spock: A Debugging Support Tool for Logic Programs
under the Answer-Set Semantics*

Martin Gebsel, Jorg Puhrer, Torsten Schaul
Hans Tompit$, and Stefan Woltrah

L Institut fur Informatik, Universitat Potsdam,
August-Bebel-Stralle 89, D-14482 Potsdam, Germany
{gebser, torsten}@s. uni - pot sdam de
2 Institut filr Informationssysteme, Technische Univéitsitvien,
FavoritenstrafRe 9-11, A—1040 Vienna, Austria
{puehrer, tonmpi ts}@r.tuw en. ac. at
wol t ran@lbai . t uni en. ac. at

Abstract. Answer-set programming (ASP) is an emerging logic-prognémg
paradigm that strictly separates the description of a prabirom its solving
methods. Despite its semantic elegance, ASP suffers framlkadf support for
program developers. In particular, tools are needed thigt éregineers in de-
tecting erroneous parts of their programs. Unlike in otheaa of logic pro-
gramming, applying tracing techniques for debugging Iggimgrams under the
answer-set semantics seems rather unnatural, since e@nmgpiayperative solv-
ing algorithms would undermine the declarative flavour ofPAS this paper,
we present the systegpock, a debugging support tool for answer-set programs
making use of ASP itself. The implemented techniques miirtkee declarative
nature of ASP within the debugging process and are indepérudethe actual
computation of answer sets.

1 General Information

Answer-set programmin@gASP) [1] has become an important logic-programming
paradigm for declarative problem solving, incorporatingdamental concepts of non-
monotonic reasoning. A major reason why ASP has not yet feumbre widespread
popularity as a problem-solving technique, however, ifait& of suitableengineering
tools for developing programs. In particular, realising tools d@bugginganswer-set
programs is a clearly recognised issue in the ASP commuamity,several approaches
in this direction have been proposed in recent years [2-5].

From a theoretical point of view, the nonmonotonicity of wesset programs is
an aggravating factor for detecting sources of errors,esgvery rule of a program
might significantly influence the resulting answer sets. B dther hand, applying
tracing techniques for debugging logic programs under tisgvar-set semantics seems
rather unnatural, since employing imperative solving athms would undermine the
declarative flavour of ASP.

* This work was partially supported by the Austrian Scienced=gFWF) under project P18019.

In this paper, we discuss the main features of the sysigotk [6], which supports
developers of answer-set programs in locating errors iim fregrams by exploiting
the declarative nature of ASP itself, but being independéspecific ASP solvers. The
name spock” makes reference to the fact that detecting errors is don@dgns of
logic, just like the popular Vulcan of Star Trek fame.

The theoretical background of the implemented methods mtagduced in previ-
ous work [5], exploiting and extendingtagging techniques used by Delgrande et
al. [7] for compiling ordered logic programs into standanes. In our approach, a pro-
gram to debug/I, is augmented with dedicated meta-atoms, catteyd serving two
purposes: Firstly, they allow for controlling and maniging the applicability of rules,
and secondly, tags occurring in the answer sets of the eatimebgram reflect various
properties offI. Our tool implements the tagging process and further rélatnsla-
tions for a prograni! to debug, allowing for an extrapolation of non-existing\aas
sets in combination with explanations why an interpretaisonot an answer set éf.

For illustration of the debugging questions addressedsidenthe problem of invit-
ing guests to a party when it is known that some of them woupgeaponly if certain
others do or do not attend the festivity. An instance of sudetiing is encoded in
programlI;,,, where each atom represents the appearing of a potentighisitor:

re = Jjim «— uhura, rey = chekov < not bones,
ry = Jim < not chekov, rs = bones « jim,
r3 = uhura < chekov, not scotty, r¢ = scotty < not uhura.

This program has two answer sets, vigchekov, scotty} and {bones, jim, scotty}.
Assume that Sulu, the programmer, is quite perplexed byr#sslt, wondering why
there is a scenario where only Chekov and Scotty, who meeslg h neutral relation to
each other rather than a friendship, attend. On the othet, lirenis astonished as there
is no possibility such that Uhura and Jim can jointly be iaditWith the help of the tool
spock, reasons for such mismatches between the expected andulésmmnantics of
a program can be found.

2 Background

2.1 Answer-Set Programs
A (normal) logic program(over an alphabetl) is a finite set of rules of the form
a<+by,...,by,not cy,...,not cy, (1)

wherea andb;, c; € A are atoms, fob <i < m, 0 < j <n. A literal is an atorm or
its negatiomot a. For aruler asin (1), lethead(r) = a be theheadof r andbody(r) =
{b1,...,bm, not cy,...,not c,} thebodyof r. Furthermore, we defingody ™ (r) =
{b1,...,bm} andbody ™ (r) = {ec1,...,cn}. For alogic progranil, a setX of atoms
is ananswer sebf I7 iff X is a minimal model of head(r) « body™ (r) | r € II,
body~ (r)NX = (}. For uniformity, we assume that any integrity constrainbody (r)

is expressed as a rule «— body(r), not w, wherew is a globally new atom. Moreover,

we allow nested expressions of fomwnt not a, wherea is some atom, in the body of
rules. Such rules are identified with normal rules in whieht not « is replaced by
not a*, wherea* is a globally new atom, together with an additional rute— not a.

2.2 Tagging-Based Debugging

In what follows, we sketch the theoretical principles utgiag our systenspock. For
a more detailed discussion, we refer to Brain et al. [5]. Tlnnidea of tagging is to
split the head from the body, for each rule in a program, aedethy to intervene into
the applicability of rules. After this division, tags arestalled for triggering rules. This
way, the formation of answer sets can be controlled, anditatie answer sets of the
transformed (or tagged) program reflect inherent propedi¢he original program.
Technically, a prograni/ (over alphabeid) to debug is rewritten into a program
Tx[I1] over an extended alphabdt". Let IT be a logic program oved and consider a
bijectionn, assigning to each ruteover.4 a unique name,.. Then, the prograrfix [/I]
over A+ consists of the following rules, for € I7, b € body™ (r), andc € body ™ (r):

head(r) < ap(n,), not ko(n,), 2)
ap(n) — ok(ny), body(r), 3)
bl(n,) « ok(n,), not b, 4
bl(n,) « ok(n,), not not ¢, (5)
ok(n,.) « not ok(n,.). (6)

The tagsap(n,-) andbl(n,) express whether a ruleis applicable or blocked, respec-
tively, while thecontrol tagsko(n,.), ok(n,.), andok(n,.) are used for manipulating the
application ofr. Intuitively, the rules ofIl are split into rules of forms (2) and (3),
separating the applicability of a rule from the actual ocence of the respective rule
head in an interpretation. Analogously, rules of forms @] €5) elicit which rules are
blocked. Tags stating whether rulés applicable or blocked are only derived¥(n,)
holds, which is by default the case, as expressed by rulesof {6).

We callZk[IT] thekernel taggingf 1, since it serves as a basic submodule for more
enhanced programs facilitating certain debugging regu@ste such extension scenario
is the extrapolation of non-existing answer sets of a pmogfaover A. Using further
translationsZp, 7c, and7; [5], the occurrence obnormality tagsab,(n,), ab.(a),
andab;(a), respectively, in an answer sét* of the transformed program provides
information why an interpretatioX = X+ N A is not an answer set df. Here, we
make use of the Lin-Zhao theorem [8], which qualifies ansve¢s as models of the
completion9] and theloop formulasof a program. In particular, the program-oriented
abnormality tagab, (n,-) indicates that rule is applicable but not satisfied with respect
to an interpretation. The completion-oriented abnormadig ab.(a) signals thaw is
in the considered interpretation but all rules havings head are blocked. Finally,
the presence of a loop-oriented abnormality 8&g(a) indicates that the derivation
of atoma might recursively depend om itself and, therefore, violate the minimality
criterion for answer sets. Note that all transformatiorsduare polynomial in the size
of the input program and can be constructed for all programdguconsideration, even
for programs without answer sets.

Command-Line
Arguments

I

I

I
<file_1> 1
<file_2> !
I

I

= 1

spock
Internal

Program
Translation

Program
Representation

——+| Parser

Fig. 1. Data flow of program translations

3 System

spock is a command-line oriented tool, written in Java 5.0 and ighkd under the
GNU general public license [10]. It is publicly available at

http://ww. kr.tuw en. ac. at/ resear ch/ debug

as a jar-package including binaries and sources.

The data flow for all transformations is depicted by Fig. Iskithe input program
is parsed and represented in an internal data structure, Theeactual program trans-
formation is performed, as specified by command-line arguse

The tagging technique uses labels to refer to individuadgulTherefore, we al-
low the programmer to add labels to the rules of the programbetoug. As this re-
quires an extension of the program syntsppck offers an interface tdl v [11] and
| par se/snodel s [12] for computing answer sets of labelled programs.

For illustration of the debugging process, reconsider mog71,,,, having the an-
swer setsX; = {chekov, scotty} and Xy = {bones, jim, scotty}, and assume that it
is stored in fileFl LE. The kernel taggingk 11,] is then obtained by the call

java -jar spock.jar -k FILE.
By piping the result of the command to an answer-set solvepktain the answer sets

X1+ = Xl U {aP("u)a ap(n’fs)v bl(n’fl)v bl(nT2)7 bl(nT%)v bl(nTs)} UOK and
X = Xo U{ap(n,),ap(nry), ap(ng), bl(ns), bl(nyy), bl(ny,) } U OK,

where OK = {ok(n,,), ok(n,,),ok(n.,), ok(n.,),ok(n.;),ok(n.5)}, extendingX;
and X, by information about the applicability of rules. E.g., theegence ofp(n,.,)
in Xf indicates that rule, is applicable with respect t&;, and hencehekov € X;
but bones ¢ X1, while bl(n,.,) € Xfr indicates that; is blocked with respect t&;.
This is becausecotty € X;.

The flags * expo’, ‘- exco’, and ‘- ex| o’ activate the extrapolation translations
Tp, 1c, and 7L, respectively. Instead of using all three flags simultasggisetting

‘- ex’ produces the union of the resulting programs. Furthermiorerder to restrict
the scope of transformatidfp to a subprogranil’ (respectively, translation®c, 7,
to setsAc, AL of atoms), the names of the considered rules (respectiagiyns)
can be explicitly stated in a comma-separated list follgntime -~ exr ul es=" (resp.,
‘- exat onsC="and ‘- exat onsL=") flag. Finally, spock allows for computing only
abnormality-minimum answer sets by meansdbfv-specific weak constraints. The
flags - mi nab’, ‘- mi nabp’, ‘- m nabc’, or ‘- m nabl ' makespock output weak
constraints for minimising all abnormality tags, progranented abnormality tags,
completion-oriented abnormality tags, or loop-oriented@mality tags, respectively.
As for our example, recall that Sulu wanted to know why therad chance for
Uhura and Jim to attend the same party. Therefore, we adatistraints— not vhura
and«< not jim to II;,,. Let file FI LE2 contain the overall program, which does not
have answer sets. The (optimal) answer sets of the tagggdgmnmbtained by the call

java -jar spock.jar -k -ex -exrules=rl1,r2,r3,r4,r5,r6
-m nab FILE2 ,

projected to the atoms occurring ifl;,, and the abnormality tags, are given by
{ab.(chekov), bones, chekov, jim, uhura}, {ab.(uhura), bones, jim, uvhura}, and
{abp(nys), chekov, jim, uhura}, indicating that bones, chekov, jim, uhura} is notan
answer set of7;,,, because atomhekov is not supported. Likewiseihura is not sup-
ported with respect tdbones, jim, uhura}. Finally, {chekov, jim, uhura} is not an
answer set as it does not satisfy ruje

4 Discussion and Related Wor k

In this paper, we presentexpock, a prototype implementation of a debugging sup-
port tool for answer-set programs. The implemented metloggaelies on theoretical
results of previous work [5] and is based on the idea thatnarog to be debugged
are translated into other programs having answer sets fieatd@bugging-relevant in-
formation about the original programs. After an initial kel transformation, we get
insight into the applicability of rules with respect to iatiual answer sets. In a further
step, the system allows for identifying causes why intdgtiens are not answer sets.
Here,spock distinguishes between abnormalities due to missing orespms, or
atoms whose presence in an interpretation is self-causeddér to restrict the amount
of information returned to the programmer, standard ASkrgation techniques can
be used to focus on interpretations with a minimal numbebabamalities. In addition
to the tagging technique described hengpck also supports another approach towards
debugging answer-set programs based on meta-programb@nt4]. Future work in-
cludes the integration of further aspects of the transtadigproach and the design of a
graphical user interface to ease the use of the feaspesk provides.
Implementations of related techniques inclsaalebug [3], a prototype debugger
focusing on odd-cycle-free inconsistent programs. Theesyss designed to find mini-
mal sets of constraints, restoring consistency when rethfseen a program. Brain and
De Vos [2] present the systelDEAS implementing two query algorithms addressing
the questions why a set of literals is true with respect toesonfalse with respect to

all answer sets of a program. Both algorithms are procedun@lsimilar to the ones
used in ASP solvers, suggesting that an approach usinggmtavel transformations
would be more practical. Pontelli and Son [4] developed dimpieary implementa-
tion for their adoption of so-calleplistifications[15, 16] to the problem of debugging
answer-set programs. Their system returns visual outpiarin of graphs explaining
why atoms are (not) present in an answer set.

References

11.

12.

13.

14.

15.

16.

Baral, C.: Knowledge Representation, Reasoning andalb@ate Problem Solving. Cam-
bridge University Press (2003)

Brain, M., De Vos, M.: Debugging Logic Programs under theser Set Semantics. In:
Proc. ASP’05. Volume 142, CEUR Workshop Proceedings (CBAMRorg) (2005) 141-152

Syrjanen, T.: Debugging Inconsistent Answer Set Prograln: Proc. NMR'06. (2006)

77-83

Pontelli, E., Son, T.: Justifications for Logic Progranmeler Answer Set Semantics. In:
Proc. ICLP’06. Springer (2006) 196-210

. Brain, M., Gebser, M., Puhrer, J., Schaub, T., Tompits,Wbltran, S.: Debugging ASP

Programs by means of ASP. In: Proc. LPNMR’'07. Springer (2@1#43

. Brain, M., Gebser, M., Puhrer, J., Schaub, T., Tompits,Wbltran, S.: “That is lllogical

Captain!” — The Debugging Support Tool spock for Answerfetgrams: System Descrip-
tion. In: Proc. SEAQ7. (2007) 71-85

. Delgrande, J., Schaub, T., Tompits, H.: A Framework fomPiting Preferences in Logic

Programs. Theory and Practice of Logic Programndrfg003) 129-187

. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logiogtam by SAT Solvers.

Artificial Intelligence157 (2004) 115-137

. Clark, K.: Negation as Failure. In: Logic and Data Basdseném Press (1978) 293-322
. GNU General Public License — Version 2, June 1991. Fréw&e Foundation Inc. (1991)

http://www.gnu.org/copyleft/gpl.html

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACKsaaions on Computational

Logic 7 (2006) 499-562

Simons, P., Niemela, ., Soininen, T.: Extending angdlémenting the Stable Model Seman-
tics. Artificial Intelligencel38 (2002) 181-234

Puhrer, J.: On Debugging of Propositional Answer-Segfams. Master’s thesis, Vienna
University of Technology, Austria (2007)

Gebser, M., Pihrer, J., Schaub, T., Tompits, H.: A M&tagramming Technique for De-

bugging Answer-Set Programs. In: Proc. AAAI'08. (2008) Ppeaar

Roychoudhury, A., Ramakrishnan, C., Ramakrishnan,Justifying Proofs using Memo

Tables. In: Proc. PPDP’00. (2000) 178-189

Specht, G.: Generating Explanation Trees even for Negain Deductive Database Sys-
tems. In: Proc. LPE’93. (1993) 8-13

