Study of shake-up states in helium by XUV-IR pump-probe experiments1 S. NAGELE, J. FEIST, R. PAZOUREK, E. PERSSON, J. BURGDÖRFER, Institute for Theoretical Physics, Vienna University of Technology, Austria, EU, B.I. SCHNEIDER, Physics Division, NSF, USA, L.A. COLLINS, Theoretical Division, LANL, USA
— The rapid progress in the creation of attosecond pulses paves the way towards time-resolved control and observation of ultrafast electronic dynamics. In a recent XUV-IR pump-probe experiment Uiberacker et al.[1] studied the ionization dynamics of shake-up states in Neon ions. The overall stepwise structure of the resulting double ionization yield as a function of the delay time between the two pulses results from incoherent tunneling of the excited shake-up states. However, recent theoretical studies[2,3] suggest that coherent effects play an important role as well. In addition, the influence of the IR field on the shake-up process might have significant effects. Since a full \textit{ab initio} treatment of Ne atoms in external fields is not feasible, we will study the process for helium where the full multi-electron dynamics can still be solved numerically. In particular, we will investigate the role of coherent effects, electronic interactions, and the presence of the IR field in the shake-up process.

[1] M. Uiberacker et al., \textit{Nature} \textbf{446}, 627 (2007)[2] A.K. Kazansky et al., \textit{EPL} \textbf{82}, 13001 (2008)[3] S. Nagele et al., \textit{to be published}1

1Work supported by the FWF-Austria, Grant SFB016.