
spock: A Debugging Support Tool for Logic Programs
under the Answer-Set Semantics⋆

Martin Gebser1, Jörg Pührer2, Torsten Schaub1,
Hans Tompits2, and Stefan Woltran2

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Straße 89, D-14482 Potsdam, Germany
{gebser,torsten}@cs.uni-potsdam.de

2 Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria
{puehrer,tompits}@kr.tuwien.ac.at

woltran@dbai.tuwien.ac.at

Abstract. Answer-set programming (ASP) is an emerging logic-programming
paradigm that strictly separates the description of a problem from its solving
methods. Despite its semantic elegance, ASP suffers from a lack of support for
program developers. In particular, tools are needed that help engineers in de-
tecting erroneous parts of their programs. Unlike in other areas of logic pro-
gramming, applying tracing techniques for debugging logicprograms under the
answer-set semantics seems rather unnatural, since employing imperative solv-
ing algorithms would undermine the declarative flavour of ASP. In this paper,
we present the systemspock, a debugging support tool for answer-set programs
making use of ASP itself. The implemented techniques maintain the declarative
nature of ASP within the debugging process and are independent of the actual
computation of answer sets.

1 General Information

Answer-set programming(ASP) [1] has become an important logic-programming
paradigm for declarative problem solving, incorporating fundamental concepts of non-
monotonic reasoning. A major reason why ASP has not yet founda more widespread
popularity as a problem-solving technique, however, is itslack of suitableengineering
tools for developing programs. In particular, realising tools for debugginganswer-set
programs is a clearly recognised issue in the ASP community,and several approaches
in this direction have been proposed in recent years [2–5].

From a theoretical point of view, the nonmonotonicity of answer-set programs is
an aggravating factor for detecting sources of errors, since every rule of a program
might significantly influence the resulting answer sets. On the other hand, applying
tracing techniques for debugging logic programs under the answer-set semantics seems
rather unnatural, since employing imperative solving algorithms would undermine the
declarative flavour of ASP.

⋆ This work was partially supported by the Austrian Science Fund (FWF) under project P18019.



In this paper, we discuss the main features of the systemspock [6], which supports
developers of answer-set programs in locating errors in their programs by exploiting
the declarative nature of ASP itself, but being independentof specific ASP solvers. The
name “spock” makes reference to the fact that detecting errors is done bymeans of
logic, just like the popular Vulcan of Star Trek fame.

The theoretical background of the implemented methods was introduced in previ-
ous work [5], exploiting and extending atagging techniqueas used by Delgrande et
al. [7] for compiling ordered logic programs into standard ones. In our approach, a pro-
gram to debug,Π , is augmented with dedicated meta-atoms, calledtags, serving two
purposes: Firstly, they allow for controlling and manipulating the applicability of rules,
and secondly, tags occurring in the answer sets of the extended program reflect various
properties ofΠ . Our tool implements the tagging process and further related transla-
tions for a programΠ to debug, allowing for an extrapolation of non-existing answer
sets in combination with explanations why an interpretation is not an answer set ofΠ .

For illustration of the debugging questions addressed, consider the problem of invit-
ing guests to a party when it is known that some of them would appear only if certain
others do or do not attend the festivity. An instance of such asetting is encoded in
programΠinv , where each atom represents the appearing of a potential party visitor:

r1 = jim ← uhura, r4 = chekov ← not bones ,
r2 = jim ← not chekov , r5 = bones ← jim ,
r3 = uhura ← chekov ,not scotty, r6 = scotty ← not uhura.

This program has two answer sets, viz.,{chekov , scotty} and{bones , jim , scotty}.
Assume that Sulu, the programmer, is quite perplexed by thisresult, wondering why
there is a scenario where only Chekov and Scotty, who merely have a neutral relation to
each other rather than a friendship, attend. On the other hand, he is astonished as there
is no possibility such that Uhura and Jim can jointly be invited. With the help of the tool
spock, reasons for such mismatches between the expected and the actual semantics of
a program can be found.

2 Background

2.1 Answer-Set Programs

A (normal) logic program(over an alphabetA) is a finite set of rules of the form

a← b1, . . . , bm,not c1, . . . ,not cn, (1)

wherea andbi, cj ∈ A are atoms, for0 ≤ i ≤ m, 0 ≤ j ≤ n. A literal is an atoma or
its negationnot a. For a ruler as in (1), lethead(r) = a be theheadof r andbody(r) =
{b1, . . . , bm,not c1, . . . ,not cn} the bodyof r. Furthermore, we definebody+(r) =
{b1, . . . , bm} andbody−(r) = {c1, . . . , cn}. For a logic programΠ , a setX of atoms
is ananswer setof Π iff X is a minimal model of{head(r) ← body+(r) | r ∈ Π,
body−(r)∩X = ∅}. For uniformity, we assume that any integrity constraint← body(r)
is expressed as a rulew ← body(r),not w, wherew is a globally new atom. Moreover,



we allow nested expressions of formnot not a, wherea is some atom, in the body of
rules. Such rules are identified with normal rules in whichnot not a is replaced by
not a⋆, wherea⋆ is a globally new atom, together with an additional rulea⋆ ← not a.

2.2 Tagging-Based Debugging

In what follows, we sketch the theoretical principles underlying our systemspock. For
a more detailed discussion, we refer to Brain et al. [5]. The main idea of tagging is to
split the head from the body, for each rule in a program, and thereby to intervene into
the applicability of rules. After this division, tags are installed for triggering rules. This
way, the formation of answer sets can be controlled, and tagsin the answer sets of the
transformed (or tagged) program reflect inherent properties of the original program.

Technically, a programΠ (over alphabetA) to debug is rewritten into a program
TK[Π ] over an extended alphabetA+. Let Π be a logic program overA and consider a
bijectionn, assigning to each ruler overA a unique namenr. Then, the programTK[Π ]
overA+ consists of the following rules, forr ∈ Π , b ∈ body+(r), andc ∈ body−(r):

head(r)← ap(nr),not ko(nr), (2)

ap(nr)← ok(nr), body(r), (3)

bl(nr)← ok(nr),not b, (4)

bl(nr)← ok(nr),not not c, (5)

ok(nr)← not ok(nr). (6)

The tagsap(nr) andbl(nr) express whether a ruler is applicable or blocked, respec-
tively, while thecontrol tagsko(nr), ok(nr), andok(nr) are used for manipulating the
application ofr. Intuitively, the rules ofΠ are split into rules of forms (2) and (3),
separating the applicability of a rule from the actual occurrence of the respective rule
head in an interpretation. Analogously, rules of forms (4) and (5) elicit which rules are
blocked. Tags stating whether ruler is applicable or blocked are only derived ifok(nr)
holds, which is by default the case, as expressed by rules of form (6).

We callTK[Π ] thekernel taggingof Π , since it serves as a basic submodule for more
enhanced programs facilitating certain debugging requests. One such extension scenario
is the extrapolation of non-existing answer sets of a program Π overA. Using further
translations,TP, TC, andTL [5], the occurrence ofabnormality tags, abp(nr), abc(a),
andabl(a), respectively, in an answer setX+ of the transformed program provides
information why an interpretationX = X+ ∩ A is not an answer set ofΠ . Here, we
make use of the Lin-Zhao theorem [8], which qualifies answer sets as models of the
completion[9] and theloop formulasof a program. In particular, the program-oriented
abnormality tagabp(nr) indicates that ruler is applicable but not satisfied with respect
to an interpretation. The completion-oriented abnormality tagabc(a) signals thata is
in the considered interpretation but all rules havinga as head are blocked. Finally,
the presence of a loop-oriented abnormality tagabl(a) indicates that the derivation
of atoma might recursively depend ona itself and, therefore, violate the minimality
criterion for answer sets. Note that all transformations used are polynomial in the size
of the input program and can be constructed for all programs under consideration, even
for programs without answer sets.



<file_n>

Translation

<file_1>

<file_2>
... Parser

spock

Command-Line

Standard Input

Representation
Program
Internal

Arguments

Input Program

Program

Fig. 1. Data flow of program translations

3 System

spock is a command-line oriented tool, written in Java 5.0 and published under the
GNU general public license [10]. It is publicly available at

http://www.kr.tuwien.ac.at/research/debug

as a jar-package including binaries and sources.
The data flow for all transformations is depicted by Fig. 1. First, the input program

is parsed and represented in an internal data structure. Then, the actual program trans-
formation is performed, as specified by command-line arguments.

The tagging technique uses labels to refer to individual rules. Therefore, we al-
low the programmer to add labels to the rules of the program todebug. As this re-
quires an extension of the program syntax,spock offers an interface todlv [11] and
lparse/smodels [12] for computing answer sets of labelled programs.

For illustration of the debugging process, reconsider programΠinv , having the an-
swer setsX1 = {chekov , scotty} andX2 = {bones , jim , scotty}, and assume that it
is stored in fileFILE. The kernel taggingTK[Πinv ] is then obtained by the call

java -jar spock.jar -k FILE .

By piping the result of the command to an answer-set solver, we obtain the answer sets

X+

1 = X1 ∪ {ap(nr4
), ap(nr6

), bl(nr1
), bl(nr2

), bl(nr3
), bl(nr5

)} ∪ OK and
X+

2 = X2 ∪ {ap(nr2
), ap(nr5

), ap(nr6
), bl(nr1

), bl(nr3
), bl(nr4

)} ∪ OK,

whereOK = {ok(nr1
), ok(nr2

), ok(nr3
), ok(nr4

), ok(nr5
), ok(nr6

)}, extendingX1

andX2 by information about the applicability of rules. E.g., the presence ofap(nr4
)

in X+

1 indicates that ruler4 is applicable with respect toX1, and hencechekov ∈ X1

but bones /∈ X1, while bl(nr3
) ∈ X+

1 indicates thatr3 is blocked with respect toX1.
This is becausescotty ∈ X1.

The flags ‘-expo’, ‘ -exco’, and ‘-exlo’ activate the extrapolation translations
TP, TC, andTL, respectively. Instead of using all three flags simultaneously, setting



‘-ex’ produces the union of the resulting programs. Furthermore, in order to restrict
the scope of transformationTP to a subprogramΠ ′ (respectively, translationsTC, TL
to setsAC, AL of atoms), the names of the considered rules (respectively,atoms)
can be explicitly stated in a comma-separated list following the ‘-exrules=’ (resp.,
‘-exatomsC=’ and ‘-exatomsL=’) flag. Finally,spock allows for computing only
abnormality-minimum answer sets by means ofdlv-specific weak constraints. The
flags ‘-minab’, ‘ -minabp’, ‘ -minabc’, or ‘-minabl’ makespock output weak
constraints for minimising all abnormality tags, program-oriented abnormality tags,
completion-oriented abnormality tags, or loop-oriented abnormality tags, respectively.

As for our example, recall that Sulu wanted to know why there is no chance for
Uhura and Jim to attend the same party. Therefore, we add the constraints← not uhura

and← not jim to Πinv . Let file FILE2 contain the overall program, which does not
have answer sets. The (optimal) answer sets of the tagged program obtained by the call

java -jar spock.jar -k -ex -exrules=r1,r2,r3,r4,r5,r6
-minab FILE2 ,

projected to the atoms occurring inΠinv and the abnormality tags, are given by
{abc(chekov ), bones , chekov , jim , uhura}, {abc(uhura), bones , jim , uhura}, and
{abp(nr5

), chekov , jim , uhura}, indicating that{bones, chekov , jim , uhura} is not an
answer set ofΠinv because atomchekov is not supported. Likewise,uhura is not sup-
ported with respect to{bones , jim , uhura}. Finally, {chekov , jim , uhura} is not an
answer set as it does not satisfy ruler5.

4 Discussion and Related Work

In this paper, we presentedspock, a prototype implementation of a debugging sup-
port tool for answer-set programs. The implemented methodology relies on theoretical
results of previous work [5] and is based on the idea that programs to be debugged
are translated into other programs having answer sets that offer debugging-relevant in-
formation about the original programs. After an initial kernel transformation, we get
insight into the applicability of rules with respect to individual answer sets. In a further
step, the system allows for identifying causes why interpretations are not answer sets.
Here,spock distinguishes between abnormalities due to missing or spare atoms, or
atoms whose presence in an interpretation is self-caused. In order to restrict the amount
of information returned to the programmer, standard ASP optimisation techniques can
be used to focus on interpretations with a minimal number of abnormalities. In addition
to the tagging technique described here,spock also supports another approach towards
debugging answer-set programs based on meta-programming [13, 14]. Future work in-
cludes the integration of further aspects of the translation approach and the design of a
graphical user interface to ease the use of the featuresspock provides.

Implementations of related techniques includesmdebug [3], a prototype debugger
focusing on odd-cycle-free inconsistent programs. The system is designed to find mini-
mal sets of constraints, restoring consistency when removed from a program. Brain and
De Vos [2] present the systemIDEAS, implementing two query algorithms addressing
the questions why a set of literals is true with respect to some or false with respect to



all answer sets of a program. Both algorithms are proceduraland similar to the ones
used in ASP solvers, suggesting that an approach using program-level transformations
would be more practical. Pontelli and Son [4] developed a preliminary implementa-
tion for their adoption of so-calledjustifications[15, 16] to the problem of debugging
answer-set programs. Their system returns visual output inform of graphs explaining
why atoms are (not) present in an answer set.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Brain, M., De Vos, M.: Debugging Logic Programs under the Answer Set Semantics. In:
Proc. ASP’05. Volume 142, CEUR Workshop Proceedings (CEUR-WS.org) (2005) 141–152

3. Syrjänen, T.: Debugging Inconsistent Answer Set Programs. In: Proc. NMR’06. (2006)
77–83

4. Pontelli, E., Son, T.: Justifications for Logic Programs under Answer Set Semantics. In:
Proc. ICLP’06. Springer (2006) 196–210

5. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
Programs by means of ASP. In: Proc. LPNMR’07. Springer (2007) 31–43

6. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: “That is Illogical
Captain!” – The Debugging Support Tool spock for Answer-SetPrograms: System Descrip-
tion. In: Proc. SEA’07. (2007) 71–85

7. Delgrande, J., Schaub, T., Tompits, H.: A Framework for Compiling Preferences in Logic
Programs. Theory and Practice of Logic Programming3 (2003) 129–187

8. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
Artificial Intelligence157 (2004) 115–137

9. Clark, K.: Negation as Failure. In: Logic and Data Bases. Plenum Press (1978) 293–322
10. GNU General Public License – Version 2, June 1991. Free Software Foundation Inc. (1991)

http://www.gnu.org/copyleft/gpl.html
11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7 (2006) 499–562

12. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence138 (2002) 181–234

13. Pührer, J.: On Debugging of Propositional Answer-Set Programs. Master’s thesis, Vienna
University of Technology, Austria (2007)

14. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A Meta-Programming Technique for De-
bugging Answer-Set Programs. In: Proc. AAAI’08. (2008) To appear

15. Roychoudhury, A., Ramakrishnan, C., Ramakrishnan, I.:Justifying Proofs using Memo
Tables. In: Proc. PPDP’00. (2000) 178–189

16. Specht, G.: Generating Explanation Trees even for Negations in Deductive Database Sys-
tems. In: Proc. LPE’93. (1993) 8–13


