KEYWORDS

Pipeline engineering, ferritic-pearlitic and bainitic steels (pipeline-steels), duplex-steels, pipeline failures, natural gas pipelines, crack-arrestors, pipeline corrosion, corrosion protection of pipelines, pipelines in Austria, in Europe, world wide, pipeline welding, heat treatment of pipelines, fracture mechanical investigations, CTOD tests, crack-arrest tests, tensile tests, impact tests, hardness tests, heat-input, alloying elements of thermomechanically treated steels and duplex-steels, metallography, fractography, pipeline design, operation of pipelines, radiographic testing, ultrasonic testing, visual testing, quality management in pipeline engineering, pigging, analysis of failures in pipeline engineering.

SCHLAGWOERTER

ABSTRACT
Pipelines offer an economically and ecologically reliable, good solution for the transport of liquids and gases worldwide. Even in a small country like Austria they are an almost indispensable means of transport, especially for natural gas.

THEORETICAL PART:
This work addresses the most important questions industrial engineers and scientists are confronted with, when working in the fields of project planning, construction, and operation of pipelines. Starting from a description of the situation in Austria and a comparison with worldwide solutions, the following fields are examined: Damage caused by cracks and corrosion, as well as countermeasures; materials used in pipeline construction (ferritic-pearlitic, bainitic, and duplex-steels) and their processing properties (especially concerning welding technology); aspects of materials testing and quality management.

EXPERIMENTAL PART:
Based on numerous welding-technological and fracture-mechanical examinations, the influencing parameters and limits, essential for a problem-free construction and reliable operation of pipelines, are discussed and limits established.

MATHEMATICAL PART:
This part offers mathematical approaches for the predetermination of welding-technological and fracture-mechanical parameters, to be considered during the construction and the subsequent testing of pipelines.
KURZREFERAT
Rohrleitungen stellen weltweit eine oekonomisch und oekologisch zuverlässige und gute Lösung zum Transport flüssiger und gasförmiger Stoffe dar. Auch in einem kleinen Land wie Österreich sind sie kaum zu ersetzende Transportmittel, vor allem für Erdgas.

THEORETISCHER TEIL:

EXPERIMENTELLER TEIL:
Anhand von zahlreichen schweißtechnischen und bruchmechanischen Untersuchungen werden die Einflussgrössen für eine problemlose Fertigung und einen zuverlässigen Betrieb von Pipelines bestimmt und ihre Grenzen festgelegt.

RECHNERISCHER TEIL:
Weiters werden rechnerische Ansätze für die Vorherbestimmung der schweißtechnischen und bruchmechanischen Parameter, die sich bei der Fertigung und einer anschliessenden Prüfung ergeben, geliefert.
PREFACE

The first German edition of this book has been written as a habilitation at Vienna University of Technology. The author is thankful for suggestions to this book. The individual introductions to the various subjects are intended also to open this book to interested experts with different knowledge and background, and not just only to scientifically qualified readers.

Hopefully the variety of information by the dissemination of this book will be supplied to an interested and attentive circle of readers, to lead to a better understanding of the problems possibly occurring with ferritic-pearlitic steels, bainitic steels, or duplex-steels, especially with regard to the properties of the used materials, their processing (especially welding technology), the following testing (e.g. destructive and non-destructive testing, fracture mechanical, metallographical, and fractographical methods), the quality management, the ecology, and the economy.

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Sonja Felber
0 CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1.1</td>
</tr>
<tr>
<td>1.1 Development and Use of Pipeline-Steels</td>
<td>1.5</td>
</tr>
<tr>
<td>1.1.1 Development of Pipeline-Steels</td>
<td>1.5</td>
</tr>
<tr>
<td>1.1.2 Use of Pipeline-Steels</td>
<td>1.11</td>
</tr>
<tr>
<td>1.1.2.1 Natural Gas and Oil Pipelines in Austria</td>
<td>1.12</td>
</tr>
<tr>
<td>1.1.2.2 Natural Gas and Oil Pipelines in Europe</td>
<td>1.19</td>
</tr>
<tr>
<td>1.1.2.3 Natural Gas and Oil Pipelines in America</td>
<td>1.26</td>
</tr>
<tr>
<td>1.1.2.4 Natural Gas and Oil Pipelines in Australia and New Zealand</td>
<td>1.31</td>
</tr>
<tr>
<td>1.1.2.5 Natural Gas and Oil Pipelines Worldwide</td>
<td>1.33</td>
</tr>
<tr>
<td>1.2 Development and Use of Duplex-Steels</td>
<td>1.36</td>
</tr>
<tr>
<td>1.2.1 Development of Duplex-Steels</td>
<td>1.36</td>
</tr>
<tr>
<td>1.2.2 Use of Duplex-Steels</td>
<td>1.38</td>
</tr>
<tr>
<td>1.3 Failures, Causes, and Avoidance</td>
<td>1.40</td>
</tr>
<tr>
<td>1.3.1 Failures of Pipelines</td>
<td>1.40</td>
</tr>
<tr>
<td>1.3.2 Crack-Arrestors for Pipelines</td>
<td>1.53</td>
</tr>
<tr>
<td>Crack-Arrestors Causing the Crack to Run Into a Pipe Section of Reduced Hoop Stress</td>
<td>1.53</td>
</tr>
<tr>
<td>Crack-Arrestors Using Application of a Pre-Stressed Bandage to Certain Sections of the Pipeline</td>
<td>1.54</td>
</tr>
<tr>
<td>Crack-Arrestors Using Inserting Pipe Sections with High Fracture Toughness</td>
<td>1.54</td>
</tr>
<tr>
<td>Crack-Arrestors Causing the Crack to Run Into a Row of Slots</td>
<td>1.55</td>
</tr>
<tr>
<td>Crack-Arrestors Preventing the Flap Opening</td>
<td>1.55</td>
</tr>
<tr>
<td>Crack-Arrestors Preventing the Flap Opening by Means of Large Masses Along the Pipe Length, Which Must be Accelerated</td>
<td>1.57</td>
</tr>
<tr>
<td>1.3.3 Corrosion of Pipelines</td>
<td>1.59</td>
</tr>
<tr>
<td>1.3.4 Corrosion Protection Against External Corrosion</td>
<td>1.60</td>
</tr>
<tr>
<td>1.3.4.1 Coating of Pipes</td>
<td>1.60</td>
</tr>
<tr>
<td>Temporary Coating</td>
<td>1.61</td>
</tr>
<tr>
<td>Plant-Applied Coating</td>
<td>1.62</td>
</tr>
</tbody>
</table>
Coating in the Field 1.64
Coatings for Extreme Service Requirements 1.65

1.3.4.2 Cathodic Corrosion Protection (CCS) 1.67
1.3.5 Corrosion Protection Against Internal Corrosion 1.71
1.3.6 Standards, Rules, and Regulations 1.75
1.3.7 Determination and Evaluation of a Defect Analysis 1.84

2 Materials for Pipelines 2.1
2.1 Pipeline-Steels 2.3
2.1.1 Chemical Composition 2.3
2.1.1.1 Standards and Designations 2.3
2.1.1.2 Alloying Elements 2.9
2.1.1.3 Effect of Alloying Elements 2.11

Carbon 2.18
Silicon 2.19
Manganese 2.20
Phosphorus 2.20
Sulphur 2.20
Vanadium, Niobium, Titanium 2.21
Vanadium 2.22
Niobium 2.23
Titanium 2.24
Aluminium 2.25
Nitrogen 2.25
Copper, Nickel, Chromium 2.25
Molybdenum 2.25
Zirconium 2.26
Boron 2.26

2.1.2 Physical Properties 2.27
2.1.2.1 Phase Diagrams, Transformation Behavior 2.27
2.1.2.2 Precipitation Behavior 2.34

Carbides, Nitrides 2.37
V-Nitride 2.37
(Si, Mn)N₂ 2.37
Al-Nitride 2.38
Mn-Sulfide 2.38
Ti-Carbosulfide 2.38

2.1.2.3 Corrosion Behavior 2.38
2.1.3 Mechanical Properties 2.38
2.1.4 Manufacture 2.52
2.1.4.1 Casting 2.52
2.1.4.2 Forming 2.54
 Thermomechanical Rolling 2.55
2.1.4.3 Pipe Manufacture 2.66
 Production of Longitudinal Welded Pipes (U-O-Process) 2.68
 Production of Spiral Welded Pipes 2.70
2.1.5 Manufacturing Properties 2.72
2.1.6 Standards and Technical Terms of Delivery 2.72
2.1.7 Tested Pipeline-Steels 2.80
2.1.7.1 Pipeline-Steel X70 2.80
 Longitudinal Welded Pipes Made of X70 2.82
 Spiral Welded Pipes Made of X70 2.82
 Production of Spiral Welded Pipes 2.70
2.1.7.2 Pipeline-Steel X80 2.83
2.1.7.3 Joined Spiral Pipes Made of X70 and X80 2.87
2.1.7.4 Comparison of Pipeline-Steels X70 and X80 2.87
2.1.7.5 Pipeline-Steel X100 2.89
2.1.7.6 Pipeline-Steel X120 2.90
2.2 Duplex-Steels 2.91
2.2.1 Chemical Composition 2.91
2.2.1.1 Standards and Designations 2.91
2.2.1.2 Alloying Elements 2.98
2.2.1.3 Effect of Alloying Elements 2.104
 Carbon 2.106
 Silicon 2.107
 Manganese 2.109
 Phosphorus 2.109
 Sulphur 2.110
 Nitrogen 2.111
 Chromium 2.114
 Copper 2.115
 Molybdenum 2.116
 Nickel 2.117
2.2.2 Physical Properties 2.119

2.2.2.1 Phase Diagrams, Transformation Behavior 2.120

2.2.2.2 Precipitation Behavior 2.124

\(\alpha \)'(Alpha')- or \(\delta \)'(Delta')- and G-Phase 2.128

\(\gamma \)_2-Phase 2.130

\(\sigma \)(Sigma)-Phase 2.130

\(\chi \)(Chi)- and \(\eta \)(Eta)-Phase 2.133

\(\chi \)(Chi)-Phase 2.135

\(\eta \)(Eta)-, R- or Laves-Phase 2.136

Nitrides 2.136

\(\pi \)(Pi)-Phase 2.138

\(\varepsilon \)(Epsilon)-Phase 2.139

\(\tau \)(Tau)-Phase 2.139

Carbides 2.140

2.2.2.3 Corrosion Behavior 2.142

2.2.3 Mechanical Properties 2.146

2.2.4 Manufacture 2.148

2.2.4.1 Casting 2.149

2.2.4.2 Forming 2.150

2.2.4.3 Pipe Manufacture 2.154

2.2.5 Manufacturing Properties 2.155

2.2.6 Standards and Technical Terms of Delivery 2.155

2.2.7 Tested Duplex-Steels 2.157

2.2.7.1 Duplex-Steel 1.4462 (Rolled) 2.158

2.2.7.2 Duplex-Steel 1.4462 (Forged) 2.159

2.3 Comparison of Pipeline-Steels and Duplex-Steels 2.160

3 Weldability and Heat Treatment 3.1

3.1 Weldability and Heat Treatment of Pipelines Made of Pipeline-Steels 3.3

Weldability 3.3

Heat Treatment 3.3

3.1.1 Welding Ability 3.4

Carbon Equivalent (C_{eq}) and Hardness 3.4
3.1.2 Welding Possibility

3.1.2.1 Manual Metal Arc Welding (MMAW, 111) of Circumferential Welds

- Welding in Vertical Down Position With Cellulosic Electrodes (111-C-PG)
- Welding in Vertical Down Position With Basic Electrodes (111-B-PG)
- Combined Welding With Cellulosic and Basic Electrodes
- Welding in Vertical Up Position With Cellulosic Electrodes (111-C-PF)
- Welding in Vertical Up Position With Basic Electrodes (111-B-PF)

Comparison of the Manual Metal Arc Welding Processes

3.1.2.2 Gas Metal Arc Welding of Circumferential Welds

- Fully Mechanized Gas Metal Arc Welding Using Solid Wire (135)
- MAG-Welding With Solid Wire in Vertical Down Position
- MAG Orbital Welding in Vertical Down Position Using Root Pass Protection
- MAG Orbital Welding in Vertical Down Position Without Root Pass Protection
- The CRC-Evans-Process
- The CAPS-Process
- Fully Mechanized Gas Metal Arc Welding in Vertical Up Position Using Filler Wire (136)

3.1.2.3 Tungsten Inert Gas (TIG) Welding of Circumferential Welds (141)

- TIG Cold Wire Technology
- TIG Hot Wire Technology

3.1.2.4 Submerged Arc Welding of Circumferential Welds (12)

- Submerged Arc Welding of Pipes to Obtain Double Length

3.1.2.5 General Comparison of the Common Welding Processes

3.1.2.6 Hyperbaric Welding

3.1.2.7 New Developments of Pipeline Welding Processes

- Stir Friction Welding of Circumferential Welds
- Electron Beam Welding of Circumferential Welds
- Reduced Pressure Electron Beam Welding
Laser Welding of Circumferential Welds 3.83
Laser Hybrid Welding of Circumferential Welds 3.85

3.1.3 Welding Safety 3.89
3.1.4 Standards, Rules, and Regulations 3.91
3.1.5 Heat Treatment 3.120

3.2 Weldability and Heat Treatment of Pipelines Made of Duplex-Steels 3.134

3.2.1 Welding Ability 3.134
 Chromium and Nickel Equivalent (Cr_{eq} and Ni_{eq}) 3.137
 Coarse Grain Zone in the Heat Affected Zone 3.139
 Ferrite Content in the Weld Metal and in the Heat Affected Zone 3.141
 Hydrogen Induced Cracks 3.142
 Hot Cracks 3.143

3.2.2 Welding Possibility 3.145
 3.2.2.1 Manual Metal Arc Welding of Circumferential Welds 3.145
 3.2.2.2 Gas Metal Arc Welding of Circumferential Welds 3.148
 Tungsten Inert Gas Welding 3.148
 Gas Metal Arc Welding Using Solid Wire 3.153
 Metal Inert Gas Welding 3.154
 Metal Activ Gas Welding 3.155
 Filler Wires 3.157
 3.2.2.3 Submerged Arc Welding of Circumferential Welds 3.160
 3.2.2.4 General Comparison of the Welding Processes 3.164
 3.2.2.5 New Developments of Pipeline Welding Processes 3.170

3.2.3 Welding Safety 3.170
3.2.4 Standards, Rules, and Regulations 3.172
3.2.5 Heat Treatment 3.175

3.3 Comparison of the Weldability and Heat Treatment Procedures for the Construction of Pipelines 3.182

4 Welding and Mechanical Technological Tests 4.1
 Welding Technological Tests 4.3
 Tensile Tests 4.5
 Hardness Testing 4.6
 Impact Testing 4.7
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Welding Technological and Mechanical Technological Testing of Pipeline-Steels</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X70</td>
</tr>
<tr>
<td></td>
<td>Testing of Longitudinal Welded Pipes Made of X70</td>
</tr>
<tr>
<td></td>
<td>Testing of Spiral Welded Pipes Made of X70</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X80</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X100</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X120</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Summary of the Welding Technological and Mechanical Technological Tests of the Pipeline-Steels and Comparison With the Values of References</td>
</tr>
<tr>
<td>4.2</td>
<td>Welding Technological and Mechanical Technological Testing of Duplex-Steels</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Welding Technological and Mechanical Technological Testing of the Duplex-Steel 1.4462 (Rolled)</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Welding Technological and Mechanical Technological Testing of the Duplex-Steel 1.4462 (Forged)</td>
</tr>
<tr>
<td></td>
<td>Plate Made of 1.4462 Forged (Manual Metal Arc Welding)</td>
</tr>
<tr>
<td></td>
<td>Plate Made of 1.4462 Forged (Submerged Arc Welding)</td>
</tr>
<tr>
<td></td>
<td>Pipe Made of 1.4462 Forged</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Summary of the Welding Technological and Mechanical Technological Tests of Duplex-Steels and Comparison With the Values of References</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of the Results and Comparison With References</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Results of the Tests of Pipeline-Steels</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Results of the Tests of Duplex-Steels</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Comparison of the Results of the Tests</td>
</tr>
<tr>
<td>5</td>
<td>Fracture Mechanical Testing</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>CTOD-Tests</td>
</tr>
<tr>
<td></td>
<td>Crack-Arrest Testing</td>
</tr>
</tbody>
</table>

Standards, Rules, and Regulations 4.11

4.1 Welding Technological and Mechanical Technological Testing of Pipeline-Steels 4.23

4.1.1 Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X70 4.23

Testing of Longitudinal Welded Pipes Made of X70 4.23

Testing of Spiral Welded Pipes Made of X70 4.31

4.1.2 Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X80 4.33

4.1.3 Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X100 4.35

4.1.4 Welding Technological and Mechanical Technological Testing of the Pipeline-Steel X120 4.36

4.1.5 Summary of the Welding Technological and Mechanical Technological Tests of the Pipeline-Steels and Comparison With the Values of References 4.36

4.2 Welding Technological and Mechanical Technological Testing of Duplex-Steels 4.38

4.2.1 Welding Technological and Mechanical Technological Testing of the Duplex-Steel 1.4462 (Rolled) 4.38

4.2.2 Welding Technological and Mechanical Technological Testing of the Duplex-Steel 1.4462 (Forged) 4.39

Plate Made of 1.4462 Forged (Manual Metal Arc Welding) 4.41

Plate Made of 1.4462 Forged (Submerged Arc Welding) 4.42

Pipe Made of 1.4462 Forged 4.42

4.2.3 Summary of the Welding Technological and Mechanical Technological Tests of Duplex-Steels and Comparison With Values of References 4.43

4.3 Summary of the Results and Comparison With References 4.44

4.3.1 Results of the Tests of Pipeline-Steels 4.44

4.3.2 Results of the Tests of Duplex-Steels 4.45

4.3.3 Comparison of the Results of the Tests 4.46

5 Fracture Mechanical Testing 5.1

Introduction 5.3

CTOD-Tests 5.9

Crack-Arrest Testing 5.11
Manufacturing of the Specimens 5.12
Performing of the Tests 5.20
Evaluation of the CTOD-Tests 5.26
Evaluation of the Crack-Arrest Tests 5.29
Standards, Rules, and Regulations 5.30

5.1 Results of the Fracture Mechanical Tests on Pipeline-Steels 5.33
5.1.1 Fracture Mechanical Testing of the Pipeline-Steel X70 5.33
5.1.1.1 CTOD-Tests on the Pipeline-Steel X70 5.33
5.1.1.2 Crack-Arrest Tests on the Pipeline-Steel X70
 Three-Point-Bend-Specimens 5.35
 Compact-Crack-Arrest-Specimens 5.36
 Full-Thickness Compact-Crack-Arrest-Specimens 5.36
 Base Material - Different Types of Specimens 5.37
 Weld Metal - Different Types of Specimens 5.38
 Heat Affected Zone - Different Types of Specimens 5.39
 Temperature Range for Crack-Arrest 5.40

5.1.2 Fracture Mechanical Tests on the Pipeline-Steel X80 5.41
5.1.3 Summary of the Fracture Mechanical Results of Pipeline-Steels and Comparison With Values in References 5.41

5.2 Results of the Fracture Mechanical Tests on Duplex-Steels 5.45
5.2.1 Fracture Mechanical Tests on the Duplex-Steel 1.4462 (Rolled) 5.45
5.2.1.1 CTOD-Tests on the Duplex-Steel 1.4462 (Rolled) 5.45
5.2.1.2 Crack-Arrest Test on the Duplex-Steel 1.4462 (Rolled) 5.46
5.2.2 Fracture Mechanical Tests on the Duplex-Steel 1.4462 (Forged) 5.46
5.2.2.1 CTOD-Tests on the Duplex-Steel 1.4462 (Forged) 5.46
5.2.2.2 Crack-Arrest Tests on the Duplex-Steel 1.4462 (Forged) 5.47
5.2.3 Summary of the Fracture Mechanical Results of Duplex-Steels and Comparison With Values in References 5.47

5.3 Fracture Mechanical Safety and Fatigue Life Prediction 5.48
5.3.1 Description of the Defects 5.48
5.3.2 Determination of the Stresses 5.50
5.3.3 Determination of $K_{\text{component}}$ 5.51
5.3.4 Characteristic Data of the Material 5.52
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.5</td>
<td>Determination of the Critical Defect Size</td>
<td>5.52</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Assessment</td>
<td>5.53</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Failure Assessment Using the CTOD-Design-Curve</td>
<td>5.53</td>
</tr>
<tr>
<td>5.3.8</td>
<td>The R6-Method (Two-Criteria-Method, Failure Assessment Diagram)</td>
<td>5.56</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Batelle-Concept</td>
<td>5.57</td>
</tr>
<tr>
<td>5.4</td>
<td>Example: Fracture Mechanical Safety and Life-Time Estimations for a Natural Gas Pipeline Pipe Made of X70</td>
<td>5.63</td>
</tr>
<tr>
<td></td>
<td>Fracture Mechanical Model</td>
<td>5.64</td>
</tr>
<tr>
<td>6</td>
<td>Material Physical Examinations</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Material Physical Examinations of Pipeline-Steels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Etching Fluid</td>
<td>6.16</td>
</tr>
<tr>
<td></td>
<td>Light Microscopic Examinations</td>
<td>6.17</td>
</tr>
<tr>
<td></td>
<td>Microhardness Testing</td>
<td>6.19</td>
</tr>
<tr>
<td></td>
<td>Quantitative Micro Structural Analysis</td>
<td>6.20</td>
</tr>
<tr>
<td></td>
<td>Scanning Electron Microscopic Examinations</td>
<td>6.23</td>
</tr>
<tr>
<td></td>
<td>Electron Probe Microanalysis</td>
<td>6.25</td>
</tr>
<tr>
<td>6.2</td>
<td>Material Physical Examinations of Duplex-Steels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etching Fluid According to Lichtenegger and Bloech</td>
<td>6.27</td>
</tr>
<tr>
<td></td>
<td>Etching Fluid 8 According to the Handbook of the Metallographic Etching Processes</td>
<td>6.28</td>
</tr>
<tr>
<td></td>
<td>Light Microscopic Examinations</td>
<td>6.29</td>
</tr>
<tr>
<td></td>
<td>Microhardness Testing</td>
<td>6.31</td>
</tr>
<tr>
<td></td>
<td>Quantitative Micro Structural Analysis</td>
<td>6.32</td>
</tr>
<tr>
<td></td>
<td>Scanning Electron Microscopic Examinations</td>
<td>6.36</td>
</tr>
<tr>
<td></td>
<td>Electron Probe Microanalysis</td>
<td>6.41</td>
</tr>
<tr>
<td>6.3</td>
<td>Summary of the Results and Comparison With References</td>
<td>6.47</td>
</tr>
<tr>
<td>7</td>
<td>Design, Construction, and Service of Pipelines</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Onshore Pipelines</td>
<td>7.3</td>
</tr>
</tbody>
</table>
PIPELINE ENGINEERING

TECHNICAL DATA 8.9
ORGANISATIONAL DATA 8.10
(COUNTRY 1) SIDE 8.11
ORGANISATION 8.11
WELDING TECHNOLOGY 8.12
TESTING TECHNOLOGY 8.13
CONSTRUCTION LOT 1 - INSPECTION OF THE WELDING WORK 8.14
CONSTRUCTION LOT 2 - INSPECTION OF THE WELDING WORK 8.18
COMPARISON OF THE TWO CONSTRUCTION LOTS 8.20
FURTHER INTERESTING PARAMETERS 8.21
SUPPLEMENTS 8.24

8.2 Comparison of Different Pipeline Projects 8.25

R REFERENCES (Catalogue of References) R.1
A APPENDIX (Coloured Pictures, Diagrams, and Maps) A.1
S SUPPLEMENTS (Tables, Diagrams, and Maps) S.1
I INDEX (Acknowledgements, Abbreviations, Units, Symbols in Formulas, and Designations of Specimens, and Index) I.1
D DVD (Pipeline Engineering Book) D.1

Sonja Felber 0.15