
Austrochip 2009
Tagungsband

7. Oktober 2009, Graz

Inhaltsverzeichnis

1. Vortragssession: Analogdesign und RFID

Multilevel Signaling Optical Receiver for High-Speed Transmission over Large-
Core Step-Index Plastic Optical Fibre
M. Atef1, W. Gaberl1, Member, IEEE, R. Swoboda2, H. Zimmermann1, Senior
Member, IEEE
1 Vienna University of Technology, Institute of Electrodynamics, Microwave and
Circuit Engineering
2 A3PICs Electronics Development GmbH

1

A 65nm CMOS RF Power Detector with Integrated Offset Storage
Wolfgang Aichholzer, Johannes Sturm
Carinthia University of Applied Sciences

5

An 11-bit Successive Approximation Analog to Digital Converter Based on a
Combined Capacitor-Resistor Network
Milos Davidovic, Gerald Zach, Horst Zimmermann
Vienna University of Technology, Institute of Electrodynamics, Microwave and Circuit
Engineering

9

Design und Entwicklung eines Mixed Signal Prototyping Systems für RFID
Applikationen mit Datenraten größer 848 kbit/s
Markus Auer1, Edmund Ehrlich1, Wolfgang Pribyl1, Albert Missoni2, Walter Kargl2
1 Technische Universität Graz, Institut für Elektronik
2 Infineon Technologies AG

15

2. Vortragssession: Digitaldesign

An IP-XACT Library extended with Verification Information for Functionality-
based Component Selection
Christoph Ruggenthaler1, Christoph Trummer1, Christian Steger1, Reinhold Weiß1,
Andreas Schuhai2, Markus Pistauer2, Damian Dalton3,
1Institute for Technical Informatics, Graz University of Technology
2CISC Semiconductor Design+Consulting GmbH
3School of Computer Science and Informatics, University College Dublin

21

Investigating Power-Reduction for a Reconfigurable Sensor Interface
Johann Glaser, Jan Haase, Markus Damm, Christoph Grimm
Vienna University of Technology. Institute of Computer Technology

27

An Efficient FPGA Implementation of an Arbitrary Sampling Rate Converter for
VoIP
Peter Brunmayr1, Hans-Dieter Wohlmuth2, Jan Haase1
1Institute of Computer Technology, Vienna University of Technology
2Frequentis AG

33

Weltweit kleinste, voll integrierte Lösung zur Uhrensynchronisation nach IEEE
1588 auf Schicht 2
R. Höller1, H. Muhr2, N. Kerö2, A. Gröblinger1, Ch. Kutschera1, Ch. Veigl1, Ch. Weiß1,
P. Rössler1
1 Fachhochschule Technikum Wien
2 Oregano Systems GmbH

39

3. Vortragssession: Modellierung/Design/EMV

A Behavioral Modeling Approach for Jitter Analysis in Charge-Pump PLLs
Stefan Erb, Wolfgang Pribyl
Institute of Electronics, Graz University of Technology

45

Comparative study of linear and non-linear integrated control schemes applied
to a Buck converter for mobile applications
R. Priewasser1, M. Agostinelli1, S. Marsili2, D. Straeussnigg2, M. Huemer1
1Klagenfurt University
2Infineon Technologies Austria AG

51

Evaluating the Impact of using Fixed-Point Arithmetic on the Precision and
Implementation of the Fit-to-Sine Algorithm on an FPGA
Andreas Weiss
EADS Defence and Security

57

Immunity Scan – Neuartige Untersuchungsmethode zum Lokalisieren von
störempfindlichen Schaltungsblöcken in ICs
Dieter Maier, Bernhard Weiss, Rainer Minixhofer
austriamicrosystems AG

63

Beiträge für die Postersession

Compact Hardware Implementations of the SHA-3 Candidates ARIRANG,
BLAKE, Grøstl, and Skein
Stefan Tillich, Martin Feldhofer, Wolfgang Issovits, Thomas Kern, Hermann Kureck,
Michael Mühlberghuber, Georg Neubauer, Andreas Reiter,
Armin Köfler, and Mathias Mayrhofer
Graz University of Technology, Institute for Applied Information Processing and
Communications

69

Low-Power High-Speed Decimation Filter in 65 nm CMOS
Oleksandr Melnychenko, Sergii Zaiets, Manfred Ley
Fachhochschule Kärnten, School of Systems Engineering

75

Design Of A Fully Reconfigurable Bandpass Filter For Use In Cochlear
Implants
Paul Faragó1, Peter Söser2, Sorin Hintea1
1 Technical University of Cluj-Napoca
2 Graz University of Technology

81

Stromquelle mit temperaturkompensiertem Referenzwiderstand
Stephan Dobretsberger
austriamicrosystems AG

87

A Flexible On-Chip Test Structure with Single Pin Serial Interface
Matthias Steiner
austriamicrosystems AG

91

Coupling Asynchronous Signals into Asynchronous Logic
Markus Ferringer
Institute of Computer Engineering, Embedded Computing Systems Group, Vienna
University of Technology

97

Auswirkungen kapazitiver Kopplungen in Delta-Sigma-Modulatoren mit
Switched-Capacitor-Feedback
Christoph B. Wurzinger
Technische Universität Graz, Institut für Elektronik

103

Hardware Acceleration of RNA Folding
Manuela Midl, Christian Netzberger
FH-Joanneum Kapfenberg

109

Using SRAMs as Physical Unclonable Functions
Christoph Böhm, Maximilian Hofer
Institute of Electronics, Graz University of Technology

117

A SystemC Design Pattern for the Cosimulation of Transaction-Level and
Refined Cycle-Callable Models
Rainer Findenig1, Wolfgang Ecker2
1 FH Hagenberg
2 Infineon Technologies AG

123

A Low-Voltage Charge Sampling Mixer for Direct Conversion at 1GHz in 65nm
CMOS Technology
Kurt Schweiger, Horst Zimmermann
Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University
of Technology

129

An Efficient FPGA Implementation of an
Arbitrary Sampling Rate Converter for VoIP

Peter Brunmayr1, Hans-Dieter Wohlmuth2, Jan Haase1

1Institute of Computer Technology, Vienna University of Technology
2Frequentis AG, A-1100 Vienna, Austria

{brunmayr,haase}@ict.tuwien.ac.at,
hans-dieter.wohlmuth@frequentis.com

Abstract

In this paper, the implementation of a sample rate con-
verter for arbitrary sampling rates is presented. The focus
is especially on VoIP systems which are used for safety
critical applications. In this systems, the sampling rates
are nominally equal, but different clock sources cause
slight differences. By using SystemC and high level syn-
thesis it was possible to design a resampler with only one
multiplier. The efficient design is small enough to fit sev-
eral times on today’s low-cost FPGAs. Simulation results
show that audio signals are glitch-free converted between
clock domains. The signal-to-noise ratio of the system is
around 80 dB and thus in the area of the quantization noise
of a 13 bit system.

1 Introduction

In voice over IP (VoIP) applications, the analog audio
signal is converted to a digital signal and transmitted over
an IP-based network. The receiver converts the received
audio samples back to an analog signal. The sampling
rate of the analog-to-digital converter (ADC) and of the
digital-to-analog converter (DAC) first has to be negoti-
ated between the sender and the receiver. Nevertheless,
since the sender and the receiver are different systems at
different locations, the desired sampling rate is generated
from different clock sources. This leads to slightly differ-
ent sampling rates.

The transmission of the samples over an IP-based net-
work introduces a network jitter. To remove this jitter a
buffer is necessary at the receiver. If the sampling rate of
the receiver is a little bit slower than the sender’s rate a
buffer overflow will occur. If the sender’s clock is slower,
then a buffer underrun will occur at the receiver. In the
first case, it is necessary to flush the whole buffer, which
means that a part of the received audio signal is discarded.
If an underrun occurs, silence is inserted. In both cases a
disturbance will occur, which is not acceptable for safety
critical communication systems used for air traffic man-
agement or in public transport systems.

PC-based VoIP systems reduce this problem by enlarg-
ing the buffer. This reduces the occurrence of the buffer
overflows and underruns, but at the same time it enlarges

the latency of the whole system. This is also not accept-
able for safety critical systems. Thus, the buffer overflow
and underrun problem is solved by recovering the sender’s
clock at the receiver site. Then, the jitter buffer can be
read out with the sender’s clock. In this way, a buffer
overflow or underrun is avoided and the buffer can be kept
very small. Anyway, it is necessary to convert the samples
from the sender’s clock domain to the receiver’s domain.
If no conversion is performed either at least one sample is
taken twice or at least one sample is lost. With a typical
frequency stability of 100 ppm [1] and a sampling rate of
e.g. 8 kHz, every 1.25 seconds a short time broadband
noise is introduced in the output signal. Of course, it is
possible to use high accuracy oscillators with a better fre-
quency stability, but this only reduces the problem. It does
not solve it.

The operation of converting the signal between the clock
domains is basically a resampling process. Since the sam-
pling rates are almost equal and since the conversion ratio
may change over time or from connection to connection,
common resamplers can not be used. It is necessary to
use special resamplers for arbitrary sampling rates, which
are able to handle changes of the conversion ratio during
runtime.

In this paper an efficient FPGA implementation of a re-
sampling system is presented. The sampling rate con-
verter has been optimized for a specific VoIP system. The
boundary conditions are very typical for embedded VoIP
systems and the resampler has been implemented using
SystemC [2] and high level synthesis. Therefore, the de-
sign can easily be adapted for other systems. Also an
integration in an ASIC should be possible with minor
changes. One important design criterion was the overall
delay of the filter. To fulfill the requirements for safety
critical applications, the delay has to be as short as possi-
ble to ensure real time communication. For large systems
with many channels, several resamplers have to be instan-
tiated. Thus, a minimum usage of hardware resources was
mandatory. Last but not least, the quality of the resampled
audio is important. The additional noise introduced by the
resampler has to be inaudible for humans.

The rest of this paper is structured as follows: In Sec-
tion 2 different resampling methods are presented. The
core component of the implemented method is an adap-
tive filter. The design of this filter is shown in Section 3.
In Section 4 the implementation itself is explained in de-

tail. The used design flow is shown in Section 5 Finally,
synthesis and simulation results are presented in Section 6
and the work is concluded in Section 7.

2 Conversion between arbitrary sampling
frequencies

Resampling a signal to a new sampling frequency de-
notes the process of calculating new sample values in be-
tween the original samples. If the relation between the
sampling rates is a rational factor, resampling is usually
performed by interpolating the signal by an integer factor,
filtering the signal to avoid aliasing and finally decimat-
ing the signal by another integer factor [7]. To use this
method, the ratio has to be known in advance.

In this work, the resampler has to convert between two
almost equal sampling frequencies and the ratio itself may
be different for every VoIP call. Therefore, it is neces-
sary that the system adapts itself to every new ratio. There
are several different methods presented in [3] to convert
a signal between arbitrary sampling frequencies. A sim-
ple method has first been presented in [6]. Lagadec et
al. proposed to interpolate the signal to a very high fre-
quency. The output signal is then generated by taking the
closest sample to the correct sampling instant. The higher
the sampling frequency Fs, to which the signal is interpo-
lated, the smaller is the error in the output signal. Ram-
stad has shown in [3] that the error in the output signal is
smaller than the quantization error if the inequation

Fs ≥ π · 2b+1FM (1)

is fulfilled, FM denoting the highest frequency of the sig-
nal and b denoting the bit width. Many VoIP systems use
pulse code modulation (PCM) like G.711 [9] with a sam-
pling rate of 8 kHz. These systems encode 13 bit samples
to 8 bit with a logarithmic characteristic. It is assumed in
this paper that the signal is band limited with a maximum
frequency of 4 kHz. According to Eqn. 1 this band limita-
tion leads to an interpolation frequency of about 200 MHz
for a 13 bit system.

If linear interpolation between the neighboring samples
is included, as presented in [4], the inequation changes to

Fs ≥ π · 2(b+1)/2FM (2)

according to [3]. This reduces the needed interpolation
frequency to about 1.6 MHz, but the computation effort
for the interpolation filter would still be tremendous.

A different approach is presented by Smith in [5]. Sup-
pose we have a digital signal x(nTs) with a sampling fre-
quency Fs = 1/Ts, n ranges over the integers, which is
assumed to be bandlimited to the half of the sampling fre-
quency. Due to Shannon’s sampling theorem it is possible
to reconstruct the original signal using

x(t) =
∞∑

n=−∞
x(nTs)hs(t− nTs), (3)

where

hs(t) = sinc(Fst) =
sin(πFst)
πFst

. (4)

Eq. 3 basically denotes a convolution of the digital signal
with a continuous Sinc function. The Fourier transform of
the Sinc function is a rectangle. Thus, the convolution of
x(t) and hs(t) corresponds with a filtering process with
an ideal low pass filter Hs(f) in the frequency domain.
Thereby, the image spectra of the periodic spectrumX(f)
are removed and the original spectrum of the continuous
signal is reconstructed, as shown in Fig. 1.

Fs 2Fs

Hs(f)

X(f)

f

...

Figure 1. Ideal reconstruction of the continuous signal
from a band limited digital signal.

If this signal has to be resampled to the sampling fre-
quency F ′s = 1/T ′s, then Eq. 3 only has to be evaluated at
the sampling instants of the new sampling frequency

x(mT ′s) =
∞∑

n=−∞
x(nTs)hs(mT ′s − nTs). (5)

3 Filter Design

Using Eq. 5 the signal can be resampled ideally. Obvi-
ously, it is not realizable, since it implies an infinite sum.
It is necessary to design a digital filter with a finite impulse
response (FIR), which is used as hs(t). Several methods
exist to design digital FIR filters [8]. For our purpose it is
necessary to highly oversample the filter to get an almost
continuous impulse response. According to [5], the win-
dow method using the Kaiser window is a very simple and
robust method ideal for high sampling frequencies [15].

To find the ideal sampling frequency for the filter, dif-
ferent design constraints have to be kept in mind. On the
one hand, the frequency has to be high enough, so that
the error due to the discrete impulse response is smaller
or equal to the quantization error. On the other hand, if
a higher sampling frequency is used, a larger memory is
needed to save all the coefficients. The accuracy of the
filter coefficients can be increased by a linear interpola-
tion during runtime. This significantly reduces the needed
sampling frequency. In principle, the sampling frequency
of the impulse response can be interpreted as the sampling
frequency, to which the signal is first interpolated before it
is sampled with the new sampling rate. The difference is,
that output values are only calculated if they are needed.
Therefore, Eq. 2 can be used to estimate the needed fre-
quency. To simplify the implementation, the interpolation
frequency also should be an integer multiple of the sam-
pling frequency of the audio data.

Our VoIP target system operates with a 50 MHz system
clock. The data is PCM encoded using the a-law codec.
Thus, the samples have an accuracy comparable to 13 bit
linear data. The sampling frequency is 8 kHz. Using Eq. 2
leads to a minimum sampling frequency of 1.6 MHz for
the filter. This calculation is overly pessimistic. For sim-
plification the sampling frequency is set to 1 MHz, which
is an integer multiple of the sampling frequency of the au-
dio data.

Figure 2. Magnitude response of the designed filter
function.

Another design decision is the length of the impulse re-
sponse. With a longer impulse response, a steeper filter
with a larger stop band attenuation can be designed. How-
ever, a longer impulse response increases the overall la-
tency of the filter. Since this work focuses on safety criti-
cal communication systems, the latency should be as small
as possible.

The implemented impulse response is a filter with the
order 2002. With a sampling frequency of 1 MHz the fil-
ter has a latency of approximately 1 millisecond. The fil-
ter has been designed with the window method using the
Kaiser window. Due to the ITU-T recommendation G.712
[10] the transition band can start at 3.4 kHz. We assume
that aliasing filters already attenuate the frequency band
between 3.4 and 4 kHz. Thus, we can enlarge the transi-
tion band to 4.6 kHz. The cut-off frequency is 3800 kHz
and the beta value of the Kaiser method is 3. This value
influences the style of the Kaiser window. A larger beta
value enlarges the transition band of the filter, but it also
reduces the ripple in the stop band. The magnitude re-
sponse of the filter is shown in Fig. 2. Pass band ripples
are smaller than 1 dB. At 4.6 kHz the attenuation is around
40 dB.

4 Implementation

The basic structure of the implementation of the resam-
pling engine can be seen in Fig. 3. The entity has four in-
puts, a data input, a data output for the resampled data and
two clock inputs. The data at the input is decoded. Thus,
the data ports have a bit width of 13 bits. As data format a
two’s complement signed fixed point data format with one
bit before the comma and 12 fractional bits is used. This
kind of fixed point data format is very common in sig-

nal processing applications. Since numbers in the range
of [−1; 1[can be expressed, multiplications only lead to
an overflow if both factors are -1. The input clock is the
recovered clock from the sender, with which the samples
are read out of the jitter buffer and the output clock is the
clock of the DAC at the receiver. There are two other in-
puts, which are not shown in this high level representation,
the system clock and the reset. The whole design is syn-
chronous to the system clock and all other clock signals
are treated as data signals.

With every rising edge of the input clock one new sample
is written to the dual port RAM. The input clock is also
routed to the time measurement unit, which measures the
time since the last rising edge of the input clock. This
information together with the output clock can be used by
the adaptive filter to calculate the current phase difference
of the clocks. The phase difference is then used to load
the correct coefficients out of the coefficient ROM and to
calculate a new output value out of several old input values
from the dual port RAM.

CoefficientROM

Adaptive Filter

Time Measurement

Input

Clock
Output

Clock

Data

Input
Data

Output

Dual Port

RAM

Figure 3. Basic structure of the resampling engine.

The coefficient ROM holds the impulse response de-
signed in Section 3. It is basically a Sinc function which
has been modified by a Kaiser window. The resulting
function is still symmetric. Thus, it is enough to save only
one half of the impulse response. This results in only 1002
coefficients, which have to be saved. With a bit width of
12 bits this leads to 1.5 kbytes of needed memory.

The dual port RAM, which holds the input values is or-
ganized as a ring buffer. After 32 input values, the oldest
input value is overwritten by a new value. Every time a
new value is written, a pointer register is updated. It points
to the memory cell which is written next.

This pointer register is also needed by the adaptive fil-
ter. Each time a rising edge occurs at the output clock,
the adaptive filter saves the current value of the pointer
register and the current value of the time register t of the
time measurement unit. This time value denotes the phase
difference between the input and the output clock.

In Fig. 4 the input values x[n] are shown on a time axis.
The position n of the middle value x[n] can be derived
from the pointer register. For each output value 16 input
values are needed. In other words, the filter has 16 tabs.
With an order of 2000 and a sampling rate of 1 MHz a
length of the impulse response of about 2 milliseconds can
be derived. The sampling frequency of the data is 8 kHz.
Hence, the distance between the input samples is L =

x[n+1]
x[n+2]

x[n+3]

x[n-1]

x[n-2]

x[n-3]

x[n+4]

Time

Input Signal

t

hs(0)

hs(-t)

hs(-t-L)

L

L-t

Filter Coefficients

x[n]

Figure 4. Input values and corresponding coefficients.

125 µs, which explains the 16 tabs. The Sinc function is
shifted according to the phase difference t. In this way,
the correct coefficient for the central input value x[n] can
be found at hs(−t) = hs(t). The neighboring coefficients
can be found by adding the data’s period hs(t+ L).

y =
8∑

i=0

x[n− i]
[
hs[t1 + iL] + t2 · hs(t1 + iL)

]
(6)

y = y+
8∑

i=0

x[n+1+i]
[
hs[t1 + iL] + t2 · hs(t1 + iL)

]
.

(7)
For the calculation of the next output value y two sums
have to be implemented, Eq. 6 and Eq. 7. First, one half
of the Sinc function is applied to the older input values, all
values left of the central input value x[n], see Fig. 4. Then,
the newer input values are multiplied with its coefficients
and the results are accumulated.

b6 ...b5 b1 b0 b-1 b-2 ... b-14 b-15

Coefficient offset

t1

Interpolation factor

t2

Figure 5. Binary format of time register.

To load the correct coefficient out of the coefficient ta-
ble hs[n] in the ROM, the time register t is needed. Its
format is shown in Fig. 5. It consists of an integer part
t1 and of a fractional part t2. The unit of the time value
is microseconds. Therefore, the integer part denotes the
offset for loading the coefficient and the fractional part is
then used for the linear interpolation. To interpolate be-
tween two neighboring coefficients, the used coefficient
hs[t1 + iL] and the next coefficient hs[t1 + iL + 1] are

loaded and the difference

hs(t1 + iL) = hs[t1 + iL+ 1]− hs[t1 + iL] (8)

is calculated. This difference is then multiplied with the
fractional part of the time register t2. For the second sum,
the time register has to be modified by

t = L− t (9)

so that hs(t) equates the coefficient of input value x[n+1].
As already mentioned, the time register consists of a

fractional and an integer part and it represents the time
since the last rising edge of the input clock (in microsec-
onds). This data format, shown in Fig. 5, simplifies the
separation into coefficient offset and fractional factor. The
time is measured in the time measurement unit, see Fig. 3,
with a simple counter. For the system clock of 50 MHz
0.02 has to be added for each clock cycle. This is not rep-
resentable in a binary data format with a finite number of
bits. A timing error is introduced by the finite binary rep-
resentation of 0.02. The bit width has to be large enough,
so that the noise introduced by the timing error is below
the quantization noise.

The accuracy of the time value influences the calculation
of the linear interpolation of the coefficients. The linear
interpolation is performed by multiplying the difference of
two neighboring coefficients with the fractional part of the
time. The difference of two coefficients is always smaller
than 2−6 and the data format uses 12 fractional bits. Con-
sequently, an accuracy of the fractional part t2 of the time
until the bit 2−6 is enough to not affect the quantized re-
sult of the linear interpolation. Thus, the time error should
be smaller than 2−6 µs = 0.0156 µs. With 15 fractional
bits the number 0.0200042724609375 can be expressed.
The maximum time error occurs if the phase difference is
almost one sampling period. One sampling period con-
sists of 125 µs / 0.02 µs = 65,250 system clock cycles.
Hence, the worst case error is around 0.0267 µs.

5 Design flow

The first step in the design flow is a high level im-
plementation of the algorithm. Therefore, the resampler
has been implemented as a so-called SystemC functional
model [11]. The functional model consists of a pure soft-
ware implementation of the algorithm encapsulated in a
SystemC module, which already has the same interfaces,
called ports, as the later implementation. In this way it
was possible to evaluate the algorithm already with the
sampling rates and clock frequencies of the target system.
To analyze the signal quality in Matlab [12], a library has
been implemented to read and write audio wave files from
the SystemC simulation.

For the translation from a high level SystemC descrip-
tion to register transfer level (RTL) Verilog code, the high
level synthesis (HLS) tool Cynthesizer from Forte Design
Systems [13] has been used. To use HLS it is necessary
to refine the code step-by-step. After each step, e.g. con-

version from floating point to fixed point, the implemen-
tation has been simulated and the quality of the output
signal has been measured again. This simulation frame-
work allows the immediate evaluation of design decisions.
In other words, it is possible to try different implementa-
tions within the design space. One possible implementa-
tion uses pre-computed differences of neighboring coeffi-
cients. These differences can then be saved in a table to
reduce the calculation effort during runtime. Tests have
shown that the reduction of the hardware is too low com-
pared to the additional table which is needed.

Listing 1. High level implementation of Eq. 6

for (int i=0; i<(NrOfTabs/2); i++)
{

sc_fixed<13,1> Interpolation =
FracTime*(cNum[IntTime]-cNum[IntTime+1]);
Output += Buffer[Position]*
(cNum[IntTime] + Interpolation);

IntTime += sc_uint<11>(125);
Position++;

}

The refined SystemC code can then be synthesized to
RTL Verilog code. In this step there are additional pos-
sibilities to test different design variants. The abstraction
level of the code is still very high. The core algorithm, e.g.
the first sum, see Listing 1, is completely untimed and be-
sides the fixed point data types the code is pure C/C++.
Such a high level code only describes the behavior, not
the structure of the hardware. Therefore, there are many
different hardware structures which implement the same
behavior. The HLS tool tries to find the optimal design un-
der consideration of user defined design constraints. Us-
ing these design constraints it is possible to generate im-
plementations with e.g. different numbers of multipliers
or with different latencies.

The generated Verilog code has then been simulated
again with the original test framework. After that the code
has then been implemented using the logic synthesis tool
XST from Xilinx.

The presented design flow has several advantages. As
already mentioned, design space exploration is simplified.
It is easier to test different implementations on a high ab-
straction level than on register transfer level and also the
synthesis tool supports design space exploration by just
changing design constraints. Additionally, the develop-
ment time has been reduced significantly. The resampling
engine uses a few hardware components sequentially. To
design such an optimized data path and the associated con-
troller with Verilog or VHDL needs a lot more develop-
ment effort and experienced hardware designers.

Nevertheless, there are also disadvantages. The HLS
tools are still not fully developed. The hardware estima-
tions were very often not accurate enough to use them to
evaluate different design decisions. Thus, HLS and logic
synthesis were necessary to get accurate estimations of
the number of used hardware resources. This, indeed, in-
creased the time to evaluate different design solutions.

Another problem is that better HLS tools mainly focus
on ASIC design. The poor support for FPGAs is evident
if special components like block RAMs or embedded hard
macros are to be used. They can not be instantiated with
standardized SystemC code. Proprietary code structures
are necessary to synthesis designs with such components.

6 Results

The resample engine has been successfully tested with
the VoIP target system. The design has been synthesized
for a Spartan 3A 3s400aft256 device with a clock fre-
quency of 50 MHz. The required resources are shown in
Tab. 1

Table 1. Hardware resources of resampler engine.

Resources # Usage in [%]
Slices 232 6

Slice Flip Flops 261 3
4 input LUTs 435 6

BRAMs 2 10
Multipliers 1 5

The resampling engine only needs six percent of the
logic of the FPGA. The design computes the filter function
sequentially and therefore only one multiplier is required.
All coefficients fit into one block RAM, which has a size
of 18 kbits. The other block RAM is used as dual port
RAM for the input values.

The whole system is small enough to be instantiated sev-
eral times on one FPGA, which would be necessary to re-
sample different audio channels. If the channels have to
be converted between the same clock domains, additional
optimizations can be done. The phase difference between
the two clock domains has to be calculated only once and
can be used for all channels. Since the sampling period
is very large, it is possible to compute many channels se-
quentially. In this case one block RAM is still enough to
save the input values of all channels. For channels oper-
ating in the same direction it is even possible to reuse the
calculated coefficient.

0 5 10 15
‐1

0

1
Input signal

0 5 10 15
‐1

0

1
Output signal without resampler

0 5 10 15
‐1

0

1
Output signal with resampler

0 5 10 15
‐1

0

1
Input signal

0 5 10 15
‐1

0

1
Output signal without resampler

0 5 10 15
‐1

0

1
Output signal with resampler

0 5 10 15
‐1

0

1
Input signal

0 5 10 15
‐1

0

1
Output signal without resampler

0 5 10 15
‐1

0

1
Output signal with resampler

Figure 6. Input signal vs. output signal without resam-
pler (showing errors) and with resampler.

The RTL code generated by the HLS tool has been sim-
ulated with the original SystemC test bench. Fig. 6 shows
a section of two output signals. The first signal has been
generated by converting a sine with 1020 Hz from one
clock domain to another without any resampler. The sec-
ond part of the Figure shows the output signal, when the
resampling engine is used. In the first output signal one
sample is taken twice. If the resampler is used, this glitch
is removed completely.

Without resampler

Ideal sine signal

With resampler

Figure 7. Spectrum of output signal without and with
resampler vs. ideal sine signal.

Fig. 7 shows the fast Fourier transform (FFT) of a 128 ms
sequence of three audio signals. The lower curve with
the least distortions is the spectrum of an ideal sine sig-
nal with double precision generated in Matlab. It also in-
cludes portions of other frequencies. The reason is that
a finite sequence has to be cut out of the signal to cal-
culate the FFT and the length of this sequence does not
correspond with a period of the signal. In the second au-
dio signal one sample is taken twice. The spectrum of
this signal, see the upper curve in Fig. 7, has a very high
noise floor at around−55 dB. With the resampling engine,
the glitch is removed completely, but the permanent noise
floor is increased to around 80 dB. The spectrum of the
resampled signal is the middle curve in Fig. 7. Compared
to the glitch, the signal-to-noise ratio (SNR) is improved
by about 25 dB.

7 Conclusion

This work shows the design and implementation of a dig-
ital sampling rate converter for arbitrary sampling rates.
By using design space exploration it was possible to de-
sign an optimized data path with the associated controller.
The design exploits the large periods of audio applications
by performing many calculations sequentially. The im-
plementation can be used for multi channel applications,
since it fits several times on one low-cost FPGA. The use
of SystemC and high level synthesis has simplified the de-
sign space exploration and has reduced the overall devel-
opment time. Nevertheless, there are still disadvantages of
this design technique, which have to be solved to increase
its acceptance for digital hardware design. The results
show that the short time glitch is removed completely. The

permanent noise of 80 dB, which is introduced, is around
the quantization noise of a 13 bit system.

Possible next steps could be to optimize the design for
several channels. As already mentioned, many compo-
nents can be reused and the hardware effort can be re-
duced dramatically. Another goal could be to improve
the reusability of the design, so that it can more easily
be adapted for other boundary conditions.

References

[1] Abracon Corporation, "Datasheet: Crystal Clock Oscilla-
tors ACOL and ACHL," http://www.abracon.com/
Oscillators/acol-achl.pdf

[2] Open SystemC Initiative, "SystemCTM," http://www.
systemc.org

[3] T.A. Ramstad, "Digital Methods for Conversion Between
Arbitrary Sampling Frequencies," IEEE Trans. on Acous-
tics, Speech and Signal Processing, Vol. 32, pp. 577 - 591,
Jun 1984

[4] R. Lagadec and H.O. Kunz, "A universal, digital sampling
frequency converter for digital audio," IEEE Int. Confer-
ence on Acoustics, Speech and Signal Processing, Vol. 6,
pp. 595 - 598, Apr 1981

[5] J.O. Smith, "Digital Audio Resampling Home Page," Jan
2002 http://www-ccrma.stanford.edu/~jos/
resample/

[6] R. Lagadec, D. Pelloni, and D. Weiss, "A 2-Channel, 16-bit
digital sampling frequency converter for professional digi-
tal audio," IEEE Int. Conference on Acoustics, Speech and
Signal Processing, Vol. 7, pp. 93 - 96, May 1982

[7] R.E. Crochiere and L.R. Rabiner, "Multirate Digital Signal
Processing," Prentice Hall, 1983

[8] A.V. Oppenheim, R.W. Schafer, and J.R. Buck, "Discrete-
Time Signal Processing," Prentice Hall, 1999

[9] International Telecommunication Union, "G.711: Pulse
code modulation (PCM) of voice frequencies," http:
//www.itu.int/rec/T-REC-G.711/e;

[10] International Telecommunication Union, "G.712: Trans-
mission performance characteristic of pulse code mod-
ulation channels,"; http://www.itu.int/rec/
T-REC-G.712-200111-I/en;

[11] P. Brunmayr, J. Haase, and F. Schupfer, "Late Hardware/-
Software Partitioning by using SystemC Functional Mod-
els," Proc. of the 3rd Asia Int. Converence on Modelling &
Simulation (AMS 2009), pp. 194 - 199

[12] The Mathworks, Inc, "Matlab," http://www.
mathworks.com

[13] Forte Design Systems, "Cynthesizer," http://www.
forteds.com

[14] Xilinx, Inc, http://www.xilinx.com

[15] J.F. Kaiser and R.W. Schafer, "On the Use of the I0-Sinh
Window for Spectrum Analysis" IEEE Trans. Acoustics,
Speech, and Signal Processing, Vol. 28, 1980, pp. 105 - 107

	final-proceeding-cover
	final-proceeding-content
	AustroChip09.pdf

