Teaching Models @ BIG:

On Efficiently Assessing Modeling Concepts

*

Marion Brandsteidl, Martina Seidl, and Gerti Kappel
Institute of Software Technology and Interactive Systems
Vienna University of Technology

. Vienna, Austria .
{brandsteidl|seidl kappel}@big.tuwien.ac.at

ABSTRACT

Approximately 1000 students of computer science and busi-
ness informatics attend the course Introduction to Object-
Oriented Modeling (OOM) offered by the Business Infor-
matics Group (BIG) of the Vienna University of Technology
each year in order to learn the basic concepts of the Uni-
fied Modeling Language (UML) and to obtain a certificate.
For finishing the course successfully, the students must pass
three small tests where they have to prove their theoretical
knowledge about UML concepts as well as their ability to
apply this knowledge in practical exercises. In this paper we
report our experiences in assessing the modeling knowledge
of our students and we reveal how we design the tests.

Keywords
Teaching Object-Oriented Modeling, Basic Modeling Course,
Assessing UML

1. INTRODUCTION

One of the most challenging tasks in teaching is the prepara-
tion of suitable and adequate exams. Exam questions should
fulfill multiple (sometimes orthogonal) requirements at the
same time: the questions should cover the most important
aspects of the lecture, they should assess whether the stu-
dents have reached the learning goals—and also if we have
reached our teaching goals, they should have an adequate
level of difficulty and they should allow to test if the stu-
dents have not only learned the contents of the course by
heart, but if they also understand the teaching material as
well as if they are able to apply the taught concepts to “real
world problems”. The questions should be answerable within
the duration of the test and they should be capable of being
assessed with reasonable effort. In this paper we report how
we design the tests of our university course Introduction to
Object-Oriented Modeling (OOM).

*This work has been partly funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT)
and FFG under grant FIT-1T-819584.

OOM is attended by about 1000 undergraduate students
per year who study computer science or business informat-
ics at the Vienna University of Technology. In OOM we
teach modeling basics by introducing syntax and semantics
of UML 2 models' [3, 5]. Profound knowledge about the
UML is a prerequisite for advanced courses like Model Engi-
neering or Software Engineering. Despite the huge amount
of students, we try to avoid mass processing, but we try to
establish personal mentoring instead. Besides a traditional
lecture where structural as well as behavioral modeling tech-
niques are introduced, we organize the lab as exercise courses
in smaller groups where the theoretical contents of the lec-
ture are practiced. Furthermore we provide support via on-
line forums on the e-learning platform TUWEL? (a Moodle
adaptation of the Vienna University of Technology). A de-
tailed description of the course is given in [1].

The lecture consists of eight units covering the following
UML 2 diagrams: class and object diagram, sequence di-
agram, state diagram, activity diagram, and use case dia-
gram. Although not mandatory, the attendance of the lec-
ture is recommended as there is room for discussion and ask-
ing questions. The attendance of the lecture has no direct
influence on the grade. For the practical part the students
are divided into groups of 50 persons. Each group meets six
times during the semester in order to discuss the solution
of exercise sheets for practicing modeling. For each exer-
cise the assistant professor chooses one student who must
present and explain his/her solution as well as answer ques-
tions about the theoretical background. To pass the course,
the students have to solve at least 24 of the 36 exercises.
For further support, we provide e-learning exercises which
aim at helping the students to get some modeling practice.
Completing those exercises has no influence on the grade.

The participation in OOM is awarded with 3 ECTS points
resulting in a total workload of 75 hours for an average
student. To obtain a positive grade, three tests have to
be passed besides the successful completion of the practi-
cal part. We consider tests not only as means to obtain
grades, but also as important didactical resource. Hence we
put much effort in the development of a question catalogue.
Over the time we have collected a wide range of exam ques-
tions for assessing modeling basics and we have gained much
experience in the organization which allows us to deal with
the huge amount of students in an effective manner.

"http://www.uml.org/
Zhttp://tuwel.tuwien.ac.at



2. TEST STRUCTURE

We assess the modeling knowledge of our students with three
tests, each covering one or two different UML 2 diagram
types—the topic of the first test is the class diagram, test
two is about sequence diagram and state diagram, and test
three contains activity diagram and use case diagram. Each
test has a duration of 30 minutes and one of the three tests
may be repeated at the end of the term. We design most of
the questions new each semester, using parts of the old test
questions (or at least the problem scope) for the exercise
sheets.

Although Use Case Diagrams are modeled within the early
phases of the software development life cycle, we teach it as
the last diagram type in our lecture for didactic purposes.
Students tend to underestimate the importance and the level
of difficulty this diagram type has, thus not putting enough
effort into the whole lecture. We decided to teach Class
Diagrams first due to the fact that students of computer
science tend to pay more attention to “wicked cool java”
than to “just drawing boxes and lines”. The Class Diagram
includes many familiar programming concepts.

We decided to give three small tests instead of one large
test at the end of the term as we experienced that it better
supports the students in learning when they do not have to
study the complete content at once and they may prepare
themselves in a more focused manner. From their feedback
we learned that students prefer multiple small tests.

When designing the questions for the three tests, we have to
keep two important issues in mind: first of all, the tasks have
to be solvable within 30 minutes, but even so they have to
cover all the important teaching contents to make sure the
students have learned enough and understand the concepts.
Second, keeping in mind that three tests for 1000 students
result in 3000 tests which have to be marked each year, it has
to be possible to correct the tests within reasonable time—
but without cutting back on the quality of the test questions.

Carefully designing the questions saves a lot of time and ef-
fort later on, because a little mistake in the declaration of
a question might result in big confusion during the test it-
self or might increase the marking effort as the question was
not formulated precisely enough and the person who cor-
rects the tests has to deal with a bunch of different solution
approaches.

Assuming one single person has to mark 3000 Tests consist-
ing of answers to free response questions, marking the tests
could last weeks or even months. In our exams, a mixture of
multiple choice questions, semi-open questions and model-
ing exercises has turned out to be a good compromise, some
of the question types allowing to be marked by people with
little UML knowledge or even with no UML knowledge at
all (like, e.g., our secretary).

In our tests we try to include various kinds of exercises.
Overall one test is worth 100 points and we try that at least
the half of the points demands understanding the contents
instead of simple memorizing. The different types of exam
questions and their characteristics as well as their pros and
cons are described in the next sections.

3. MULTIPLE CHOICE QUESTIONS

With the term of multiple choice questions, we refer to a
set of statements about the syntax and semantics of a UML
diagram type in general or about a given UML diagram,
where the students have to mark each statement as true or
false.

It is easily possible to vary the complexity of the statements
and the correction of this question type may be done very
quickly without the need of UML knowledge. Unfortunately,
besides the big advantages of multiple choice questions in
correction speed, there are also some severe drawbacks: each
statement has to be formulated with care, thus being as
precise as possible and avoiding any kind of misunderstand-
ing. In contrast to free response questions, multiple choice
questions do not allow the students to make an argument
for their viewpoint, which could result in wrong answers if
the statements leave space for interpretation. This exercise
type is also very hard if the language of the statements is
not the student’s mother tongue, thus students with migra-
tion background tend to have problems understanding the
statements. For those students, other types which are less
dependent on a (natural) language are more suitable.

In our tests, one multiple choice exercise consists of five
statements each of which is either true or false. Each correct
answer is awarded 3 points, an incorrect answer is marked
-1 point and no answer at all results in 0 points. The mi-
nus points deter the students from trying their luck checking
the true and false boxes randomly. The answer pattern of
a block of five statements is easy to memorize and therefore
it is graded very quickly. We have also tried to put six or
seven questions in one block, which resulted in a significant
increase of correction time, because in general people seem
to have problems memorizing more than five answers. Then
they have to correct each statement separately instead of
simply matching the pattern of the student’s solution to the
pattern of our sample solution.

Exercise 1. Are the following statements true or false?

Class Diagram: A class may have zero | O true O false
or more superclasses and zero or more
subclasses.

Sequence Diagram: The interaction op- | O true O false
erator opt designates that the com-
bined fragment represents traces that

are defined to be invalid.

Activity Diagram: A merge is a control | O true O false

node that synchronizes multiple flows.

Use Case Diagram: An actor is an ide- | O true O false
alization of a role played by an external

person, process, or thing.

State Diagram: A guard condition is | O true O false
evaluated when the corresponding trig-

ger event occurs.




Exercise 2. The given Use Case Diagram was modeled
strictly according to the UML 2 standard. Are the following
statements true or false?

exlend
5 - |
\
«lnclude» ‘%
[}

/ «exlend»

>>40
I\

\

\\\«lnclude» |

Actor D is involved in the use cases L, | O true O false

M, and 0.

Every time G is executed, J is also exe- | O true O false

cuted.

Actor B can execute 0. O true O false

The behavior defined in H can be in- | O true O false

serted into the behavior defined in I.

The behavior of N may be extended by | O true O false
the behavior of P.

3.1 Theoretical Multiple Choice Questions

This kind of question focuses on testing the knowledge of the
UML syntax and the definitions as well as the usage of cer-
tain modeling objects and their practical appliance. As each
of our tests focuses on one or two UML 2 diagram types, we
usually have one block of questions about a single diagram
type, in this paper we mixed the questions about the dia-
gram types for demonstration reasons. Exercise 1 illustrates
an example of this type of multiple choice questions.

3.2 Multiple Choice Questions Based on a
Given UML Diagram

Another type of multiple choice exercise is based on a given
UML diagram, to which the statements refer. Hence this
type of questions assess not only theory, but also if certain
concepts and their relationships are well understood. Exer-
cise 2 shows an example of the assessment of the inheritance
and include and extend relationships in Use Case Diagrams.
In Exercise 3, the knowledge about the control flow in ac-
tivity diagrams is tested.

4. ERROR FINDING

This question type consists of a concrete UML diagram and
a corresponding textual description, pseudo-code fragment,
or another UML diagram. The examinee has to find errors
in the given diagram and correct them. When designing
erroneous diagrams, it has to be taken care that the errors
are non-ambiguous errors and that the rest of the diagram
is definitely correct. If there is only one way—or at least
a manageable amount of ways—of correcting the planted
errors, this type of question does not have to be marked by
an expert modeler, but it may be corrected by a person with
basic modeling skills, e.g. a student tutor (assuming he/she
is trained first).

Exercise 3. Are the following statements about the given
UML 2 Activity Diagram true or false?

As soon as the execution of action S is | O true O false
complete, the whole activity K is termi-
nated.

Assume error t occurs during the exe- | O true O false
cution of E. Then, C is executed and af-
terwards the control flow continues the
proposed way, hence R is executed reg-
ularly.

Z is executed only after waiting for both | O true O false
R and V to complete.

It is impossible that both actions E and | O true O false
B are executed in a single passage of ac-
tivity K.

The acceptance of signal G invokes ac- | O true O false
tion U.

Depending on the diagram type and the designated size of
the question, we integrate 3 or 5 errors, each worth 3 to 5
points, depending on the kind and complexity of the error.
When first using this question types into our tests, we asked
the students to mark the errors and explain textually why
the found error is an incorrect construct. That was a good
way to find out if the examinee really understood for what
reason the error was an error and not just marked any 3 or
5 parts of the given diagram randomly. Unfortunately, the
correction of the textual justifications took a lot of time. So
we changed the question specification to correcting the er-
rors instead of just marking and describing them. To avoid
the students from crossing out the whole diagram (thus elim-
inating all errors which could possibly exist), each corrected
error which has not been an actual error costs 3 to 5 points.

4.1 Error Finding Based on a Model and a

Corresponding Text

The most obvious way to design an error finding task is
to give a diagram and a text describing the problem space
the diagram is intended to be showing (please refer to Ex-
ercise 4). The biggest challenge with this question type is
mentioning every single part of the diagram in the corre-
sponding text, ensuring that the only things left out or noted
differently in the text than displayed in the diagram are the
errors the students have to find. At the same time the tex-
tual description should be kept as brief and clear as possible
to avoid unnecessary confusion. Usually, the students are
extremely fond of this kind of exercise and achieve good re-
sults.



Exercise 4. The following Class Diagram should conform
to the given textual specification. Unfortunately, the dia-
gram contains some errors. Find 5 errors and correct them
in the diagram.

A restaurant chain consists of several restaurants. Ev-
ery restaurant chain has a name, a restaurant has a cate-
gory and a name. Each restaurant has exactly one kitchen.
In each restaurant there work several employees (identified
through an identification number), an employee can work in
several restaurants. For each employee the salary is known.
There are two different kinds of employees: waiters (the ta-
bles he/she serves are stored) and cooks (his/her recipes are
stored). In each kitchen, at least one cook works. Each
waiter serves several guests. Each guest is hungry (or not)
and spends a certain amount of money. Each kitchen has a
gas stove or an electric stove.

RestaurantChain Restaurant Employee
+ name: String + category: int N nh id: int
1 * [+ name: String
1 ;
1
Cook Waiter

Kitchen

+ tables: int]]

1 + recipe: String[]

1
1 1 .

GasStove ElectricStove Guest

+ amountOfMoney: int
+ hunger: boolean

4.2 Error Finding Based on Two Correspond-
ing UML 2 Diagrams

A possibility to avoid misunderstandings caused by ambigu-
ous statements, lack of knowledge about the problem do-
main, or language problems is to replace the textual de-
scription with a second UML diagram or with pseudo code.
This section focuses on the linking between two diagrams,
the next section will focus on a diagram and corresponding
code. Students often tend to concentrate on one specific di-
agram type, forgetting that the types are linked, each one
of them describing the problem scope at a different level of
detail and/or from a different point of view. To assess the
ability to link between two diagrams, one possible way is to
give two corresponding diagrams and plant errors in one of
them. Exercise 6 shows a task, where a Class Diagram and
a corresponding object diagram have to be compared.

4.3 Error Finding Based on a UML Diagram

and Corresponding Code

The diagrams are not only linked between each other, but
some diagram types can also be used for reverse engineering
the code. To assess this connection between code and a
UML diagram, the students are given a fragment of pseudo-
code and a corresponding clipping of a sequence diagram
and they have to correct the errors in the sequence diagram
(see Exercise 7).

Exercise 5. The following Use Case Diagram was modeled
strictly according to UML 2 standard. Unfortunately, the
diagram contains some errors. Find 3 errors and correct
them in the diagram.

There are two different kinds of policemen, traffic policemen
and patrolmen. Traffic policemen regulate traffic. Patrol-
men arrest criminals. When arresting a criminal, the patrol-
man always has to write a report. Sometimes the criminal
has to be handcuffed.

A parking ticket can be issued by a traffic policeman or a
patrolman. Sometimes it is also necessary that the police
station calls the wrecking service.

Regulate
| traffic
" Call the

Issue a wrecking — i
parking service ) )
ticket Police station

Traffic policeman

report
; P «extend»
=
< ~
~( Arrest
Patrolman criminal
«extend» —

> —

Fandeuff\=— f i
criminal Criminal

Exercise 6. You are given the following UML 2 Class Di-
agram. A modeler tried to create a corresponding Object
Diagram. Unfortunately, the modeler made some mistakes.
Scratch out as many associations and objects of the Object
Diagram as possible to make the Object Diagram conform
to the Class Diagram.

Car M Cabriolet

I L 1

Person
|

Bycicle

G1 :Garage

’ A :Person }—‘ V1 :Vehicle

CB1 :Cabriolet

B1 :Bycicle
B2 :Bycicle

B :Person

D :Person

G2 :Garage

G3 :Garage




Exercise 7. You are given the following pseudo-code. A
modeler tried to visualize the communication with a UML 2
Sequence Diagram. Unfortunately, the modeler made some
mistakes. Find 5 errors and correct them in the diagram.
Assume that all used variables are already declared and ini-
tialized and that the method calls are modeled correctly.

class Main {
Worker w = new Worker ();

if (x=275){y=wml(); }
for (int 1 = 3; 1 < 10; i++) {

w.m2();
w.md();
w.m3();
}
}
:Main
T new() w : Worker
et
: T
alt : m1Q) J
: y =ml() :
! 1
| H
loop (3,10) ) :
li<i] | m20) >
| m3( |
; >
! m4() R
=
I

S. UNDERSTANDING SEQUENCES

In State Diagrams, an object changes its state depending
on certain events and under certain circumstances (guards),
Sequence Diagrams illustrate the possible ways of commu-
nication between interaction partners and activity diagrams
show possible sequences of actions.

Understanding this sequences is the same as understand-
ing the underlying concepts of the given diagram type, so
assessing sequences seems obvious. In Exercise 8, the stu-
dents are given a state diagram and a corresponding chain
of events. They are asked to complete the table to show
which event triggers which action. This kind of question is
language-independent and can be graded without any knowl-
edge about UML, but it needs the students to be very con-
centrated while completing the task. It is of great impor-
tance that the sequences are not too long.

Exercise 9 shows an exercise where the examinee is given
a Sequence Diagram and a set of possibly corresponding
traces.

Exercise 8. You are given the following UML 2 State Di-
agram. Fill in the given spreadsheet to show the values the
variables take and the states entered during the following
event chain.

M O
/b=2
HJr entry / a=0 e1
+ exit/c--
o el o
R + entry/c=5 + entry/c- +oexit/a=-2
+ e3/c=3 + e2/c++ e5[c==3]|+ ed/b=-1
+ exit/a=0 + exit/b=1 + exit/b=2
e2 K =
[c——3]\L el €3 [b==2] / \Z esb==1]
(s N [ N N
+ entry/c++ + exit/c=0
T el y e4 :
+ entry/a=3 o7 + e5/a=-2
+ e2/c++ + e6/b=0
@ + exit/b++
value of each variable
event state a b ¢
beginning
el
e3
e2
el
ed
ed
el
e3
e2

Exercise 9. You are given the following (simplified) UML 2
Sequence Diagram with 8 messages (a-h) and five examples
of possible traces. Do the given traces correspond to the
Sequence Diagram?

[»] (=1 [=] [2] [=]
e
[otical ) | T o ul

ﬁ I d I . }

|

—b —-¢c »d —e —-f —-g —h | Otrue O false

—b —-d ¢ e - f —-g — h | Otrue O false

—d —-c¢c e —-g —h —f| Otrue O false

—¢ —-d —-e -f - g —h — b | Otrue O false

SRR R N N
1
o

—c¢c —d -f g —-h —e — b | Otrue O false




Exercise 10. Model the following facts with Use Case
Diagrams—strictly according to UML 2 standard.

e A mother and a daughter cook dinner together. It is
possible that the mother has to check up the recipe
during cooking.
possible solution:

Check up
recipe

| «extend»
Mother \
Cook dinner
P
Daughter

e An exam is graded by a professor or an assistant.
possible solution.:

University Staff

\\ Orade
exam

Professor  Assistant

Exercise 11. Model the following facts with Class Dia-
grams.

e During a football season, several football players play
several games. Each player scores a (different) amount
of goals in each game.
possible solution:

Goals

+ goals: int
T

Player Game

e There are two different kinds of employees, professors
and assistants.
possible solution:

Employee

AN

Assistant

Professor

Exercise 12. Model the communication occurring during a
session between a mail server and a client according to the
following protocol with a UML 2 Sequence Diagram.

In order to connect to the server, the client sends its user-
name (username@test.com) and its password (password123)
to the server. Assume that username and password are cor-
rect and the server replies with OK (error situations do not
have to be considered). Optionally, the user may retrieve
the number of available mails (condition obtainAvailable-
Mails == true). Then the client receives all unread emails.
Finally, the client closes the session.

The following commands are available:

e USER xxx ...sends the user name to the server indi-
cating that a new session will be started

PASS xxx ...sends the client’s password in plain text
e LIST ...returns the number of available mails

RETRNEXT ...returns the next unread mail

e QUIT ...terminates the session

possible solution:

c: Client s : Server
T T
: USER(username@test.com) ;:
I gl
1 1
P — LLS_EB;Q*S_______:
1 1
| PASS(password123) o
T bt}
1 1
| PASS : OK !
| St l
1 1
opt /4 i
[obtairiAvaiIabIeMaiIs == true] :
1 1
L LIST ]
| gl
i LIST b |
1 : number |
[ i bl
| |
T T
L I
loop (*) J :
! RETRNEXT o
r L gl
1 1
1 : 1
] RETRNEXT:n_____ d
| |
T T
1 1

6. MODELING DIAGRAMS

The most obvious way to assess modeling skills is to ask the
students to derive a certain diagram from a given textual
description, code clipping, etc. Even though those exercises
require much more time and skilled staff to be marked, we
will not fully refrain from this type of questions for didactic
purposes: we have to ensure that the students are able to
derive models themselves.

Open modeling tasks have to be designed carefully to keep
the correction effort as low as possible. The question specifi-
cation has to be as precise as possible, allowing just a small
set of different solution approaches—the discussion about
different approaches to one problem space depending on the
goal the modeler follows is done during the discussion of the



lab exercises. Often it is also useful to think about a scheme
for grading the exercise while designing it—for example “-3
points for a missing association”. This helps to find poten-
tial problems occurring while marking the tests later on. We
also always ask two other staff members to solve the tasks
trying to find out if the specification is clear enough.

Exercise 13. Model an UML 2 Class Diagram compli-
ant to the given pseudo-code. If possible, model references
as associations. Include the navigation directions, visibility
symbols, types, role names and multiplicities which result
from the pseudo-code.

abstract class Computer {
private String type;
private Date purchase;
private Location s;

}

class Server extends Computer {
private String name;
private String ip;
public User[] users;

public void setName(String name) {...}

}

class Location {
private String name;
}

class User {
public String name;
public String pw;
public Calendar [] c;
public EPermission permission;

}

class Calendar {
public User[] tn;
}

enumeration EPermission {
read ;
write ;
all;

}

possible solution:

Server User

name: String
ip: String

+ name: String
+ pw: String
+ permission: EPermission

+users

+ setName(String) : void
+tn *
K& /x . «enumeratio...
s +C EPermission
{abstract} Location
Computer ﬁ : Calendar read
- name: String write
type: String all

purchase: Date

6.1 Modeling Diagrams Based on a Text De-

scribing the Problem Space

If the question specification is textual, besides the difficul-
ties about precise wording mentioned before, one also has to
be careful to choose a problem domain which is well known
enough by all the students and which does not require too
much “special” words. Small clippings of diagrams can be
corrected with reasonable effort—provided that the text is
formulated clearly enough to get just a small amount of
possible ways to model the given task. Exercises 10 and
11 show very small modeling tasks which still are sufficient
to test some of the basic concepts of Use Case diagrams
(namely associations and inheritance) and Class Diagrams
(namely association classes and inheritance). Exercise 12
shows an example for a bigger task, resulting in more—but
still reasonable—correction effort.

6.2 Modeling Diagrams Based on Pseudo Code
Giving the students pseudo-code and ask them to derive a

diagram overcomes the problems of language. Furthermore

knowledge of the problem domain is not absolutely neces-

sary (assuming the examinee understands the pseudo-code).

The pseudo-code may only contain basic programming con-

structs, for most students do not have broad programming

skills yet. Exercises 13 and 14 are examples for such tasks.

7. CONCLUSION

Several papers(e.g., [1, 2, 4]) propose ways to structure and
organize courses on modeling, but they touch one didactic
instrument, namely the tests, only very marginally. Unfor-
tunately, many students tend to learn only for passing tests
following a minimal effort strategy. Hence, we try to design
our tests in such a manner that the students have to acquire
sustainable knowledge in order to finish the course. Over
the years we have collected a wide range of exam questions
for assessing object-oriented modeling with special empha-
sis on the Unified Modeling Language and we have gained
much experience in the organization of exams. This allows
us to deal with the huge amount of students in an effective
manner. Besides the assessment of theoretical content, also
practical exercises are given which demand not only a deep
knowledge of the facts but also a profound understanding of
the teaching material for their solution. Our exercises vary
in their degree of freedom from restricted multiple choice
questions to open modeling exercises.

Currently, our tests are still done on paper sheets, hence a
next logical step would be to conduct them electronically.
Although repeatedly discussed, we currently abstain from
this idea, because electronic assessments would introduce
numerous new problems. Besides the technical realization
and need for an adequate infrastructure, we would need
questions which can be corrected automatically what we
consider as the main advantage in electronic testing. Cur-
rently, the actual execution and correction of one test takes
about one half of a working day if we rely on the complete
manpower of our department (student tutors, pre- and post-
doc assistants, and our secretary). If we would carry out the
tests electronically, we would block the hugest laboratory of
the faculty for at least a week and probably would still have
the correction effort for the open modeling questions from
which we will not refrain for didactic purposes.



Overall, we have found a way to effectively assess modeling,

in particular UML. Over the years we collected a huge num- Exercise 14. Extend the given UML 2 Sequence Diagram
ber of test questions some of which we revealed in this paper. to visualize the message interchange when the given pseudo-
We presented a wide spectrum of modeling assessments with code is executed. Also model return messages if necessary.
various degrees of freedom. We introduced these by giving Assume that all variables which are not explicitly declared
examples from our “Introduction to Object-Oriented Mod- in the pseudo-code are already declared and initialized.

eling” course and we shortly reported on our experiences.

class Main {

8. REFERENCES

[1] M. Brandsteidl, M. Seidl, M. Wimmer, C. Huemer, and Worker w = sl.getConnection (user, pw);
G. Kappel. Teaching Models @ BIG: How to Give 1000
Students an Understanding of the UML. In Promoting if (w—null) {
Software Modeling Through Active Education, print (”Error”);
Educators’ Symposium MoDELS 2008, pages 64—68. exit ; // program terminates

Warsaw University of Technology, 2008.
[2] G. Engels, J. Hausmann, M. Lohmann, and S. Sauer.

Teaching UML is Teaching Software Engineering is status = w.sendMail("abc”, "test”);
Teaching Abstraction. In Satellite Events at the
MoDELS 2005 Conference, Educators’ Symposium do {
MoDELS 2005, volume 3844 of Lecture Notes in m = w.getMail ();
Computer Science, pages 306-319. Springer, 2006. print (m);
[3] M. Hitz, G. Kappel, E. Kapsammer, and } while (m != null);
W. Retschitzegger. UML@Work, Objektorientierte s
Modellierung mit UML 2. dpunkt.verlag, Heidelberg, private void print(String m) {...}
2005. }
[4] L. Kuzniarz and M. Staron. Best Practices for Teaching
UML Based Software Development. In Satellite Events class Server {
at the MoDELS 2005 Conference, Educators’ cee
Symposium MoDFELS 2005, volume 3844 of Lecture public Worker getConnection (
Notes in Computer Science, pages 320-332. Springer, String user, String pw) {
2006. Worker w = new Worker ();
[5] C. Rupp, S. Queins, and B. Zengler. UML Glasklar. w.start ();
Praziswissen fiir die UML-Modellierung. Hanser return w;

Fachbuch, 2007. }
}

class Worker extends Thread {
public void run() {...}

public boolean sendMail
(String msg, String receiver) {...}

public String getMail() {...}

}

possible solution:

l |

T
|__getConnection(user, pw) | w:Worker
— e e
I L

I I
! ! start

l< getConnection :w 3 =

T
! 1
t
break /| — " | !
; print("Error") | |
w==nul] | \ 1
T T
! sendMail("abc”, "test”) ! _}
| _ - gl
g,,ﬂ@@:fiﬂg“ﬂ@ﬁf’@%,,,,,,,,,,,,}
loop (1Y) /! getMail ! .
. bl
[mi=nun} ! getMail :m ! |
o S
! print(m) } }
:




