
Code Transformations and SIMD Impact on
Embedded Software Energy/Power Consumption

Mostafa E. A. Ibrahim1+2, Markus Rupp2, and Hossam A. H. Fahmy3

1Electrical Engineering Department High Institute of Technology-Benha University
2Institute of Communications and RF Engineering-Vienna University of Technology, Austria

3 Electronics and Communication Department Faculty of Engineering-Cairo University, Egypt
Email: mibrahim@ieee.org, mrupp@nt.tuwien.ac.at, hfahmy@arithmetic.stanford.edu

Abstract— The increasing demand for portable computing has
elevated power consumption to be one of the most critical
embedded systems design parameters. In this paper, we present
a qualitative study wherein we examine the impact of code
transformations on the energy and power consumption. Three
main categories of code transformations are investigated, namely
data, loop and procedural oriented transformations. Moreover,
we evaluate the influence of employing Single Instruction Mul-
tiple Data (SIMD) on energy and power dissipation via the
utilization of compiler intrinsic C-functions. Results show that
a trade-off between power and performance can be achieved
by employing the intrinsic C-functions in conjunction with
some transformations such as loop unrolling and procedure
integration.

I. INTRODUCTION

In a growing number of complex heterogeneous embedded
systems the relevance of the software component is rapidly
increasing. Issues such as development time, flexibility and
reusability are, in fact, better addressed by software based
solutions. Given a particular architecture, the programs that
run on it will have a significant effect on the energy usage
of the processor. The manner in which a program exercises
particular parts of the processor will vary the contribution of
individual structures to total energy consumption.
Reducing energy and power dissipation of an embedded
system have become optimization goals in their own right,
no longer considered a side-effect of traditional performance
optimizations which mainly try to reduce program execution
time. Power and energy optimizations can be implemented in
hardware through circuit design, and by the compiler through
compile-time analysis and code reshaping. While hardware
optimizations has been the focus of several studies and are
fairly mature, software approaches to optimizing power are
relatively new. Progress in understanding the impact of tra-
ditional compiler optimizations on the power consumption
and developing new power-aware compiler optimizations are
important to the overall energy optimization of the system.
The optimizations at compile time typically improve perfor-
mance and occasionally the power consumption, with the main
limitations of having a partial perspective of the algorithms
and without the possibility of introducing significant modifi-
cations to the data structures. On the contrary, source code
transformations can exploit full knowledge of the algorithm
characteristics, with the capability of modifying both data

structures and algorithm coding. Furthermore, inter-procedural
optimizations can be envisioned.

In this paper, we evaluate the effect of applying source
code transformations on the energy and power consumption
of the targeted architecture. Three different categories of
source code transformations namely data, loop and procedural
oriented transformations are investigated. Finally, We assess
the impact of utilizing the SIMD, via the use of the available
intrinsic C-functions, on the power consumption as well as the
performance.

The rest of the paper is organized as follows: Section II
describes prior research efforts related to this work. Section III
presents the methodology and a general overview of the target
architecture along with the experimental measurement setup.
Section IV illustrates the achieved results of applying the
source code transformations and its impact on power, energy
and performance. Moreover, it evaluates the impact of the
SIMD via the employment of the intrinsic C-functions. Finally,
Section V summarizes the main contributions of this paper.

II. PREVIOUS WORK

Most of the software-oriented proposals for power opti-
mization focus on instruction scheduling and code generation,
possibly minimizing memory access cost [1]. As expected,
standard low level compiler optimizations, such as loop un-
rolling or software pipelining, are also beneficial to energy
reduction since they reduce the code execution time. However,
there are a number of cross-related effects that cannot be
clearly identified and, in general, are hard to be applied by
compilers, unless some suitable source-to-source restructuring
of the code is a priori applied.
Ortiz et al. [2] investigated the impact of three different code
transformations namely, loop unrolling, function inlining and
variable types declaration on the power consumption. They
choose three platforms as the target for their work, 8-bit and
16-bit micro-controllers and the 32-bit ARM7TDMI processor.
Their results show that loop unrolling has a significant impact
on the consumed power in case of using the 16-bit and 32-bit
processors.
Zafar et al. [3] examined the effect of loop unrolling factor,
grafting depth and blocking factor on the energy and perfor-
mance for the Philips Nexperia media processor PNX1302.
But, they interchangeably use the term energy and power



for the same meaning. Hence the improvement in energy is
directly related to the performance enhancement.
Brandolese et al. [4] stressed the state-of-the-art source to
source transformations, to discover and compare their effec-
tiveness from power and energy perspective. The data struc-
ture, loop and inter-procedural transformations were investi-
gated with the aid of GCC compiler. The compiled software
codes were then simulated with a framework based on the
SimpleScaler [5]. The simulation framework was configured
with a 1-KByte 2-ways set-associative unified cache.
Catthoor et al. [6] showed the crucial role of source-to-
source code transformations in the solution of the data-transfer
and storage bottleneck in modern processor architectures.
They survey many transformations that are mainely aiming
to enhance the data locality and reuse.
Kulkarni et al. [7] improved the software controlled cache
utilization, in order to achieve lower power requirements
for multi-media and signal processing applications. Their
methodology took into account many program parameters like
the locality of data, size of data structures, access structures
of large array variables, regularity of loop nests and the
size and type of cache with the objective of improving the
cache performance for lower power. The targeted platform
for their research were the embedded multi-media and DSP
processors. In the same way McKinley et al. [8] investigated
the impact of loop transformations on the data locality. Yang
et al. [9] studied the impact of loop optimizations in terms of
performance and power tradeoffs, with the aid of the Delaware
Power-Aware Compilation Testbed (Del-PACT) an integrated
framework consisting of a modern industry-strength compiler
infrastructure and a state-of-the-art micro-architecture -level
power analysis platform. Both, low-level loop optimizations
at code generation (back-end) phase, (loop unrolling and
software pipelining) and high-level loop optimizations at
program analysis and transformation phase (frontend), (loop
permutation and tiling) are studied.

III. METHODOLOGY

First of all, we decide the source code transformations to be
investigated. We prepare a suitable software kernel that allows
the employment of each code transformation. The functionality
of both the original and transformed kernels are tested and
we verify that they give the same result. Next, both the
original and transformed kernels are compiled and profiled.
The performance, power and energy results of both the original
and transformed kernels are compared to analyze the impact
of the applied transformation.
Several code transformations were investigated, but due to
space constraints, we focus on the results for array declaration
sorting, loop peeling and procedure integration.

A. Measurement Setup

The targeted architecture in this work is the
TMS320C6416T fixed-point VLIW DSP from Texas
Instruments (TI). All the power measurements are carried
out on the DSP Starter Kit (DSK) of the TMS320C6416T

manufactured by Spectrum Digital Inc. Although the targeted
architecture operating frequency ranges from 600 MHz to
1200 MHz, in our setup, the operating frequency is adjusted
to 1000MHz and the DSP core voltage is 1.2V. The Agilent
34410A 6 1

2 -digit Digital Multi-Meter (DMM) is used for
measuring the current drawn by the DSP core. As shown in
Fig. 1 the current is captured in term of differential voltage
drop across a 0.025Ω sense resistor inserted, by the DSK
manufacturer, in the current path of the DSP core.

Fig. 1. CPU current measurement setup.

Code Composer Studio (CCS3.1), the Texas Instruments
C/C++ compiler Ver.6.0.1, is utilized to produce the code bi-
naries and to profile the targeted source code transformations.

IV. EXPERIMENTAL RESULTS

In this section, experimental results concerning the influence
of employing source code transformation to the power, energy
and performance are presented. Next, we present the results
of utilizing SIMD, via intrinsic C-functions, and its impact on
the power, energy and performance are presented.

A. Influence of Source code Transformation

First, we present an example of the data oriented transfor-
mation, array declaration sorting. Figure 2 shows an example
where the array access frequency ordering is C[], B[] and A[].
The declaration order, in the original code A[], B[], and C[],
is restructured placing C[] in the first position, B[] in the
second one and A[] at the end. This declaration reordering
is employed to assure that the frequently accessed arrays are
placed on top of the stack; in such a way, the memory locations
frequently used are accessed by exploiting direct access mode.

The array declaration sorting reduces the execution time
by 1.95% and consequently saves the energy by 2.19%.
The power consumption is almost not affected, hence this
transformation is not a power hungry transformation.

Second, we assess the effect of applying loop peeling
transformation. This transformation, also called loop splitting,
attempts to eliminate or reduce the loop dependencies intro-
duced by the first or last few iterations by splitting these
iterations from the loop and perform them outside the loop.
Thus, it enables better instructions parallelization. Moreover,
this transformation can be used to match the iteration control
of adjacent loops allowing the two loops to be fused together.
Figure 3 shows an example of loop peeling transformation. In



Fig. 2. Array declaration sorting transformation.

Fig. 3. loop peeling transformation.

the original code of this example the first iteration only makes
use of the variable p = 10, and for all other iterations p = i−1.
Therefore, in the transformed code the first iteration is moved
outside the loop and the loop iteration control is modified.

Table I shows the impact of applying the loop peeling
transformation on the power, energy and execution time.
Because of splitting the first iteration from the loop’s body
and performing it outside the loop, the memory references
decreased by 37.78% maintaining the same number of L1D
cache misses. The instructions parallelization, expressed by
Instruction Per Cycle (IPC), improved by 4.6%. Hence, the
execution time and the power consumption are enhanced by
11.5% and 2.78% respectively leading to an energy saving of
13.97%.

TABLE I
INFLUENCE OF LOOP PEELING TRANSFORMATION ON THE ENERGY AND

POWER CONSUMPTION.

Original Transformed %

Exec. Cycles 2 808 2 485 −11.5
Power (W) 1.034 1.006 −2.78

Energy (mJ) 0.0029 0.0025 −13.97
IPC 0.919 0.962 4.6

Memory References 802 499 −37.78

Third, we study the impact of the procedure integration.
Procedure integration, also called procedure inlining, replaces
calls to procedures with copies of their bodies [10]. It can be a
very useful optimization, because it changes calls from opaque
objects that may have unknown effects on aliased variables and
parameters to local code that not only exposes its effects but
that can be optimized as part of the calling procedure [11].
Although procedure integration removes the cost of the pro-
cedure call and return instructions, these are often small
savings. The major savings often come from the additional
optimizations that become possible on the integrated procedure

body. For example, a constant passed as an argument can
often be propagated to all instances of the matching parameter.
Moreover, the opportunity to optimize integrated procedure
bodies can be especially valuable if it enables loop transforma-
tions that were originally inhibited by having procedure calls
embedded in loops or if it turns a loop that calls a procedure,
whose body is itself a loop, into a nested loop [11].

Ordinarily, when a function is invoked, control is trans-
ferred to its definition by a branch or call instruction. With
procedure integration, control flows directly to the code for
the function, without a branch or call instruction. Moreover,
the stack frames for the caller and callee are allocated together.
Procedure integration may make the generated code slower as
well; for instance, by decreasing locality of reference.
Figure 4 shows an example of the use of procedure integration.
In this example the function pred(int) is integrated in the
function f(int).

Table II shows the impact of applying the procedure integra-
tion transformations on the power, energy and execution time.
As mentioned before, the procedure integration eliminates the
call overhead and consequently reduces the memory references
in the proposed example by 12.44%. Moreover, the procedure
integration reduces the executed instructions by 41.11% and
the IPC by 12.59%. Thus, the power consumption and the
execution time are reduced by 3.93% and 32.63% respectively.

Finally, Fig. 5 summarizes the results of applying different
code transformations on the power, execution time, and energy.
In Fig. 5 the original code represents the 100%. Hence, any
deviation above or under 100% is related to the applied code
transformation.

B. Impact of SIMD Employment

The C6000 CCS compiler recognizes a number of intrinsic
C-functions. Intrinsics allow the programmer to express the



Fig. 4. Procedure integration transformation.

Fig. 5. Impact of applying code transformations on power, execution time and energy.

TABLE II
INFLUENCE OF PROCEDURE INTEGRATION TRANSFORMATIONS ON THE

ENERGY AND POWER CONSUMPTION.

Original Transformed %

Exec. Cycles 3 218 2 168 −32.63
Power (W) 1.039 0.998 −3.93

Energy (mJ) 0.0033 0.0022 −35.27
IPC 0.983 0.859 −12.59

Memory References 804 704 −12.44
Executed Instructions 3 162 1 862 −41.11

meaning of certain assembly statements that would otherwise
be cumbersome or inexpressible in C/C++. Most of the intrin-

sic functions make use of the Single Instruction Multiple Data
(SIMD) capabilities of the TMS320C6416T. The intrinsics
are specified with a leading underscore, and are accessed by
calling them as done with usual C/C++ functions [12]. For
example:

int X1, X2, Y;
Y = _add4(X1, X2)

In order to assess the effect of utilizing SIMD instructions on
the energy and power consumption, with the aid of the Texas
Instrument host intrinsics package Ver.0.72 [13], we prepare
two instances from the Inverse Discrete Cosine Transform
(IDCT) algorithm as a case study. The first is implemented
without using any of the SIMD instructions while the other



Fig. 6. An example of the IDCT code with and without intrinsic C-functions.

is implemented with the aid of all possible SIMD instructions
as shown in Fig. 6. The functionality of the two instances are
tested and verified to give the same result. We study the effect
of employing SIMD instructions with each of the compiler
performance optimization levels (-o0 to -o3).
To study the effect of utilizing the SIMD isolated from the
effect of the Software Pipelined Loop (SPLOOP) we compile
and optimize the two versions of IDCT with -o3-mu (-mu:
disables the software pipelined loop). Table III demonstrates
that the SIMD version of the IDCT compiled and optimized
by invoking -o3-mu achieves 3.96% power saving while it
achieves 25.4% and 28.35% reduction in the execution time
and the energy respectively. The achieved power saving is
mainly caused by the reduction of the IPC by 20.86% while the
enhancement in the execution time is derived by the significant
memory references reduction, by more than 62%.

TABLE III
INTRINSICS EFFECTS WHEN -O3-PM-MU OPTIMIZATION OPTIONS ARE

INVOKED.

Original with Intrinsics %

Exec. Cycles 3 319 2 476 −25.4
Power (W) 1.091 1.048 −3.96

Energy (mJ) 0.00362 0.00259 −28.35
IPC 2.416 1.913 −20.86

CPU Stall Cycles 96 0 −100
Memory References 1 536 576 −62.5

To summarize the effect of utilizing the SIMD on the power
consumption, energy and the execution time we investigate two
more case studies, the Discrete Cosine Transform (DCT) and
the Median filter with a 3x3 window in the same manner as

Fig. 7. Power consumption w/o SIMD utilization vs. various optimization
options.

the investigation of the IDCT. Figure 7, 8 and 9 represent a
comparison between the power consumption, energy and the
execution cycles with/without SIMD at various performance
optimization options.

Fig. 8. Energy w/o SIMD employment vs. various optimization options.



In general employing the SIMD significantly enhance the
performance and the energy saving. SPLOOP feature is the
main basis for the significant improvement in the performance
when -o2 or -o3 is invoked [14]. Hence, by disabling the
SPLOOP feature, -o2-mu or -o3-mu, the utilization of SIMD
instructions result in a comparable performance enhancement
with -o2 or -o3 with the great advantage of an average power
saving of 18.83% and 17% respectively.
Thus, it is pretty clear that rewriting the algorithm to max-
imally utilize SIMD instructions, while invoking the opti-
mization options -o3-mu, is the best choice from the power
consumption and performance perspective. Therefore, it can
be considered as a trade-off between the power consumption
from one side and the execution time and the energy from the
other side.

Fig. 9. Execution cycles w/o SIMD employment use vs. various optimization
options.

V. CONCLUSION

Previous work [15] has shown that the most aggressive
performance optimization level -o3 increases the power
consumption by 25%. The CCS allows a very limited
programmer’s control over the individual optimizations within
any optimization level. Thus, in this paper we evaluate the
impact of several source code transformations from power,
energy and performance perspective. The applied code
transformations can be classified into three main categories:
Data structures, loop and procedural transformations.
The results show that several code transformations have good
impact on power consumption, energy and performance such
as loop peeling, loop fusion and procedure integration while
other transformations improve the power consumption on the
account of the performance such as loop permutation and
loop tilling. The results also show that some transformations
have no impact on the power consumption but they improve
the performance and energy. This type of transformations
is not power hungry such as loop reversal, loop strength
reduction and array declaration sorting.
Moreover, we investigated the influence of a powerful
capability of the TMS320C6416T which is the ability to

execute SIMD instructions. The CCS3.1 recognizes a number
of intrinsic C-functions. Most of these intrinsic functions
make use of the SIMD capabilities of the TMS320C6416T.
Hence, we prepare two versions for each of the three different
benchmarks namely DCT, IDCT and median filter. The first
version is not employing any of the SIMD instructions, while
the second utilizes all of the possible SIMD instructions.
The SPLOOP feature is the major contributor to the power
increase when optimization level -o3 is invoked [14]. But,
also it is the main reason for the performance enhancement
when -o3 is invoked. Therefore, we investigate the effect
of utilizing SIMD while enabling/disabling SPLOOP. The
results show that by disabling the SPLOOP feature, -o2-mu
or -o3-mu, the utilization of SIMD instructions result in a
comparable performance enhancement with -o2 or -o3 with
the great advantage of, on average, 18.83% and 17% power
saving, respectively.

REFERENCES

[1] M. T.-C. Lee, M. Fujita, V. Tiwari, and S. Malik, “Power analysis and
minimization techniques for embedded dsp software,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 5, no. 1, pp. 123–135, 1997.

[2] D. Ortiz and N. Santiago, “Impact of Source Code Optimizations on
Power Consumption of Embedded Systems,” June 2008, pp. 133–136.

[3] Z. N. Azeemi and M. Rupp, “Energy-Aware Source-to-Source Transfor-
mations for a VLIW DSP Processor,” in proceedings of the 17th ICM’05,
Islamabad, Pakistan, December 2005, pp. 133–138.

[4] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The Impact of
Source Code Transformations on Software Power and Energy Consump-
tion,” Journal of Circuits, Systems, and Computers, vol. 11, no. 5, pp.
477–502, 2002.

[5] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,”
SIGARCH Computer Architecture News, vol. 25, no. 3, pp. 13–25, 1997.

[6] F. Catthoor, K. Danckaert, S. Wuytack, and N. D. Dutt, “Code Trans-
formations for Data Transfer and Storage Exploration Preprocessing in
Multimedia Processors,” IEEE Design and Test of Computers, vol. 18,
no. 3, pp. 70–82, 2001.

[7] C. Kulkarni, F. Catthoory, and H. De Man, “Code Transformations
for Low Power Caching in Embedded Multimedia Processors,” in
proceedings of the 12th. International Parallel Processing Symposium on
International Parallel Processing Symposium (IPPS’98). Washington,
DC, USA: IEEE Computer Society, 1998, pp. 292–297.

[8] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving Data Locality
with Loop Transformations,” ACM Transactions on Programming Lan-
guages and Systems, vol. 18, no. 4, pp. 424–453, 1996.

[9] H. Yang, G. R. Gao, A. Marquez, G. Cai, and Z. Hu, “Power and Energy
Impact by Loop Transformations,” in proceedings of the Workshop on
Compilers and Operating Systems for Low Power (COLP’01), 2001.

[10] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler Transformations
for High-Performance Computing,” ACM Computing Surveys, vol. 26,
no. 4, pp. 421–461, 1994.

[11] S. S. Muchnick, Advanced compiler design and implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[12] T. Instruments, TMS320C6416T, Fixed Point Digital Signal Processor,
Optimizing Compiler User Guide, May 2004, spru187l. [Online].
Available: www.ti.com

[13] Texas Instruments Inc., C6000 Host Intrinsics, January 2009. [Online].
Available: www.tiexpressdsp.com

[14] M. E. A. Ibrahim, M. Rupp, and S. E.-D. Habib, “Performance and
Power Consumption Trade-offs for a VLIW DSP,” in proceedings of
the IEEE International Symposium on Signals, Circuits and Systems
(ISSCS’09). IEEE, 2009, pp. 197–200.

[15] ——, “Compiler-Based Optimizations Impact on Embedded Software
Power Consumption,” in proceedings of the IEEE joint conference
NEWCAS-TAISA’09). IEEE, 2009, pp. 247–250.


