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Abstract. The tool cc> is an implementation for testing various parameterised
notions of program correspondence between logic programs under the answer-
set semantics, based on reductions to quantified propositional logic. One such
notion is relativised uniform equivalence with projection, which extends standard
uniform equivalence via two additional parameters: one for specifying the input
alphabet and one for specifying the output alphabet. In particular, the latter pa-
rameter is used for projecting answer sets to the set of designated output atoms,
i.e., ignoring auxiliary atoms during answer-set comparison. In this paper, we
discuss an application of cc> for verifying the correctness of students’ solutions
drawn from a laboratory course on logic programming, employing relativised
uniform equivalence with projection as the underlying program correspondence
notion. We complement our investigation by discussing a performance evalua-
tion of cc>, showing that discriminating among different back-end solvers for
quantified propositional logic is a crucial issue towards optimal performance.

1 Introduction

This paper deals with a system for testing various refined notions of program corre-
spondence for nonmonotonic logic programs under the answer-set semantics, called
cc> (standing for “correspondence-checking tool”) [1]. It belongs to a current line
of research in answer-set programming (ASP) about questions of program equivalence
relevant for different software engineering tasks like optimisation, modular program-
ming, and verification. This research was for the most part initiated by the seminal
work of Lifschitz, Pearce, and Valverde [2] about strong equivalence, which is defined
to hold between two programs P and Q iff P ∪ R and Q ∪ R are ordinarily equiva-
lent, i.e., have the same answer sets, for every program R (here, R is called context).
Albeit strong equivalence circumvents the failure of ordinary equivalence to yield a re-
placement property similar to the one of classical logic, it is however too restrictive for
certain applications. This led to the investigation of more liberal notions, chiefly among
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them uniform equivalence [3], which is defined similar to strong equivalence except
that context programs are restricted to be sets of facts. In any case, both strong and
uniform equivalence do not take standard programming techniques like the use of local
(auxiliary) variables into account, which may occur in some subprograms but which are
ignored in the final solutions. In other words, these notions do not admit the projection
of answer sets to a set of dedicated output atoms. To accommodate issues like the above,
Eiter et al. [4] introduced a general framework for specifying parameterised notions of
program correspondence, allowing both answer-set projection as well as the specifica-
tion which kind of context class should be used for program comparison. Thus, these
notions generalise not only strong and uniform equivalence but also relativised versions
thereof [5] (where relativisation refers to the possibility of specifying the alphabet of
the context class).

The system cc> was developed as a checker for specific correspondence problems
belonging to the framework of Eiter et al. [4], based on reductions to the satisfiability
problem of quantified propositional logic.3 Such a reduction approach is motivated by
two aspects: (i) the complexity of the considered problems—lying on the third and
fourth level of the polynomial hierarchy, respectively—is captured by certain classes
of quantified propositional formulas, and (ii) the availability of advanced solvers for
quantified propositional logic.

Here, we are interested in specific correspondence problems computable by cc>,
viz. propositional query equivalence problems (PQEPs) [6], which generalise uniform
equivalence amounting to relativised uniform equivalence with projection.4 In particu-
lar, we discuss how PQEPs can be used to verify the correctness of solutions provided
by students as part of their assignments for a laboratory course on knowledge-based
systems at our university, relative to a reference solution. The assignments are taken
from the domain of model-based diagnosis and use the diagnosis front-end of the well-
known ASP solver DLV [7] as underlying reasoning engine. The main difficulty for
verifying the students’ solutions is that PQEPs deal with propositional programs only
whilst the solution programs are non-ground. A naive grounding would not be feasible,
so we resorted to a special technique restricting the domain to admissible inputs as well
as employing the intelligent grounder of DLV. It turned out that verifying the solutions
in this way yielded less false positives than with a test script currently in use, which is
based on a collection of sample test cases.

As cc> admits the use of different QBF solvers as back-end engines, we also re-
port about an experimental evaluation of the tool using a set of benchmark problems
showing the runtime behaviour of the system depending on a chosen solver. The exper-
iments were based on a set of parameterisable benchmarks stemming from the hardness
proof of the complexity analysis of the corresponding equivalence problems [6]. These
benchmarks have the particular advantage that they can be used to easily verify the cor-
rectness not only of cc> but also of the employed QBF solvers. This proved to be very

3 Recall that quantified propositional logic is an extension of ordinary propositional logic allow-
ing quantifications over atomic formulas. Following custom, we refer to formulas of quantified
propositional logic as quantified Boolean formulas (QBFs).

4 The name PQEP stems from taking a database point of view in which programs are considered
as queries over databases.



helpful during the development of the system. The experiments show that discriminat-
ing among different back-end QBF solvers is crucial towards optimal performance.

The paper is organised as follows. In Section 2, we recapitulate the relevant aspects
from ASP and correspondence checking, as well as from quantified propositional logic.
Afterwards, in Section 3, we review the theoretical basis of cc>, including some opti-
misations employed in the system. This is followed by Section 4 containing a discussion
of the experimental results. Section 5 discusses the application of cc> for verifying stu-
dents’ solutions. The paper concludes with a brief summary and outlook in Section 6.

2 Background

Answer-set semantics. We are concerned with disjunctive logic programs (DLPs) which
are finite sets of safe rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am, not am+1, . . . ,not an, (1)

where n≥m≥ l≥ 0, all ai are atoms from some fixed vocabulary U , and “not” denotes
default negation. Recall that safety means that all variables occurring in the head or
negative body also occur in the positive body. A rule or program containing no variables
is ground. The grounding of a program P relative to a set C of constants is defined as
usual and denoted by grd(P,C). Programs containing only atoms of arity 0 are called
propositional. Following custom, we will identify ground programs with propositional
ones. The set of all atoms occurring in a program P is denoted by At(P ). By a fact, we
understand a rule of form a ←, usually just written a. Note that facts must be ground.
Given a finite set A of ground atoms, the power set, 2A, of A thus represents the set of
all programs containing facts from A only.

Following Gelfond and Lifschitz [8], an interpretation I (i.e., a set of ground atoms)
is an answer set of a ground program P iff it is a minimal model of the reduct P I ,
resulting from P by (i) deleting all rules containing a default-negated atom not a such
that a ∈ I , and (ii) deleting all default-negated atoms in the remaining rules. The answer
sets of a non-ground program are given by the answer sets of the grounding over its
Herbrand universe. The set of all answer sets of a program P is denoted by AS(P ).

We continue with recapitulating the relevant program correspondence notions. For
this, we consider propositional programs only in what follows as cc> deals with just
these kinds of programs. To begin with, for collections S,S ′ of sets of ground atoms,
a set B of ground atoms, and ¯ ∈ {⊆, =}, we define S ¯B S ′ as {Y ∩ B | Y ∈
S} ¯ {Y ∩ B | Y ∈ S ′}. Following Oetsch et al. [6], a propositional query inclusion
problem, or PQIP, is a tuple of form (P,Q, 2A,⊆B) and a propositional query equiv-
alence problem, or PQEP, is a tuple of form (P,Q, 2A, =B), where P and Q are two
programs and A and B are sets of atoms, intuitively referring to sets of input and output
atoms, respectively. We say that (P,Q, 2A,¯B) holds, for ¯ ∈ {⊆, =}, iff, for each
set of facts F ∈ 2A, AS (P ∪ F ) ¯B AS (Q ∪ F ). For a PQEP Π = (P,Q, 2A, =B),
the PQIPs Π→ = (P,Q, 2A,⊆B) and Π← = (Q, P, 2A,⊆B) are associated with Π .
Clearly, Π holds iff both Π→ and Π← hold.

PQEPs express ordinary equivalence, uniform equivalence [3], and strong equiva-
lence [2] as follows: If P and Q are formed over alphabet U , then P and Q are (i) or-
dinarily equivalent iff the PQEP (P,Q, {∅}, =U ) holds, (ii) uniformly equivalent iff



(P,Q, 2U , =U ) holds, and (iii) strongly equivalent iff (P,Q,PU , =U ) holds, where PU
is the set of all programs over U .

Concerning the complexity of PQIPs and PQEPs, as shown previously [6], given
programs P,Q ∈ PU , sets A, B ⊆ U of atoms, and ¯ ∈ {⊆, =}, deciding whether
(P,Q, 2A,¯B) holds is ΠP

3 -complete. Moreover, the problem is ΠP
2 -complete in case

B = U . Both hardness results hold even for arbitrary but fixed A.

Quantified propositional logic. The complexity results above show that PQIPs and
PQEPs can be efficiently reduced to quantified propositional logic, an extension of
classical propositional logic in which formulas are permitted to contain quantifications
over propositional variables. Such formulas are also called quantified Boolean formulas
(QBFs); we denote them by upper-case Greek letters. Similar to predicate logic, ∃ and
∀ are used as symbols for existential and universal quantification, respectively.

For an interpretation I and a QBF Φ, the relation I |= Φ is defined analogously
as in classical propositional logic, with the additional conditions that I |= ∃p Ψ iff
I |= Ψ [p/>] or I |= Ψ [p/⊥], and I |= ∀p Ψ iff I |= Ψ [p/>] and I |= Ψ [p/⊥],
for Φ = Qp Ψ with Q ∈ {∃,∀}, where Ψ [p/φ] denotes the QBF resulting from Ψ by
replacing each free occurrence of p in Ψ by φ.5 Satisfiability and validity of a QBF are
defined analogously as for formulas in classical propositional logic. Note that for closed
QBFs it holds that the notions of satisfiability and validity coincide.

Given a finite set P of atoms, QP Ψ stands for any QBF Qp1Qp2 . . . QpnΨ such
that P = {p1, . . . , pn}. A QBF Φ is said to be in prenex normal form (PNF) iff it is
closed and of the form QnPn . . . Q1P1 φ, where n ≥ 0, φ is a propositional formula,
and Qi ∈ {∃,∀} such that Qi 6= Qi+1 for 1 ≤ i ≤ n− 1. Moreover, if φ is in conjunc-
tive normal form, then Φ is in prenex conjunctive normal form (PCNF), and if φ is in
disjunctive normal form, then Φ is in prenex disjunctive normal form (PDNF). A QBF
Φ = QnPn . . . Q1P1 φ is also referred to as an (n, Qn)-QBF. Any closed QBF Φ is eas-
ily transformed into an equivalent QBF in prenex normal form such that each quantifier
occurrence from Φ corresponds to a quantifier occurrence in the prenex normal form.

Well-known complexity results for the evaluation problem of QBFs imply that
PQIPs and PQEPs can be efficiently reduced to (3,∀)-QBFs. These reductions are the
central theoretical basis for cc> and are discussed next.

3 Underlying Translations of cc>

In this section, we recapitulate the basic encodings for mapping PQIPs and PQEPs into
QBFs [6] and introduce a slightly simplified encoding.

We start with some notation and ancillary definitions. Given a set V of atoms, we
assume (pairwise) disjoint copies V i = {vi | v ∈ V }, for every i ≥ 1. Furthermore,
we define (V i ≤ V j) as

∧
v∈V (vi → vj), (V i < V j) as (V i ≤ V j) ∧ ¬(V j ≤ V i),

and (V i = V j) as (V i ≤ V j) ∧ (V j ≤ V i). Loosely speaking, these operators allow
to compare different subsets of atoms from a common set V under subset inclusion,
proper-subset inclusion, and equality, respectively.

5 The notion of a free variable occurrence is defined similarly as in predicate logic.



We use superscripts as a general renaming scheme for formulas and rules. That is,
for each i ≥ 1, αi expresses the result of replacing each occurrence of an atom v in
α by vi, where α is any formula or rule. For a rule r of form (1), we define H(r) =
a1∨· · ·∨al, B+(r) = al+1∧· · ·∧am, and B−(r) = ¬am+1∧· · ·∧¬an. We identify
empty disjunctions with ⊥ and empty conjunctions with >.

In order to express properties of logic programs and respective program reducts
in the language of quantified propositional logic, we introduce the following concept:
Given a propositional program P , define P 〈i,j〉 =

∧
r∈P

(
(B+(ri) ∧ B−(rj)) →

H(ri)
)
. Then, for any propositional program P with At(P ) = V , any interpretation I ,

and any X, Y ⊆ V such that, for some i, j ≥ 0, I ∩ V i = Xi and I ∩ V j = Y j , it
holds that X |= PY iff I |= P 〈i,j〉 [9].

We are now in a position to state the encoding due to Oetsch et al. [6].

Proposition 1. Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪Q) = V , A, B ⊆ V , and

S[Π] = ∀V 1∀A2¬
(
ΦΠ ∧ ∀V 4

(
(B4 = B1)→ ΨΠ

))
, where

ΦΠ = P 〈1,1〉 ∧ (A2 ≤ A1) ∧ ∀V 3
((

(A2 ≤ A3) ∧ (V 3 < V 1)
)
→ ¬P 〈3,1〉

)
and

ΨΠ =
((

Q〈4,4〉 ∧ (A2 ≤ A4)
)
→ ∃V 5

((
(A2 ≤ A5) ∧ (V 5 < V 4)

)
∧Q〈5,4〉)).

Then, Π holds iff S[Π] is valid. Moreover, a PQEP Ω = (P,Q, 2A, =B) holds iff
S[Ω→] ∧ S[Ω←] is valid.

Besides the above encoding S[·], cc> implements a slightly adapted version which
we introduce next. The key observation for the subsequent adaption is that we use a
fixed assignment for atoms in view of the subformula B4 = B1 of S[·]. Hence, for
the quantifier block ∀V 4, it is sufficient to take only atoms from V 4 \ B4 into account
and replace all occurrences of atoms v4 ∈ B4 by v1 within the remaining part of the
formula. We thus obtain:

Theorem 1. Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪ Q) = V , and A, B ⊆ V .
Then, Π holds iff T[Π] = ∀V 1∀A2¬

(
ΦΠ ∧ ∀(V 4 \ B4) ΨΠ [B4/B1]

)
is valid, where

ΦΠ and ΨΠ are the QBFs from Proposition 1 and ΨΠ [B4/B1] is the result of replacing
all occurrences of atoms v4 ∈ B4 in ΨΠ by v1.

Obviously, all encodings introduced so far, are (i) always linear in the size of P , Q,
A, and B, and (ii) possess at most two quantifier alternations in any branch of the for-
mula tree. The latter shows that any such encoding is easily translated into a (3,∀)-QBF.
Thus, the complexity of evaluating these QBFs is not harder than the complexity of the
encoded decision problems, which shows the adequacy of the encodings in the sense
of Besnard et al. [10]. The benefit of the refined encodings is, however, that the num-
ber of universally quantified variables is reduced—in fact, in some specific cases, one
quantifier block even vanishes. This guarantees adequacy also for some special cases
of query problems with lower complexity. Note that by a proper parameterisation of a
PQIP (resp., PQEP) also some important special cases of correspondence checking can
be realised, e.g., uniform equivalence and ordinary equivalence. It can easily be verified
that all special cases without projection have in common that the resulting encodings
based on T[·] yield QBFs with at most one quantifier alternation in each branch of the
formula tree, witnessing their ΠP

2 -membership.



4 Dress Rehearsal: Some Preliminary Performance Evaluation

In this section, we present a preliminary experimental evaluation of our implementation,
in order to assess the behaviour of cc> under different QBF solvers, different encodings,
and different problem settings in terms of runtime performance.

In the spirit of previous experiments with cc> [1], we use a reduction from QBFs
to PQIPs as given by the ΠP

3 -hardness proof for deciding PQIPs [6]. This provides us
with a class of random benchmark problems for cc> which is easily parameterisable
and which reflects, in some sense, the inherent hardness of the problem. More precisely,
the method is as follows: (i) generate a random (3,∀)-QBF Φ in PDNF; (ii) reduce Φ to
a PQIP ΠΦ = (P,Q, 2A,⊆B) such that Φ is valid iff ΠΦ holds [6]; and (iii) apply cc>
to derive the corresponding encoding S[ΠΦ] or T[ΠΦ]. A particular advantage of this
method is that it allows in a straightforward way to verify the correctness of the overall
system: just check whether Φ and one of S[ΠΦ] or T[ΠΦ] have the same truth value.
Indeed, with the help of this feature, we were able to find errors in some QBF solvers.

Our benchmark set consists of 1000 instances. The randomly generated QBFs of
Step (i) contain 24 different atoms each. From those 24 atoms, each quantifier block
binds 8 of them. Each term in the PDNF contains 4 atoms which are selected randomly
among the 24 atoms and are negated with probability 0.5. The whole formula consists of
38 terms. From the 1000 instances, 506 evaluate to true and 494 evaluate to false. Thus,
the ratio between true and false instances is close to 1 which indicates that the instances
are neither under-constrained nor over-constrained. From each Φ, we construct a PQIP
ΠΦ = (P,Q, 2A,⊆B) such that Φ is true iff ΠΦ holds. Note that P , Q, and B are
determined by the reduction but the context A can be chosen arbitrarily.

For our experiments, we use three different settings, viz. the empty context A = ∅,
the full context A = U , and an in-between setting ∅ ⊆ A ⊆ U . For the last setting, each
atom occurring in one of the two programs P and Q is in A with probability 0.5. We
consider both encodings from PQIPs to QBFs, S[·] and T[·], together with the three set-
tings for the context. We compare the QBF solvers semprop [11] (release 24/02/02),
qube-bj [12] (v1.2), quantor [13] (release 25/01/04), and qpro [14], all of them
showed to be competitive in previous QBF evaluations. The solvers qpro, qube-bj,
and semprop are based on the standard DPLL decision procedure extended by special
learning techniques whereas quantor implements a combination of resolution and
variable expansion. All solvers except qpro require the input to be in prenex conjunc-
tive normal form. Thus, for those solvers, an intermediate prenexing step is necessary.
All experiments were carried out on a 3.0 GHz Dual Intel Xeon workstation, with 4 GB
of RAM and Linux version 2.6.8.

Figure 1 summarises the results of the comparison. The different QBF solvers, en-
codings (S[·], T[·]), and settings for the context (empty, half-full, full, respectively) are
given on the abscissa, and the median runtimes in seconds are depicted on the ordinate.

Observe that the alternative encoding T[·] does not achieve faster runtimes for all
solvers, although it uses less variables. For qpro and qube-bj, QBFs from T[·] are
solved—as one would expect—faster. This is not the case for semprop and quantor,
where semprop solves QBFs from S[·] slightly faster and quantor solves them much
faster. The median runtime for quantor with full context and encoding T[·] is even
greater than 100 seconds. Concerning the influence of the context parameterisation on
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Fig. 1. Median runtimes for different solvers, encodings, and problem settings.

the runtimes, the non-normal-form solver qpro achieves best results for the empty
context but rather poor results for the full context. For qube-bj the contrary is true,
however, i.e., it achieves best results for the full context but poor results for the empty
context—a quite surprising observation. Finally, the most robust solver in this aspect is
semprop. Recall that each of the derived PQIPs (P,Q, 2A,⊆B) either holds for any A,
or does not hold for any A. The assignments of atoms from X1 in our encodings which
“guess” context-program candidates are thus irrelevant for the truth value of the QBFs.
As qpro does not implement any heuristics concerning the selection of atoms, it is not
surprising that runtimes scale exponentially with respect to the context. Interestingly,
the runtimes for qube-bj even worsens without those “decoy” variables.

The results in Fig. 2 provide some deeper insights concerning the runtime be-
haviour of the non-normal-form solver qpro and the normal-form solvers semprop,
qube-bj, and quantor, respectively. For those graphs, the abscissa gives the run-
time in seconds (scaled logarithmically) and the ordinate gives the number of solved
problem instances. This means that for each runtime in the data we depict how many
instances were solved with runtime less than or equal to that time. The different curves
correspond to the different combinations of the chosen encoding and context parame-
terisation. For better legibility, different symbols are attached to the curves.

5 cc> on Stage: A Verification Application

We next discuss an application of cc> for verifying the correctness of certain programs.
In particular, these programs represent the solutions of students as part of their assign-
ments for a laboratory course on knowledge-based systems at our university. We com-
pare these solutions relative to a reference program based on verifying certain PQEPs.
As the involved programs are non-ground, we need special techniques to take this into
account. Hence, our results demonstrate also how our reduction approach to QBFs can
be applied to non-ground programs as well.



Fig. 2. Runtime distribution for qpro, semprop, qube-bj, and quantor.

One of the objectives of the course is to model a simple air-conditioning system
by means of logic programs and, based on this model, to solve Reiter-style diagnosis
tasks [15] with the dedicated diagnosis front-end of DLV [7]. The programs we con-
sider here should represent the correct behaviour of the components of the air-condition
system and are taken from three installments of the course between 2006 and 2008.
The problem description slightly changed from year to year, yet Fig. 3 prototypically
illustrates the specification of such an air-conditioning system. This system consists of
four components, viz. a heater (h), a cooler (c), a switch (s), and a valve (v). They
are connected by air lines (grey bars) and data lines (ordinary lines). The students’
task is to model each component of the system as well as the connections between the
components and some additional constraints required for diagnosing by respective pro-
grams. The problem description provides detailed specifications of the system and its
components and defines the predicates to be used for the input and output of the single
components and the whole system. The system’s input airstream (air in) is modeled
by a temperature value, ranging from 0 to 60, and a value specifying whether or not
air is streaming (on or off). The same holds for the output airstream (air out). The
input values of threeway in is one of cool, heat, and off. Performance is regulated
by the input value of scale in which can be 0, 1, 2, or 3. The following specification
determines the normal behaviour of the heater component:
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Fig. 3. Overall architecture of one particular air-conditioning system considered for a course.

The heater warms-up the incoming airstream by three times the value set on the data line
but only to a maximum value of 45. If the incoming airstream is already warmer than 45,
then it is propagated unaltered to the heater’s output. Air is streaming at the component’s
output iff it is streaming at the component’s input. If it is not streaming at the output,
the temperature is set to the value defined by a dedicated predicate ambient t(·).

The following program represents this specification in DLV syntax. Note that ab(·)
denotes the special predicate employed by DLV referring to a defective component.

% relates output airstream (on, off) with input airstream
s(H,o1,X) :- heater(H), s(H,i1,X), not ab(H).
% warming-up of the airstream according to the specification
t(H,o1,X) :- heater(H), t(H,i1,Y), d(H,i2,Z), s(H,o1,on),

A = Z*3, X = Y + A, X <= 45, not ab(H).
t(H,o1,45) :- heater(H), t(H,i1,Y), d(H,i2,Z), s(H,o1,on),

A = Z*3, X = Y + A, X > 45, t(H,i1,T), T <= 45, not ab(H).
t(H,o1,T) :- heater(H), t(H,i1,Y), d(H,i2,Z), s(H,o1,on),

A = Z*3, X = Y + A, X > 45, t(H,i1,T), 45 < T, not ab(H).
% temperature of output airstream when air is not streaming
t(H,o1,X) :- heater(H), s(H,o1,off), ambient_t(X), not ab(H).

We will not go into further details but turn instead our attention to the considered
verification tasks determining the correctness of the students’ solutions.

Verification with cc>. Let us denote by σ a specification that has to be represented by
a logic program. Furthermore, let Stud(σ) be a student’s attempt to represent σ while
Ref (σ) is the reference solution. The possible input for the program specified by σ is
assumed to be defined over a fixed set I(σ) of ground predicates, and, similarly, the
output is fixed by a set O(σ) of ground predicates. Usually, specifications make further
(implicit) assumptions concerning the input, e.g., some predicates need to be defined
always or are restricted to be functional in some argument. We call a set A(σ) ⊆ I(σ)
satisfying such assumptions admissible with respect to σ.

Definition 1. A program Stud(σ) is correct with respect to a specification σ iff, for any
admissible set A(σ) ⊆ I(σ), AS (Stud(σ) ∪A(σ)) =O(σ) AS (Ref (σ) ∪A(σ)).

Note that both Stud(σ) and Ref (σ) are non-ground programs. For instance, for
the heater specification from above, σH , the set I(σH) contains the atoms heater(C),



ambient t(T ), d(C, i2, Z), t(C, i1, T ), s(C, i1, on), and s(C, i1, off), while the
set O(σH) can be fixed to atoms t(C, o1, T ), s(C, o1, on), and s(C, o1, off), where T
ranges from 0 to 60, Z ∈ {0, 1, 2, 3}, and C ∈ {s, h, c, v}. Any subset A(σH) ⊆ I(σH)
is admissible if A(σH) contains exactly one predicate ambient t(·), and predicates
t(·, ·, ·) and s(·, ·, ·) are functional in their third argument.

In order to apply cc> for our verification purpose, the overall strategy is to ground
programs Stud(σ) and Ref (σ) and then to reduce the problem of program correct-
ness to a PQEP. The reason why a reduction to standard uniform equivalence or or-
dinary equivalence (with additional guessing rules) is not feasible, is the necessity of
answer-set projection which has two sources: first, programmers usually employ aux-
iliary atoms which are not considered as output predicates, and second, new atoms are
sometimes added by the grounding procedure (we return to this point in a moment). In
terms of complexity theory, projection is the reason why deciding PQEPs is exponen-
tially harder than to decide problems of ordinary equivalence or uniform equivalence.

First, we outline how to handle the restriction to consider only admissible inputs.
We express admissibility conditions, as exemplified above, by constraints. For instance,
the admissibility conditions for ambient t(·) for the heater can be encoded by the
following program:

def_ambient_t :- ambient_t(T). :- not def_ambient_t.
:- ambient_t(T1), ambient_t(T2), T1 <> T2.

In general, we denote by C(σ) the program representing admissibility constraints on
the input according to specification σ. The following result establishes the connection
between program correctness and PQEPs:

Theorem 2. Stud(σ) is correct with respect to σ iff the PQEP (P,Q, 2A, =B) holds,
where P =grd(Stud(σ)∪C(σ), D), Q=grd(Ref (σ)∪C(σ), D), A=I(σ), B=O(σ),
and D is a finite set containing all constants in Stud(σ) ∪ Ref (σ) ∪ C(σ) ∪ I(σ).

Verifying students’ solutions by following the above theorem and then applying cc>
is in principle possible since our domain is finite, but the resulting programs would be
prohibitively large. So, instead of applying a naive grounding by strictly following the
definition, we make use of the intelligent grounding component of DLV. This means that
several optimisations are performed, e.g., input rewriting, deletion of rules whose body
is always false, and semi-naive evaluation. The choice of enabled options has significant
impact on the runtimes of the subsequently employed QBF solver, however. We also
remark that some optimisations, e.g., the input rewriting, introduce new atoms. Thus,
not only auxiliary atoms used by a programmer but also such new atoms stemming from
the grounding request the use of projection in equivalence tests. Note that by using
DLV’s intelligent grounder, we can use strong negation as well as integer arithmetics
and comparison predicates in the programs. The grounder translates these constructs
such that they do not occur in the ground programs.

However, the optimisations of the intelligent grounder may be too excessive. For
example, the grounding of the program for the heater above would result in the empty
program since there are no facts, and therefore the bodies of the rules are always false.
Our concrete method to ground programs is as follows: Let P be a program and σ its
underlying specification. First, augment P by rules a← a′ and a′∨a′′ for any a ∈ I(σ),



where a′ and a′′ are globally new atoms. Then, ground the augmented version of P .
Finally, delete all rules containing primed or double-primed atoms from the resulting
program. This method guarantees that the semantics of the ground program, possibly
joined with atoms from I(σ), is correctly preserved under the conservative assumption
that the grounder only preserves ordinary equivalence.

However, the resulting programs are still too large. We thus sacrifice completeness
of the verification problems by restricting the sets I(σ) to contain only certain relevant
predicates. For the heater specification σH from above for example, we restrict I(σH)
in such a way that not all temperature values from 0 to 60 are considered but only an
interval around 45 since it is very likely that if a student program is not correct, then it
will diverge from the specification on input from this interval.

Results of the verification. As already mentioned, we considered student data from
three semesters. All experiments were carried out on a 3.0 GHz Quad Core Intel Xeon
workstation, with 33 GB of RAM and SuSE Linux version 10.3. We used the QBF
solver qpro with encoding T[·], as it turned out that all other solvers mentioned in
the previous section showed a runtime behaviour several orders of magnitude worse
than qpro’s. Concerning the setting for the grounder, we achieved best performance
when the option for input rewriting was disabled. The reason is that this optimisation
introduces new atoms which seems to be disadvantageous for qpro.

We also compared the outcomes of the equivalence tests with results from a test
approach currently used in the course. In the latter, test cases (admissible subsets of
input predicates) are individually specified, and then it is tested whether a student’s
program and our reference program yield the same answer sets when joined with the
test cases. Such sets of test cases usually comprise 10 to 20 instances. As it will turn
out, many errors were undetected by our current approach, thus it is rather prone to
false-positives with respect to the verification task.

Table 1 summarises the results of our experiments. We provide the year of the
semester a course took place, the name of the component we considered, the number of
instances of that component, the number of instances classified as correct by the current
approach, the number of instances classified as correct by our reduction approach, the
average runtime in seconds, as well as the median runtime for solving the QBFs. Com-
ponents c, h, s, v denote the cooler, heater, switch, and valve as before, while ‘all’ refers
to the overall program consisting of all components, the encoding of the connections
between them, and additional constraints required for diagnosing. The ground programs
for the component tests contain up to 985 rules. The number of variables in the resulting
QBFs ranges from 229 to 623. For the overall tests, programs contain up to 4818 rules,
and the QBFs contain 949 to 3143 variables. Note that whenever a program is classified
as not correct by the current approach, then it is classified as not correct by the cc>
approach as well. Hence, the difference between the numbers of programs classified as
correct by the two approaches is the number of false positives for the current approach.
Table 1 shows that runtimes for the solved QBFs keep in reasonable bounds. Coming
as no surprise, the cc> approach reveals significantly more incorrect solutions than the
current approach. The reason that the number of correct overall programs is not smaller
than the minimum number of its correct components is mainly due to different restric-
tions on what admissible input means. The two significantly small numbers of correct



Table 1. Outcomes of the program verification.

semester component number of classified as correct runtimes
instances current approach cc> approach average median

ws2006 c 50 44 38 0.9 1.0
h 50 39 32 1.0 1.1
s 50 29 22 0.4 0.1
v 50 40 34 5.1 5.6
all 50 42 32 70.2 103.0

ws2007 c 78 67 56 0.8 0.8
h 78 69 59 0.6 0.6
s 78 52 0 1.4 1.5
v 78 48 8 4.5 2.9
all 78 60 39 491.4 894.0

ws2008 c 100 54 40 1.3 2.3
h 100 70 13 0.2 0.2
s 100 59 28 1.4 3.0
v 100 53 25 0.6 1.1
all 100 52 19 132.3 72.5

solutions for the switch and the valve component in the ‘ws2007’ test set is because of
subtle differences between the reference and the student solutions in case some input
values are missing. If this is considered to be too strict, one can simply exclude such
cases by changing the admissibility constraints accordingly.

6 Conclusion

In this paper, we discussed how correspondence problems which allow to restrict the
alphabet of the context class and which facilitate the removal of auxiliary atoms in
the comparison—two important concepts for program equivalence in practice—can be
used in a concrete scenario. Moreover, though cc> processes propositional programs
only, it can still be employed for program comparisons of non-ground programs. We
recapitulated some details of the tool, based on an efficient reduction to QBFs, discussed
one particular optimisation, and analysed experiments with different QBF solvers on a
random benchmark set which reveals interesting differences of the solvers depending on
the particular problem parameterisation and the choice of the encoding. More relevantly,
we considered an application concerning the verification of programs.

There remain many issues for future work. For model-based diagnosis, native con-
cepts of equivalence, directly defined in terms of a diagnosis problem, would be useful.
In case programs are not equivalent, a counterexample that gives information why the
programs are not equivalent would be of great value. cc> can be used to generate QBFs
such that assignments for the open variables correspond to such counterexamples. How-
ever, few solvers can compute such assignments—to extend qpro in this way is future
work. Also, often non-ground programs are formulated over a language with an infi-
nite domain. An important topic is to single out at least sufficient conditions when we



can restrict this domain to a finite subdomain such that program equivalence over this
subdomain implies equivalence over the unrestricted domain.

Concerning related work, we mention the system DLPEQ [16] for deciding ordinary
equivalence, which is based on a reduction to logic programs, and the system SELP [17]
for checking strong equivalence, which is based on a reduction to classical logic. Strong
equivalence between non-ground programs can be decided by a dedicated system that
is based on a reduction to a decidable fragment of first-order logic [18].
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