J. Cook and L. B. Holder. Graph-Based Data Mining. IEEE Intelligent Systems,
15(2):32–41, 2000.

6. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge
Discovery in Databases. AI Magazine, 17:37–54, 1996.

7. T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

8. T. Mens, R. Van Der Straeten, and M. D’Hondt. Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis. Model Driven Engi-
neering Languages and Systems, 4199:200–214, 2006.

9. L. Murta, C. Corrêa, J. G. Prudêncio, and C. Werner. Towards Odyssey-VCS 2: Im-
provements over a UML-based Version Control System. In Proceedings of the Inter-
national Workshop on Comparison and Versioning of Software Models (CVSM08),
Workshop at ICSE’08, pages 25–30, 2008.

10. D. E. Perry, H. P. Siy, and L. G. Votta. Parallel Changes in Large-Scale Soft-
ware Development: an Observational Case Study. ACM Transactions on Software
Engineering and Methodology (TOSEM), 10(3):308–337, 2001.

11. T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining Version His-
tories to Guide Software Changes. IEEE Transaction on Software Engineering,
31(6):429–445, 2005.

