Insight into the performance of GGA functionals for solid-state calculations

Philipp Haas, Fabien Tran, Peter Blaha, Karlheinz Schwarz, and Robert Laskowski
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria

Received 24 August 2009; revised manuscript received 12 October 2009; published 12 November 2009

Many exchange-correlation functionals of the generalized gradient approximation (GGA) are available in the literature. More particularly, during the last few years several research groups have proposed GGA functionals for solids, which very often perform better (especially for the lattice constant) than the standard GGA functional of Perdew, Burke, and Ernzerhof (PBE) [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)]. The improvement over PBE is not systematic, but trends among the different classes of solids can be observed [P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009)]. A better understanding of the trends obtained with the existing functionals can obviously be very helpful for the construction of more accurate functionals, and in the aim of this we studied the distribution of the Wigner-Seitz radius \(r_s \) (related to the electron density \(\rho \)) and the reduced density gradient \(s \) in a few selected solids and identified the relevant ranges of \(r_s \) (\(r_s < 4 \)) and \(s \) (\(s < 2 \)) in solids. We focus on the variation of the exchange-correlation energy with respect to the unit-cell volume (\(dE_{xc}/dV \)), which determines the equilibrium lattice constant and identify the “important regions” in the unit cell, where the differences of \(dE_{xc}/dV \) between two functionals are most pronounced. In metallic systems, these important regions coincide with the spatial separation of semicore and valence electrons, while for semiconductors (open structures) and insulators (inhomogeneous systems) the tails of the valence electrons become equally important or even dominate.

I. INTRODUCTION

The Kohn-Sham version of density-functional theory\(^1,2\) is the most common method for the calculation of the electronic properties of molecules and solids. Its success relies on the fact that the system of interacting electrons is mapped to a system of fictitious noninteracting electrons with the same electron density, i.e., the equations to solve are one-electron Schrödinger equations, and therefore very large systems can be calculated with a relatively low cost/accuracy ratio. Within the Kohn-Sham method,\(^2\) the total energy of a system of electrons is given by (all equations are given in atomic units)

\[
E_{\text{tot}} = T_s + \int \nu_{\text{ext}}(\mathbf{r})\rho(\mathbf{r})d^3r + \frac{1}{2} \int \frac{\rho(\mathbf{r})\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|}d^3rd^3r' + V_{\text{nm}} + E_{xc},
\]

where \(T_s \) is the kinetic energy of a system of noninteracting electrons, the three next terms represent the electron-nucleus, electron-electron, nucleus-nucleus electrostatic energies, and \(E_{xc} \) is the exchange-correlation energy which can be decomposed into its exchange and correlation parts (\(E_{xc} = E_x + E_c \)).

For calculations which are done using an accurate solution of the Kohn-Sham equations (e.g., all-electron treatment, no approximation for the potential, and large flexible basis set), the accuracy of the results depends solely on the quality of the approximation used for \(E_{xc} \). The exact mathematical form of the exchange energy \(E_x \) is known (it is the same as in Hartree-Fock theory), but it is a functional which depends explicitly on the orbitals \(\phi_i \) and leads to calculations which are relatively expensive, especially for solids. For the correlation \(E_c \), no exact form exists which can be used for practical calculations, and calculations using an accurate \textit{ab initio} correlation functional (e.g., derived from perturbation theory) are very rare and expensive (see, e.g., Refs. 3 and 4). Nowadays, the standard functionals for calculations on molecular systems are the hybrid functionals.\(^5\) These functionals, which consist of a mixture of Hartree-Fock and semielectronic exchange (and are intrinsically empirical\(^6\)), are very good for the structural and thermochemical properties of molecules. Nevertheless, new types of functionals yielding promising results are continued to be proposed (see, e.g., Refs. 6–10). For solids, the hybrid functionals do not constitute the standard choice, and only recently papers reporting extensive tests of hybrid functionals on solids have appeared (see, e.g., Refs. 11–13). The hybrid functionals often perform well, in particular (due to the potential which is orbital dependent) for the calculation of band gaps\(^12,13\) for which the use of the local-density approximation (LDA) (Ref. 2) or generalized gradient approximation (GGA) is not appropriate due to the local nature of these approximations.\(^14\) However, we mention two drawbacks of hybrid functionals for solids: their inadequacy for metallic systems\(^13,15\) and the high cost, which is required for the evaluation of the Hartree-Fock energy and potential for solids. Thus, the LDA and GGA functionals remain the most widely used functionals in the solid-state community, where real materials science problems can require unit cells containing several hundreds of atoms.

The first GGA functional that has been used extensively for solids is PW91.\(^16\) It has been replaced by PBE,\(^17\) which until now has been the standard functional for calculations of solids. PBE belongs to the class of parameter-free functionals, i.e., it does not contain any parameter that was determined in order to reproduce experimental or accurate \textit{ab initio} data. However, very recently several GGA functionals were proposed by different research groups, and some of them were especially designed to work well for the geometry of solids.\(^18–24\) In Refs. 25–29 it has been shown that these functionals lead to very small signed mean error, indicating
that the typical underestimation (overestimation) of LDA (PBE) functionals has been significantly reduced. However, the improvement is not systematic, but trends among the different classes of compounds have been observed.25,28 We also mention the functionals of the meta-GGA approximation,30–32 which are more flexible due to the use of the kinetic-energy density. In particular, the recently proposed functional revTPSS of Perdew \textit{et al.}32 was shown to give excellent results for molecules and solids.

In the present work we have studied the distribution of the electron density and the reduced density gradient in several solids and determined which region of space is energetically important for the lattice constant. The enhancement factors (see below for the definition) of the considered GGA functionals will be studied in detail. We note that previous analyses of GGA functionals can be found in Refs. 29 and 33–40, which will be briefly summarized in the last section of this work.

The paper is organized as follows. In Sec. II, the studied functionals are described. In Sec. III, a detailed analysis of the electron-density distribution and of the performance of the functionals for a few selected solids is given. In Sec. IV, additional discussions and the summary of our work are given.

II. FUNCTIONALS

In this section, a short summary of the ideas behind the construction of the functionals and their performances is given.

A. LDA

The LDA functional has the following form:

\[E_{xc}^{\text{LDA}}[\rho] = \int e_{xc}^{\text{LDA}}(\rho(r))d^3r, \]

where the exchange-correlation energy per volume unit, e_{xc}^{LDA}, is a function of the electron density ρ and is usually chosen to be the one of the uniform electron gas. The exchange part is given by $e_{xc}^{\text{LDA}} = -(3/4)(3/\pi)^{1/3}\rho^{4/3}$.41 For the correlation part we chose the functional PW92,42 which is one of the most accurate fits of quantum Monte Carlo data of the uniform electron gas.43 This functional yields relatively good results for the geometry of solids and is still among the best for some classes of solids, e.g., the $5d$-transition metals (see, e.g., Refs. 25, 27, and 28), but it fails badly for the atomization energies of molecules and solids.

B. GGA

For a better description of inhomogeneous systems, in particular atoms and molecules, the use of the gradient of the electron density revealed to be very helpful. This has led to the development of functionals of the so-called GGA family,
the enhancement factor F_{xc} of the functionals considered in this work as a function of s for several values of r_s.

1. PBE

The PBE functional is nowadays the most commonly used functional for solid-state calculations. It was designed to satisfy several conditions that are obeyed by the exact functional and it contains no empirical parameters.\cite{PBE} In most cases, PBE gives similar results as PW91 (Ref. 16) (its predecessor), but it has a simpler analytical form. Some of the conditions satisfied by PBE are the correct uniform electron gas limit (i.e., LDA is recovered when $s=0$), the Lieb-Oxford bound ($E_s \geq E_{uc} \geq -1.679 f \rho^{3/2} d^3 r$),\cite{Lieb-Oxford} and the LDA linear response. The enhancement factor for exchange is given by

$$F^{\text{PBE}}_x(s) = 1 + \kappa - \frac{\kappa}{1 + \frac{\mu}{s^2}}, \quad (4)$$

where $\kappa=0.804$ and $\mu=0.21951$. Note that μ is approximately two times larger than the value $\mu_{\text{G}}=10/81$ derived from the second-order gradient expansion (GE) of the exchange energy at the limit of a slowly varying electron density.\cite{PBE} At this limit, the behavior of the correlation functional is determined by the parameter β, which has the value $\beta=\beta_{\text{G}}=0.0667$ (the second-order coefficient of the gradient expansion of the correlation energy). Since μ and β are related by $\mu=\beta r^2/3$, PBE satisfies the LDA linear response.\cite{PBE} For values of r_s and s, which are relevant for solids around the equilibrium geometry ($r_s, s \leq 3$), F^{PBE}_x is the largest enhancement factor among the considered GGAs (see Fig. 1).

A good feature of the PBE functional is that it performs equally well for finite and infinite systems. Concerning the lattice constant of solids, there are GGA functionals (see below) which, on average, perform better than PBE. Nevertheless, there are classes of solids for which PBE remains the best (e.g., solids containing 3d-transition elements).\cite{GGA, GGA2} In the meantime, many other GGA functionals have been proposed, which modified the PBE functional form either by simply changing the values of the parameters or by modifying the mathematical form of Eq. (4).\cite{GGA, GGA2} Note that already in 1986, Becke proposed an exchange enhancement factor given by Eq. (4), but with $\kappa=0.9672$ and $\mu=0.2351$.\cite{Becke86}

2. WC

Wu and Cohen (WC) (Ref. 19) proposed a GGA exchange functional (used in combination with PBE correlation functional) that was shown to improve over LDA, PBE, and the meta-GGA TPSS (Ref. 31) for the equilibrium volume and bulk modulus of solids and to yield jellium surface exchange energies which are as accurate as TPSS values. The good performance of the WC functional for the lattice constant of solids was later confirmed using much larger sets of solids but it was also shown that it slightly worsens the atomization energies of molecules with respect to PBE.\cite{WuCohen}

The WC exchange enhancement factor is given by

$$F^{\text{WC}}_x(s) = 1 + \kappa - \frac{\kappa}{1 + \frac{\mu}{s^2}}, \quad (5)$$

where $\kappa=0.804$ (same as PBE) and

$$\chi(s) = \frac{10}{81} s^2 + \left(\mu - \frac{10}{81} \right) s^2 e^{-s^2} + \ln(1 + cs^4), \quad (6)$$

where $\mu=0.21951$ (same as PBE) and $c=0.0079325$. For all values of s, $F^{\text{WC}}_x \leq F^{\text{PBE}}_x$ (see Fig. 1), but by construction F^{PBE}_x and F^{WC}_x have the same behavior for $s \to 0$ and $s \to \infty$. Note that Wu and Cohen wrongly claimed (see the comment on Ref. 19 and the reply) that $\chi(s)$ recovers the fourth-order parameters of the fourth-order gradient expansion of the exact exchange functional in the limit of a slowly varying density.\cite{WuCohen} Their error is due to an misinterpretation of Eq. (7) in Ref. 31.

3. PBEsol

This functional has the same analytical form as the PBE functional, but the value of two parameters were changed in order to satisfy other conditions.\cite{PBEsol} The value of μ [Eq. (4)] was set to $\mu=\mu_{\text{G}}=10/81$ to satisfy the second-order gradient expansion of the exchange energy, while in correlation, β (see Sec. II B 1) was chosen in order to reproduce the accurate TPSS values of the surface exchange-correlation energy of jellium (as done previously for the AM05 functional; see Sec. II B 4). This leads to an enhancement factor F^{PBEsol}_x, which is closer to LDA than the PBE and WC enhancement factors (see Fig. 1). Actually, PBEsol was designed to be more accurate than PBE for solids and surfaces,\cite{PBEsol} which has been confirmed for solids by several studies.\cite{PBEsol, PBEsol2, PBEsol3} However, since $\mu=\mu_{\text{G}}$, PBEsol performs badly for the thermochemistry of molecules and solids\cite{PBEsol, PBEsol2, PBEsol3} for which a value of $\mu \sim 2 \mu_{\text{G}}$ is more appropriate.\cite{PBEsol, PBEsol2, PBEsol3}

4. AM05

While many GGAs were constructed by fitting parameters to experimental data or by satisfying universal mathematical conditions, the AM05 functional\cite{AM05} was developed by combining functionals from different model systems [the uniform electron gas (LDA) and the local Airy approximation (LAA) (Ref. 62)]. They are merged using an index (X) for taking the local nature of the system into account. For bulklike regions (small values of s), LDA is used, while for surfacelike regions (large values of s), the LAA functional is used. The exchange and correlation energies per unit volume are given by

$$e^{\text{LAA}}_x(\rho,s) = e^{\text{LDA}}_x(\rho)[X(s) + [1-X(s)] F^{\text{LAA}}_x(s)], \quad (7)$$

$$e^{\text{LAA}}_c(\rho,s) = e^{\text{LDA}}_c(\rho)[X(s) + [1-X(s)] \gamma], \quad (8)$$

where $\gamma=0.8098$ and $X(s) = 1 - \alpha s^2/(1 + \alpha s^2)$ with $\alpha=2.804$ and γ were fitted to the exchange-correlation surface energy of the jellium model. The analytical form of F^{LAA}_x can be found in Ref. 18. From Fig. 1, we can see that the AM05 enhancement factor is clearly different from the other GGAs.
considered in this work. For \(r_s = 0 \) bohr (i.e., exchange only), \(F_x^{\text{AM05}} \) is the lowest one until \(s \sim 4.5 \), while for \(s \) larger than \(\sim 5 \) it is the largest. Actually, \(F_x^{\text{AM05}} \rightarrow \infty \) for \(s \rightarrow \infty \) (thus, the Lieb-Oxford bound is not satisfied). From Fig. 1 we can also see that with increasing \(r_s \), the crossings between \(F_x^{\text{AM05}} \) and the other enhancement factors tend to values around \(s = 1-1.5 \). Originally, this functional was designed to perform well for systems with surfaces, but very recently it has been shown to be, on average, more accurate than PBE for the lattice constant for many classes of solids and as accurate as the WC, PBEsol, and SOGGA (Ref. 28) functionals.

III. ANALYSIS

In this section, the spatial distribution of \(r_s \) (related to the electron density \(\rho \)) and \(s \) (related to the gradient of the electron density \(\nabla \rho \)) and the exchange-correlation energy \(E_{xc} \) are analyzed in detail for a few selected solids. The solids are lithium [bcc (A2)], vanadium [bcc (A2)], and FeAl [cesium chloride (B2)] as examples for simple and 3d metals and an intermetallic compound; silicon [diamond (A4)] and LiF [sodium chloride (B1)] representing semiconductors and ionic systems, respectively; and graphite [hexagonal (A9)] whose hexagonal layers are weakly bound. The theoretical and the experimental equilibrium lattice constants of these systems (shown in Table I) were taken from Ref. 28. In the case of graphite, the in-plane lattice constant was kept fixed at the experimental value of 2.464 Å, i.e., only the interlayer distance \(c \) was optimized. The experimental values of the cubic systems were corrected for the zero-point anharmonic expansion (see Refs. 28, 63, and 64 for details). From Table I we can see that, for all systems except Li and graphite, LDA and PBE give the smallest and largest lattice constants, respectively, while for Li and graphite the WC and AM05 lattice constants are larger than the PBE ones.

Regarding the trends observed in the lattice constants for these solids, in the following we will try to answer questions like: (a) why does the functional \(F_1 \) yield a lattice constant that is larger than the one calculated with functional \(F_2 \), (b) what are the regions in space which are energetically important for the lattice constants, and (c) which values of \(r_s \) and \(s \) are relevant in solids. Since the enhancement factor of GGA functionals [see Eq. (3)] depends on \(r_s \) and \(s \), an analysis of these two quantities can certainly help us to understand the behavior and performance of GGA functionals. However, as discussed in detail below, it is particularly important to consider the variations of \(r_s \), \(s \), and \(E_{xc} \) with respect to the unit-cell volume \(\Omega \). Actually, \(dE_{xc}/d\Omega \) is the quantity that is directly related to the value of the equilibrium lattice constant.

For our analysis we will consider averages of \(r_s \) and \(s \) over a certain region in space defined as follows:

\[
\overline{f} = \frac{1}{V} \int_V f(r) d^3r,
\]

where \(f = r_s \) or \(s \), and \(V \) is the volume of, e.g., the unit cell or an atomic sphere. Defining \(\overline{r_s} \) and \(\overline{s} \) with Eq. (9) makes sense only for solids with a finite unit cell, while for molecular systems these averages are zero if \(V \) represents the whole space. Note that, in Refs. 34–37, an energy-weighted definition for \(\overline{r_s} \) and \(\overline{s} \) was used.

The calculations were done with the WIEN2K code which solves the Kohn-Sham equations using the full-potential (linearized) augmented plane-wave and local orbitals [FP-(L)APW+lo] method. The integrations in the Brillouin zone were done with a \(k \) mesh of \(21 \times 21 \times 21 \) for the cubic solids and \(13 \times 13 \times 5 \) for graphite. A value between 8 and 10 was chosen for \(R_{\text{MT}}^\text{min}K_{\text{max}} \) (the product of the smallest atomic sphere radius \(R_{\text{MT}} \) and the plane-wave cutoff parameter \(K_{\text{max}} \)), which determines the size of the basis set.

An important detail concerning the way the analysis is done is the following. For all solids in Table I except graphite, we checked that the lattice constant given by a specific functional is insensitive to self-consistency effects, i.e., for the evaluation of the total energy it hardly matters whether the electron density stems from the corresponding potential or from another one (in all cases, the change in the lattice constant is less than 0.001 Å). Thus, for these solids we have simplified the analysis and used the same electron density (the one obtained from the PBE potential) for the comparison of the exchange-correlation energies obtained by different functionals and the figures. In particular, it means that the difference in total energy between two functionals \(F_1 \) and \(F_2 \) is given only by the difference in the exchange-correlation energy.

\[
E_{\text{tot}}^{F_1} - E_{\text{tot}}^{F_2} = E_{xc}^{F_1} - E_{xc}^{F_2}.
\]

Concerning graphite (Sec. III F), the potential-energy curves were obtained from self-consistent calculations and the PBE electron density was used for the figures showing \(r_s \) and \(s \).
A. Lithium

As a first example we analyze the simple metal Li in the bcc structure. Figure 2 shows the distribution of r_s and s along the (0,0,0) → (1/2,1/2,1/2) path at the equilibrium volume. The important region (see text for definition) is illustrated by a hatched rectangle from 0.93 to 1.74 bohr and the atomic sphere radius (R_{MT}) of the atom at 0 is indicated by a line at 2.5 bohr.

![Figure 2](image1)

Figure 2. Top: $r_s^2 \rho$ of 1s (semi)core and 2s,2p valence states in bcc lithium (inside the atomic sphere). Bottom: r_s and s along the (0,0,0) → (1/2,1/2,1/2) path at the equilibrium volume. The important region (see text for definition) is illustrated by a hatched rectangle from 0.93 to 1.74 bohr and the atomic sphere radius (R_{MT}) of the atom at 0 is indicated by a line at 2.5 bohr.

The next step is to study the spatial decomposition of E_{xc}. Figure 3 shows the contributions to E_{xc} coming from the integration inside the atomic sphere ($R_{\text{MT}}^2 = 2.5$ bohr) and the interstitial region.

![Figure 3](image2)

Figure 3. (Color online) Variation of the total and exchange-correlation energies of lithium with respect to the unit-cell volume Ω (AM05 functional with PBE electron density). E_{xc} has been split into its contribution coming from the atomic sphere and the interstitial region. E_{xc}, E_{xc}^{total}, E_{xc}^{sphere}, and E_{xc}^{int} are shifted by 14.87, 3.57, 3.37, and 0.20 Ry, respectively.

Let us now investigate the difference between the slopes $\Delta E_{xc} / \Delta \Omega$ of two functionals F_1 and F_2. This difference is negligible in the interstitial region, which is easy to understand from Fig. 2. We see the clear minimum of r_s at the position of the atoms, but a rather constant value of r_s in the interstitial region, which shows the free-electron-like behavior of Li and originates from the superposition of the diffuse valence-electron densities of the atomic sites. Consequently, s is nearly zero in the interstitial region, which explains why this region does not contribute to the difference in slope $\Delta E_{xc} / \Delta \Omega$ between two GGA functionals that both reduce to LDA for $s=0$.

In order to make a more detailed study of $\Delta E_{xc} / \Delta \Omega$ inside the atomic sphere, we varied the limit r_{max} of the radial integration inside the atomic sphere.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Li (mRy/bohr3)</th>
<th>V (mRy/bohr3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>1.05</td>
<td>11.40</td>
</tr>
<tr>
<td>PBEsol</td>
<td>1.00</td>
<td>10.98</td>
</tr>
<tr>
<td>WC</td>
<td>0.99</td>
<td>10.95</td>
</tr>
<tr>
<td>AM05</td>
<td>0.98</td>
<td>11.00</td>
</tr>
<tr>
<td>PBE</td>
<td>1.00</td>
<td>10.50</td>
</tr>
</tbody>
</table>

Table II. Values (in mRy/bohr3) of the slope $\Delta E_{xc} / \Delta \Omega$ (see text for definition) for Li and V.
slope $= \text{PBE}$ and values of F approximate the difference in the slope of Figs. 2 as hatched area and mainly determines the difference between the slopes sight about the origin of this important region, Fig. 2 also analyzed and led us to define an important region which is energetically the most important for the determination of the solid, and not the "overlap region" between the valence or-

tion. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral. This allows us to identify which region around the nucleus is the most important for the determination of the electronic density integral.
TABLE IV. The values of G_1 [Eq. (13)], G_2 [Eq. (14)], G_3 [Eq. (15)], and their sum G_{tot} for Li and V at the equilibrium geometry. The values are in mRy/bohr3.

<table>
<thead>
<tr>
<th>Functional</th>
<th>G_1</th>
<th>G_2</th>
<th>G_3</th>
<th>G_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>0.555</td>
<td>−0.013</td>
<td>−0.000</td>
<td>0.542</td>
</tr>
<tr>
<td>PBEsol</td>
<td>0.577</td>
<td>−0.006</td>
<td>−0.079</td>
<td>0.492</td>
</tr>
<tr>
<td>WC</td>
<td>0.582</td>
<td>−0.005</td>
<td>−0.096</td>
<td>0.481</td>
</tr>
<tr>
<td>AM05</td>
<td>0.584</td>
<td>−0.011</td>
<td>−0.098</td>
<td>0.475</td>
</tr>
<tr>
<td>PBE</td>
<td>0.612</td>
<td>−0.005</td>
<td>−0.122</td>
<td>0.486</td>
</tr>
</tbody>
</table>

LDA and this causes the largest slope $d(\epsilon_{\omega})_V/d\Omega$ and thus the smallest lattice constant for LDA. Also, adding G_2 to G_1 makes $G_{tot}=G_1+G_2+G_3$ for WC and AM05 smaller than for PBE, which is in agreement with the ordering of the lattice constant of Li (Table I). Overall, the trends in the slopes $\Delta E_{xc}/\Delta \Omega$, and thus the lattice constants, are fairly well reproduced by G_{tot}. LDA and AM05 are the extrema, the others are in between, and WC is between PBE and AM05.

Table III also shows the important region and the averages \bar{r}_i and \bar{s} for the other elements of group IA. Note that the important region is always located in a region separating the outermost core from the valence electrons. Therefore, the distance from the nucleus to the important region is larger for heavier elements. The inner-core electrons do primarily not cause different lattice constants for different functionals. Furthermore, we can see an increase in \bar{r}_i with the nuclear charge Z which stems from the more diffuse orbitals, while \bar{s} is reduced from Li to K (which has a similar values as for Rb).

B. Vanadium

Vanadium has been chosen to represent a 3d transition-metal element. As Table I, all tested functionals lead to too small lattice constants compared to experiment. The relative error of LDA is about 3%, while PBE is the most accurate (less than 1% underestimation). The relative errors of WC, AM05, and PBEsol (which lead to very similar lattice constants) are in between LDA and PBE with about 2% of the relative error. Figure 5 shows the evolution of r_i and s along the shortest path between two V atoms (at the equilibrium geometry). Since vanadium is not a free-electron-like metal as lithium, r_i does not reach a constant value and s is not zero in the interstitial. The reduced density gradient s nicely shows the shell structure of the atom and, similar to Li, a maximum at 1.5 bohr which lies in the range where the 3s, 3p semicore (but also the 3d valence) electrons are separated from the 4s, 4p valence electrons. The maximum value of s, however, is about a factor of 2 smaller than for Li. Also, note that the maxima in the radial density $r^2\rho$ for the semicore 3s, 3p and the valence 3d states fall very close together, but the tails of the 3d orbitals are more long ranged. A similar plot for a 5d element like tantalum shows that the 5d maximum is further out compared to the 5s, 5p maxima and this difference between a 3d and a 5d metal may explain the different behavior of the functionals for 3d and 5d elements, where, e.g., PBE shows a clear underbinding (too large lattice constants) for 5d, while LDA shows a pronounced overbinding (too small lattice constants) for 3d systems.

The same analysis that was done for lithium in the preceding section has been carried out for vanadium. The important region V (i.e., the region where the slopes $\Delta E_{xc}/\Delta \Omega$ of two functionals differ the most) has been identified to be between 1.10 and 2.07 bohr as indicated in Fig. 5, while the interstitial contribution is again nearly zero. An analysis of the different contributions to $d(\epsilon_{\omega})_V/d\Omega$ [Eqs. (12)–(15)] at the equilibrium geometry ($\bar{r}_i=1.36$ bohr and $\bar{s}=0.76$ inside V) shows (Table IV) that again G_1 (F_{xc}) is the largest contribution, but the ordering of the equilibrium lattice constants cannot be deduced solely from it. For that purpose it is also necessary to consider G_2 ($\partial F_{xc}/\partial r_i$) and G_3 ($\partial F_{xc}/\partial \bar{s}$). LDA (PBE) leads to the largest (smallest) values of G_{tot}, while PBEsol, WC, and AM05 lie inside this bound. This ordering reflects the trends observed in the lattice constant. Note that here G_2 and G_3 are of the same order of magnitude, while for lithium G_2 was one order of magnitude smaller than G_3.

C. FeAl

We have chosen FeAl as an example of a metallic binary compound. From Table I, we can see that for the lattice constant the best agreement with experiment is obtained with PBE which slightly underestimates α_0, while the other func-
tionals lead to very large underestimations. By comparing the FeAl results with the results for the pure elements Fe and Al (see Table I and Fig. 1 of Ref. 28), we can see that the trends in the results for FeAl follow closely the trends for bcc Fe (all functionals underestimate a_0), while for fcc Al, LDA and PBE lead to clear underestimation and overestimation, respectively, and the other functionals yield very accurate lattice constants.

In order to understand why FeAl and Fe show similar trends we investigated the change in slope $\Delta E_{xc}/\Delta \Omega$ between two functionals ($\Delta E_{xc}^{F1-F2}/\Delta \Omega$) as a function of the integration radius r_{max} inside the Fe and Al atomic spheres. From Fig. 6, which shows $\Delta E_{xc}^{F1-F2}(r_{max})/\Delta \Omega$ for the case $F1$=PBE and $F2$=PBEsol (using the PBE electron density), we can see that the important region is between 1 and 2 bohr for Fe (the region of the tails of the 3d orbitals as well as the separation between the 3s, 3p core from 4s valence electrons) and between 1.1 and 1.5 bohr for Al. We can also see that the contribution from the Fe sphere is three times larger than the contribution from the Al sphere, which explains the fact that the trends in a_0 for FeAl and pure Fe are very similar. Note that the contribution coming from the interstitial region is almost zero. Finally, we mention that the maximum values of s in the Fe and Al atomic spheres are 0.8 and 1.4, respectively.

D. Silicon

The structures of the solids we have considered so far are fairly close packed, while the one of silicon is open with large empty regions of space. From Table I we can see that the LDA lattice constant is close to the experimental one, while the GGAs (PBE in particular) clearly overestimate a_0. From Fig. 7, which shows the difference in slope between two functionals $\Delta E_{xc}^{F1-F2}(r_{max})/\Delta \Omega$ for $(F1,F2)=(PBE,PBEsol)$ and $(F1,F2)=(PBE,AM05)$, we can see that the important region inside the atomic sphere can be clearly estimated to be between 0.7 and 1.5 bohr, while for an integration radius r_{max} between 1.5 and $R_{MT}^{Si}=2.1$ bohr, $\Delta E_{xc}^{F1-F2}(r_{max})/\Delta \Omega$ is rather constant. The important region corresponds to the separation between 2s, 2p core and 3s, 3p valence states. Note that there is little difference between PBEsol and AM05 functionals, which is expected since both functionals lead to quasi-identical lattice constants.

However, as we can see from Fig. 7 and Table V, the interstitial contribution to $\Delta E_{xc}^{F1-F2}/\Delta \Omega$ can be as large as the one from the atomic sphere (in contrast to the previously studied solids) and, in order to understand this, we show a two-dimensional plot of the reduced density gradient s in Fig. 8. Inside the atomic spheres, s becomes as large as 1.3 (in the core-valence separation region), while in the bonding region between two neighboring Si atoms, s is very small. However, in the large empty regions of this open structure, the tails of the valence orbitals lead to an increase in s up to 0.9. Thus, these large interstitial regions with relatively large values of s lead to a value of $\Delta E_{xc}^{F1-F2}/\Delta \Omega$ of the same order as $\Delta E_{xc,\text{int}}/\Delta \Omega$ (Table V). We mention that for isostuctural heavier materials such as Ge or GaAs, the maximum value of s in the core-valence region is smaller (e.g., 0.9 in GaAs) than in Si, but larger in the interstitial region (e.g., 1.2 for GaAs). The fact that s is larger in the interstitial region can explain why in the series C, Si, Ge, GaAs, the PBE lattice constants get worse (more pronounced overestimation) for

![Fig. 6. (Color online) $\Delta E_{xc}^{F1-F2}(r_{max})/\Delta \Omega$ for FeAl with $F1$=PBE and $F2$=PBEsol plotted as a function of the integration radius r_{max}. The values of $\Delta E_{xc}^{F1-F2}/\Delta \Omega$ in the interstitial region and the whole unit cell are indicated by “Int” and “Total.” The radii of the atomic spheres are $R_{MT}^{Fe}=2.3$ bohr and $R_{MT}^{Al}=2.0$ bohr.](image1)

![Fig. 7. (Color online) $\Delta E_{xc}^{F1-F2}(r_{max})/\Delta \Omega$ for silicon with $F1$=PBE and $F2$=PBEsol (dotted line) and $F1$=PBE and $F2$=AM05 (solid line) plotted as a function of the integration radius r_{max}. The values of $\Delta E_{xc}^{F1-F2}/\Delta \Omega$ in the interstitial region are indicated by “Int.” The radius of the atomic sphere is $R_{MT}^{Si}=2.1$ bohr.](image2)

TABLE V. The difference in slope $\Delta E_{xc}^{F1-F2}/\Delta \Omega$ between two functionals $F1$ and $F2$ for silicon. The total value is decomposed into the contributions coming from the atomic spheres and the interstitial region. The values are in mRy/bohr3.

<table>
<thead>
<tr>
<th>$F1-F2$</th>
<th>$\Delta E_{xc}^{F1-F2}/\Delta \Omega$</th>
<th>$\Delta E_{xc}^{F1-F2,\text{int}}/\Delta \Omega$</th>
<th>$\Delta E_{xc}^{F1-F2,\text{sph}}/\Delta \Omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE-LDA</td>
<td>-0.245</td>
<td>-0.180</td>
<td>-0.065</td>
</tr>
<tr>
<td>PBE-PBEsol</td>
<td>-0.131</td>
<td>-0.064</td>
<td>-0.066</td>
</tr>
<tr>
<td>PBE-WC</td>
<td>-0.136</td>
<td>-0.071</td>
<td>-0.065</td>
</tr>
<tr>
<td>PBE-AM05</td>
<td>-0.127</td>
<td>-0.064</td>
<td>-0.063</td>
</tr>
</tbody>
</table>
heavier elements. Indeed, the larger s gets in the interstitial region, the more the unit cell will expand, because larger values of s cause more negative exchange-correlation energies and thus a larger equilibrium volume.

E. LiF

LiF is a solid where adding gradient corrections to LDA dramatically increases the lattice constant, similar to Li (see Table 1). Actually, Li and LiF are solids for which the difference between the relative errors of LDA and the softest GGA is among the largest in a testing set of 60 solids (see Fig. 1 of Ref. 28).

From the analysis of $\Delta E_{xc}^{F_1-F_2}/\Delta \Omega$ and its spatial partitioning into the atomic ($R_{MT}=1.5$ bohr and $R_{MT}^{F_2}=2.07$ bohr) and interstitial regions, we can identify the important regions for LiF. We observe that the contributions to $\Delta E_{xc}^{F_1-F_2}/\Delta \Omega$ coming from inside the Li and F atomic spheres are on the same order of magnitude and, depending on the considered functionals F_1 and F_2, may have the same or opposite sign (see the bottom panel of Fig. 9). Inside the Li atomic sphere, the important region is (as in the case of metallic bcc Li) within a distance of 1–1.5 bohr from the nucleus and comes from the tails of the Li-1s semicore state. However, the Li-1s density is modified compared to metallic Li such that its contribution to the slope is about twice as large (compare Figs. 4 and 9). Inside the F sphere there is a first important region between 0.1 and 0.4 bohr, where the F-1s core states dominate. For larger distances where the valence charge density (F-2s, 2p see the middle panel of Fig. 9) dominates, the F contributions to $\Delta E_{xc}^{F_1-F_2}/\Delta \Omega$ do not show much structure for most pairs of functionals F_1 and F_2. Similarly as in Si, the interstitial contribution is very important and can even be up to 10 times as large as the contributions from within the atomic spheres. The electron density in the interstitial region originates from the tails of the F-2p electrons (the F-2p radial density $r^2\rho$ is still large at $R_{MT}=2.07$ bohr; see Fig. 9) and this contributes significantly to $\Delta E_{xc}^{F_1-F_2}/\Delta \Omega$.

Figure 10 shows the reduced density gradient s in the (110) plane. We can see that, inside the Li atomic sphere, the largest values of s occur at distances between $r_1=1$ bohr and $r_2=1.5$ bohr from the nucleus, which was determined to be one of the important regions. Around the F atom, the largest values of s (the green region) start at about 1 bohr from the nucleus and extend beyond the atomic sphere of F, which is the main reason why for LiF also the interstitial region is important.

F. Graphite

In graphite, the carbon atoms which lie in the same hexagonal plane are covalently bound, while the interactions between atoms belonging to different planes are noncovalent and thus weak. It is well known that the attractive London dispersion forces, which can be the dominant component in the interaction energy for such system, are not taken into account by semilocal functionals, and that this missing dispersion interaction is sometimes (depending on the func-
tional and the system under consideration) “replaced” with an artificial attraction that arises due to the nonzero overlap between the two weakly interacting fragments (e.g., two hexagonal planes). However, the results obtained with semilocal functionals for such weakly bound systems are very often quantitatively wrong and this is the reason why functionals especially designed for such systems have been proposed (see, e.g., Refs. 69 and 70).

The lattice constant \(c \) (the interlayer distance is \(c/2 \)) of graphite was optimized,\(^{28} \) while the in-plane lattice constant \(a \) was kept fixed at the experimental value (2.464 Å). From the results shown in Table I and Fig. 11, we can see that a very broad range of equilibrium values of \(c \) are found with the different functionals. LDA yields a very good value for \(c_0 \), and PBEsol is still rather accurate in comparison to the other GGA functionals that perform very badly. For instance, AM05 does not show any binding between the graphene layers.

A two-dimensional plot of \(s \) in a plane normal to the hexagonal layers is shown in Fig. 12. We can see maxima of \(s \) inside the carbon spheres and also in the interstitial region between two hexagonal planes. Due to symmetry, minima appear at mid-distance between two hexagonal planes, and within the hexagonal plane there is a large region of small \(s \) in the bonding region between two C atoms.

Figure 13 shows, for the equilibrium structure (\(c_0=6.71 \) Å = 12.68 bohr), the one-dimensional curves of \(r_s \) and \(s \) along the path indicated with a black dotted line in Fig. 12 (one C atom is at 0 and the second is at 6.34 bohr). We can observe the shell structure (the separation between the 1s and 2s shells) of the C atom which leads to a peak of \(s \) at \(\sim 0.4 \) bohr from the nucleus. For distances > \(0.9 \) bohr, \(s \) increases but decreases again at 2.2 bohr due to symmetry reasons right in the middle between the two C atoms.

Figure 13 also shows \(r_s \) and \(s \) along the same path, but for a stretched lattice constant \(c = 10.05 \) Å = 19 bohr. An increase in the \(r_s \) maximum up to 9.8 bohr is noticed and also \(s \) increases up to nearly 3.5. It was already known in the literature\(^{71, 72} \) that the GGA functionals whose enhancement factors \(F_{xc} \) violate the Lieb-Oxford bound\(^{49} \) (because \(F_{xc} \to \infty \) for \(s \to \infty \)) give very shallow or no minimum in potential-energy surfaces of weakly bound systems, which is the case of the AM05 functional. The steady increase (i.e., divergence) in \(F_{xc}^{AM05} \) with \(s \) (see Fig. 1) energetically favors a larger \(c \) (the isolated graphene layers are favored) and in the cases of weak interactions this effect has a much stronger impact than in the case of strong (e.g., covalent) interactions.

From Fig. 11 we can also see that PBEsol and WC results are very similar for \(c < 7 \) Å, which is also in agreement with Fig. 1, where we can see that \(F_{xc}^{PBE} \) and \(F_{xc}^{WC} \) are very similar for \(s < 1.5 \). At larger \(c \) the WC results resemble more the PBE results (showing just a very slight minimum), which is again explainable since the larger \(s \) gets, the closer are \(F_{xc}^{PBE} \) and \(F_{xc}^{WC} \).

IV. DISCUSSION AND SUMMARY

Before coming to the summary of our work, we would like to briefly make a short review of previous papers that also present analyses of semilocal functionals. Extensive analyses of the effect of gradient corrections of GGA functionals were done by Perdew and collaborators in Refs. \(^{34–37} \). They made a very detailed study of \(r_s \), \(s \), and the relative spin polarization \(\zeta = (\rho_{\uparrow} - \rho_{\downarrow})/(\rho_{\uparrow} + \rho_{\downarrow}) \) in atoms, molecules, surfaces, and solids. For their analyses, they used energy-weighted averages of \(r_s \), \(s \), and \(\zeta \) [see Eq. (6) of Ref. \(^{34} \) and considered the variation of these averages with respect to the bond length or lattice constant. They also made use of distribution functions of \(r_s \), \(s \), and \(\zeta \) [see Eq. (4) of
Ref. 35. From their analyses, they were able to explain trends like, for instance, why adding the gradient correction shortens the H2 bond length,34 while usually the bond lengths are elongated when a gradient correction is added. More generally, adding gradient corrections will favor two changes: denser electron density, i.e., shorter bond lengths and more inhomogeneity in the electron density, i.e., larger bond lengths. Only in a few cases, e.g., H2, the first change will win. The analysis we have made and the analyses of Perdew and collaborators have similarities, but ours were more aimed at explaining the results for the equilibrium lattice constants of solids.

In Ref. 33, Philipsen and Baerends tested GGA functionals for the calculation of the cohesive energy of 3d transition metals and a detailed analysis of the GGA functionals was done for Cu. First, they showed that the LDA exchange-correlation contribution to the cohesive energy of Cu is repulsive in the atomic region and attractive in the bonding region. Then, they observed that the main effect of adding gradient correction is to reduce the attractiveness of exchange correlation in the bonding region. Another conclusion of their work is that (for Cu) the regions of space with $s < 0.2$ do not contribute to the gradient correction.

From the analyses of Fuchs et al.38 and Ruban and Abrikosov40 on solids, it was concluded that the region of core-valence overlap is of great importance—a conclusion that is also supported by our analysis on Li and V, for instance. In a recent study on the performance of semilocal functionals on solids, Csonka et al.29 showed a correlation between the maximum values of s in solids and the difference in results between PBEsol and AM05 functionals. While AM05 and PBEsol give similar results for solids with small value of the maximum of s (e.g., 4d transition metals), it is not the case for solids with larger maximum of s (ionic solids and alkali metals).

In their analyses, Mattsson and collaborators (see Ref. 73 and references therein) pointed out the need to take into account the different amounts of surface between two different structures when their energies (calculated with common semilocal functionals) are compared. Their definition of “surface” also includes internal surfaces like, for example, the surface around the large interstitial region in Si.73 Related to this concept of surfaces, we mention the study of Stroppa and Kresse74 of the adsorption of the CO molecule on the late 4d and 5d transition-metal surfaces. From their results, they concluded that there is no semilocal functional that is able to yield accurate results for different properties (structural and energetical) and types of systems (finite and infinite) at the same time.

In the present work, the spatial distribution of the Wigner-Seitz radius r_s and reduced density gradient s has been studied in selected solids. We considered lithium (which is close to the homogeneous electron gas), vanadium (a 3d transition...
metal), FeAl (an intermetallic compound), silicon (a semiconductor), LiF (an ionic insulator), and graphite (whose hexagonal layers are bound by weak interactions). We have identified which region in space is energetically important for the structural properties. For this purpose we studied the variation of the exchange-correlation energy with respect to the unit-cell volume. For all systems the important region includes a radial shell around the atoms, which separates the semicore from the valence electrons. For open structures such as silicon or graphite, but also inhomogeneous systems like ionic compounds (e.g., MgO or LiF), also the interstitial region is important since even small contributions (from the tails of the atomic densities) will sum up over a large volume.

Using the averages of \(r_s \) and \(s \) in the energetically important region, a better understanding of the “unusual trends” in the lattice constants (e.g., in lithium) could be obtained. It turns out that it is not only the value of the enhancement factor \(F_{\text{xc}} \), but also its derivatives with respect to \(r_s \) and \(s \) which determine the equilibrium lattice constant.

Further, during our analysis we noticed that, in the considered solids, values of \(s \) larger than 1.5 (2 for light alkali metals) and values of \(r_s \) larger than 4 bohr (7 bohr for stretched graphite) do not occur. Therefore, it is \(F_{\text{xc}}(r_s, s) \) (and its \(r_s \) and \(s \) derivatives) up to these values of \(r_s \) and \(s \) which determines the geometry of solids, while the behavior of \(F_{\text{xc}}(r_s, s) \) for larger \(r_s \) and \(s \) is completely unimportant. Note that this statement is not true for cohesive energies and the geometry of finite systems (molecules).

To conclude, we think that the general limits of accuracy of semilocal exchange-correlation functionals have not yet been reached. Nevertheless, to improve the geometry of solids over the currently best GGAs (e.g., WC, PBEsol, or AM05) it will be necessary to consider more sophisticated semilocal functionals, which may lead to improvements for cases where functionals such as PBEsol, WC, or AM05 still have large errors (e.g., 3d or heavy alkali-earth metals). Meta-GGAs\(^{30-32} \) which due to the use of the kinetic-energy density are more flexible (but still of the semilocal form), could give an improvement (see, e.g., Ref. 75); but, until now, only a few such meta-GGA functionals have been proposed and there is room for improvement. An analysis like the one done in the present work, but including also the kinetic-energy density, could certainly help in deriving more accurate meta-GGA functionals.

ACKNOWLEDGMENTS

We are grateful to John P. Perdew and Gábor I. Csonka for helpful comments on the manuscript. This work was supported by Project No. P20271-N17 of the Austrian Science Fund and Project No. WP 15 of the Austrian Grid.