SIMULTANEOUS USE OF TWO QCLs FOR ON-LINE MID-IR DETECTION WITH HPLC FOR WINE ANALYSIS

Bernhard Zachhuber, Julia Kuligowski, Wolfgang Tomischko, Bernhard Lendl
Inst. of Chemical Technologies and Analytics, Vienna University of Technology, Vienna

ABSTRACT
In the present study the simultaneous use of two Quantum Cascade Lasers (QCLs) was investigated for the on-line detection in High Performance Liquid Chromatography (HPLC). An optical set-up based on three gold mirrors and a ZnSe beam splitter was used to direct the emitted laser light through a calcium fluoride flow cell with an optical path length of 52 μm onto a Mercury-Cadmium-Telluride (MCT) detector. Using the separation of eight components of wine and grape juice, on-line dual QCL detection in HPLC could be shown successfully for the first time.

EXPERIMENTAL SETUP

Separation of aqueous solutions of organic acids and sugars is done via High Pressure Liquid Chromatography. The separated components are pumped through a CaF₂ flow cell with an inner diameter of 52 μm. The measurement principal is mid-infrared absorption spectroscopy. Two alternately pulsed Quantum Cascade Lasers of different wavelength are focused on a MCT detector. The beam intensities are reduced while passing the flow cell, depending on the analyte concentration. The detector signal is separated electronically using boxcar averagers, processed via A/D converter and stored on a PC.

QC - LASERS

Two Quantum Cascade Lasers (QCLs) are used to quantify sugars and organic acids. Substance spectra of 3 g/l solutions in water were analysed on a FTIR spectrometer. At 1393 cm⁻¹ the C-O-H in-plane bending vibration of the sugars and organic acids. Substance spectra of 3 g/l solutions in water were analysed on a FTIR spectrometer.

HPLC - SEPARATION

Separation via HPLC using a 50 µl injection loop. Column: Rezex Monosaccharide Ca²⁺, 300x7.8 mm Temperature: 85°C Flow rate: 0.6 ml/min Mobile phase: de-ionised water

CONCLUSION

This study demonstrated, for the first time, the feasibility of the introduced on-line coupling of a HPLC separation to a dual QCL detection system. All investigated species could be chromatographically separated, detected and quantified in complex matrices, as the analysis of seven different wine and grape juice samples showed. The use of a dual QCL system leads to more selective and robust measurement systems as more structural information on the investigated systems is obtained.

REFERENCES

EXPERIMENTAL SETUP

MANIFOLD SKETCH AND PICTURE

WINE SAMPLES

The performance of the developed method was tested on real samples with a complex matrix such as wine and grape juice. The Relative Standard Deviation (RSD) lies between 0.1 and 10% in all measured samples and for all detected analytes.

CONCENTRATION FOUND g/l ± s (RSD [%])

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>QCL 1</th>
<th>QCL 2</th>
<th>QCL 3</th>
<th>RED 1</th>
<th>RED 2</th>
<th>RED 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid</td>
<td>< LOD</td>
<td>< LOD</td>
<td>< LOD</td>
<td>< LOD</td>
<td>< LOD</td>
<td>< LOD</td>
</tr>
<tr>
<td>Glucose</td>
<td>6.1±0.3 (3.83)</td>
<td>5.9±0.5 (8.38)</td>
<td>6.3±0.5 (8.51)</td>
<td>< LOD</td>
<td>< LOD</td>
<td>< LOD</td>
</tr>
<tr>
<td>Malic Acid</td>
<td>0.19±0.06</td>
<td>0.38±0.13</td>
<td>0.46±0.15</td>
<td>0.24±0.14</td>
<td>0.72±0.24</td>
<td>1.39±0.53</td>
</tr>
<tr>
<td>Tartaric Acid</td>
<td>1.29±0.09</td>
<td>4.53±0.17</td>
<td>5.13±0.19</td>
<td>0.86±0.05</td>
<td>4.52±0.19</td>
<td>1.96±0.59</td>
</tr>
<tr>
<td>Fructose</td>
<td>4.52±0.19</td>
<td>5.13±0.19</td>
<td>5.60±0.22 (4.99)</td>
<td>0.86±0.05</td>
<td>4.52±0.19</td>
<td>1.96±0.59</td>
</tr>
<tr>
<td>Glycerol</td>
<td>3.6±0.3 (8.72)</td>
<td>3.6±0.3 (8.72)</td>
<td>3.6±0.3 (8.72)</td>
<td>< LOD</td>
<td>< LOD</td>
<td>< LOD</td>
</tr>
<tr>
<td>Ethanol</td>
<td>108.2±3.9 (3.83)</td>
<td>108.2±3.9 (3.83)</td>
<td>108.2±3.9 (3.83)</td>
<td>< LOD</td>
<td>< LOD</td>
<td>< LOD</td>
</tr>
</tbody>
</table>

CONCLUSION

EVALUATION

RECOVERY

Recovery experiments were carried out to assess the accuracy of the proposed method. Previously analysed wine and grape juice samples were spiked with known amounts of the found analytes at two different concentration levels and analysed twice. The recovery values of all compounds were satisfactory and ranged between 95 and 109%.

REFERENCES

This project was founded by the...