Pedestal Suppression in a Short-pulse Fiber-laser Output by Soliton Self-frequency Shift in a Photonic-crystal Fiber


1Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Russia
2Institute of Photonics, Vienna University of Technology, Vienna, Austria
3Physics Department, Bilkent University, Cankaya, Ankara, Turkey
4Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, United Kingdom

Discrimination of an ultrashort light pulse against an extended low-power pedestal is one of the key operations on a short-pulse laser output often needed for a clean, physically unambiguous high-intensity-laser--matter interaction experiment and for high-quality optical signal transmission. Fiber-format pedestal suppression is of special value for rapidly growing fiber-laser technologies. Nonlinear Kerr-effect-induced polarization phenomena offer an elegant solution to the problem of pedestal suppression in the fiber format [1]. However, for femtosecond fiber sources, pedestal suppression without a substantial temporal broadening of the main peak is often necessary for high-field physics and optical information technologies. Here, we show that soliton self-frequency shift [2, 3] of ultrashort light pulses in a highly nonlinear photonic-crystal fiber (PCF) [4, 5] allows a high-power-femtosecond pulse to be discriminated from a picosecond pedestal in the output of a positive-dispersion Yb fiber laser [6]. The central, most intense part of the laser pulse tends to evolve toward a soliton, experiencing a continuous red shift due to the Raman effect, which both spectrally and temporally isolates the soliton from the nonsolitonic, rapidly dispersing part of the field. As a result of this solitonic dynamics, high-contrast, pedestal-free 80-8 pulses with a milliwatt-range average power and kilowatt-level peak power have been generated at the output of an Yb-fiber-laser--PCF-discriminator system.

Fig. 1. (a) The autocorrelation of the compressed Yb-fiber-laser output (open circles) and PCF output (filled circle); (b) the spectrum of precompressed Yb-fiber-laser pulses transmitted through a 160-cm-long piece of PCF (open circles) and a hyperbolic-secant fit of the red-shifted solitonic feature (solid line).

This study was supported in part by the Russian Foundation for Basic Research (projects 09-02-12373, 09-02-91004)

References